1
|
Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, Colot V. The Arabidopsis thaliana mobilome and its impact at the species level. eLife 2016; 5. [PMID: 27258693 PMCID: PMC4917339 DOI: 10.7554/elife.15716] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Transposable elements (TEs) are powerful motors of genome evolution yet a comprehensive assessment of recent transposition activity at the species level is lacking for most organisms. Here, using genome sequencing data for 211 Arabidopsis thaliana accessions taken from across the globe, we identify thousands of recent transposition events involving half of the 326 TE families annotated in this plant species. We further show that the composition and activity of the 'mobilome' vary extensively between accessions in relation to climate and genetic factors. Moreover, TEs insert equally throughout the genome and are rapidly purged by natural selection from gene-rich regions because they frequently affect genes, in multiple ways. Remarkably, loci controlling adaptive responses to the environment are the most frequent transposition targets observed. These findings demonstrate the pervasive, species-wide impact that a rich mobilome can have and the importance of transposition as a recurrent generator of large-effect alleles.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
214 |
2
|
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:377-386. [PMID: 29161464 DOI: 10.1111/tpj.13782] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 05/20/2023]
Abstract
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9.
Collapse
|
|
7 |
151 |
3
|
Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol 2020; 22:621-629. [PMID: 32393884 PMCID: PMC7116658 DOI: 10.1038/s41556-020-0515-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines1,2. Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm3,4. Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. 5), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
141 |
4
|
Jacob Y, Bergamin E, Donoghue MTA, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D, Couture JF, Martienssen RA. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 2014; 343:1249-53. [PMID: 24626927 DOI: 10.1126/science.1248357] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Histone variants have been proposed to act as determinants for posttranslational modifications with widespread regulatory functions. We identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine-27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically "reads" alanine-31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine-31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog, ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
132 |
5
|
Washington RL, Bernhardt DT, Gomez J, Johnson MD, Martin TJ, Rowland TW, Small E, LeBlanc C, Krein C, Malina R, Young JC, Reed FE, Anderson S, Bolduc S, Bar-Or O, Newland H, Taras HL, Cimino DA, McGrath JW, Murray RD, Yankus WA, Young TL, Fleming M, Glendon M, Harrison-Jones L, Newberry JL, Pattishall E, Vernon M, Wolfe L, Li S. Organized sports for children and preadolescents. Pediatrics 2001; 107:1459-62. [PMID: 11389277 DOI: 10.1542/peds.107.6.1459] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Participation in organized sports provides an opportunity for young people to increase their physical activity and develop physical and social skills. However, when the demands and expectations of organized sports exceed the maturation and readiness of the participant, the positive aspects of participation can be negated. The nature of parental or adult involvement can also influence the degree to which participation in organized sports is a positive experience for preadolescents. This updates a previous policy statement on athletics for preadolescents and incorporates guidelines for sports participation for preschool children. Recommendations are offered on how pediatricians can help determine a child's readiness to participate, how risks can be minimized, and how child-oriented goals can be maximized.
Collapse
|
|
24 |
102 |
6
|
Bernhardt DT, Gomez J, Johnson MD, Martin TJ, Rowland TW, Small E, LeBlanc C, Malina R, Krein C, Young JC, Reed FE, Anderson SJ, Anderson SJ, Griesemer BA, Bar-Or O. Strength training by children and adolescents. Pediatrics 2001; 107:1470-2. [PMID: 11389279 DOI: 10.1542/peds.107.6.1470] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pediatricians are often asked to give advice on the safety and efficacy of strength training programs for children and adolescents. This review, a revision of a previous American Academy of Pediatrics policy statement, defines relevant terminology and provides current information on risks and benefits of strength training for children and adolescents.
Collapse
|
|
24 |
99 |
7
|
Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, Taback S, Dent P, Ellsworth J, LeBlanc C, Saint-Cyr C, Scuccimarri R, Hay J, Lentle B, Matzinger M, Shenouda N, Moher D, Rauch F, Siminoski K, Ward LM. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken) 2010; 62:516-26. [PMID: 20391507 DOI: 10.1002/acr.20171] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Vertebral fractures are an under-recognized problem in children with inflammatory disorders. We studied spine health among 134 children (87 girls) with rheumatic conditions (median age 10 years) within 30 days of initiating glucocorticoid therapy. METHODS Children were categorized as follows: juvenile dermatomyositis (n = 30), juvenile idiopathic arthritis (n = 28), systemic lupus erythematosus and related conditions (n = 26), systemic arthritis (n = 22), systemic vasculitis (n = 16), and other conditions (n = 12). Thoracolumbar spine radiograph and dual x-ray absorptiometry for lumbar spine (L-spine) areal bone mineral density (BMD) were performed within 30 days of glucocorticoid initiation. Genant semiquantitative grading was used for vertebral morphometry. Second metacarpal morphometry was carried out on a hand radiograph. Clinical factors including disease and physical activity, calcium and vitamin D intake, cumulative glucocorticoid dose, underlying diagnosis, L-spine BMD Z score, and back pain were analyzed for association with vertebral fracture. RESULTS Thirteen vertebral fractures were noted in 9 children (7%). Of these, 6 patients had a single vertebral fracture and 3 had 2-3 fractures. Fractures were clustered in the mid-thoracic region (69%). Three vertebral fractures (23%) were moderate (grade 2); the others were mild (grade 1). For the entire cohort, mean +/- SD L-spine BMD Z score was significantly different from zero (-0.55 +/- 1.2, P < 0.001) despite a mean height Z score that was similar to the healthy average (0.02 +/- 1.0, P = 0.825). Back pain was highly associated with increased odds for fracture (odds ratio 10.6 [95% confidence interval 2.1-53.8], P = 0.004). CONCLUSION In pediatric rheumatic conditions, vertebral fractures can be present prior to prolonged glucocorticoid exposure.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
93 |
8
|
Weaver LN, Ems-McClung SC, Stout JR, LeBlanc C, Shaw SL, Gardner MK, Walczak CE. Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 2011; 21:1500-6. [PMID: 21885282 DOI: 10.1016/j.cub.2011.08.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/03/2011] [Accepted: 08/02/2011] [Indexed: 01/03/2023]
Abstract
The mitotic spindle is a macromolecular structure utilized to properly align and segregate sister chromatids to two daughter cells. During mitosis, the spindle maintains a constant length, even though the spindle microtubules (MTs) are constantly undergoing polymerization and depolymerization [1]. Members of the kinesin-8 family are important for the regulation of spindle length and for chromosome positioning [2-9]. Kinesin-8 proteins are length-specific, plus-end-directed motors that are proposed to be either MT depolymerases [3, 4, 8, 10, 11] or MT capping proteins [12]. How Kif18A uses its destabilization activity to control spindle morphology is not known. We found that Kif18A controls spindle length independently of its role in chromosome positioning. The ability of Kif18A to control spindle length is mediated by an ATP-independent MT binding site at the C-terminal end of the Kif18A tail that has a strong affinity for MTs in vitro and in cells. We used computational modeling to ask how modulating the motility or binding properties of Kif18A would affect its activity. Our modeling predicts that both fast motility and a low off rate from the MT end are important for Kif18A function. In addition, our studies provide new insight into how depolymerizing and capping enzymes can lead to MT destabilization.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
78 |
9
|
Zhang F, LeBlanc C, Irish VF, Jacob Y. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. PLANT CELL REPORTS 2017; 36:1883-1887. [PMID: 28864834 DOI: 10.1007/s00299-017-2202-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/23/2017] [Indexed: 05/21/2023]
|
|
8 |
72 |
10
|
Borges F, Donoghue MTA, LeBlanc C, Wear EE, Tanurdžić M, Berube B, Brooks A, Thompson WF, Hanley-Bowdoin L, Martienssen RA. Loss of Small-RNA-Directed DNA Methylation in the Plant Cell Cycle Promotes Germline Reprogramming and Somaclonal Variation. Curr Biol 2020; 31:591-600.e4. [PMID: 33275892 DOI: 10.1016/j.cub.2020.10.098] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
5-methyl cytosine is widespread in plant genomes in both CG and non-CG contexts. During replication, hemi-methylation on parental DNA strands guides symmetric CG methylation on nascent strands, but non-CG methylation requires modified histones and small RNA guides. Here, we used immortalized Arabidopsis cell suspensions to sort replicating nuclei and determine genome-wide cytosine methylation dynamics during the plant cell cycle. We find that symmetric mCG and mCHG are selectively retained in actively dividing cells in culture, whereas mCHH is depleted. mCG becomes transiently asymmetric during S phase but is rapidly restored in G2, whereas mCHG remains asymmetric throughout the cell cycle. Hundreds of loci gain ectopic CHG methylation, as well as 24-nt small interfering RNAs (siRNAs) and histone H3 lysine dimethylation (H3K9me2), without gaining CHH methylation. This suggests that spontaneous epialleles that arise in plant cell cultures are stably maintained by siRNA and H3K9me2 independent of the canonical RNA-directed DNA methylation (RdDM) pathway. In contrast, loci that fail to produce siRNA may be targeted for demethylation when the cell cycle arrests. Comparative analysis with methylomes of various tissues and cell types suggests that loss of small-RNA-directed non-CG methylation during DNA replication promotes germline reprogramming and epigenetic variation in plants propagated as clones.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
36 |
11
|
Khouider S, Borges F, LeBlanc C, Ungru A, Schnittger A, Martienssen R, Colot V, Bouyer D. Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function. Nat Commun 2021; 12:410. [PMID: 33462227 PMCID: PMC7813888 DOI: 10.1038/s41467-020-20606-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Active DNA demethylation is required for sexual reproduction in plants but the molecular determinants underlying this epigenetic control are not known. Here, we show in Arabidopsis thaliana that the DNA glycosylases DEMETER (DME) and REPRESSOR OF SILENCING 1 (ROS1) act semi-redundantly in the vegetative cell of pollen to demethylate DNA and ensure proper pollen tube progression. Moreover, we identify six pollen-specific genes with increased DNA methylation as well as reduced expression in dme and dme;ros1. We further show that for four of these genes, reinstalling their expression individually in mutant pollen is sufficient to improve male fertility. Our findings demonstrate an essential role of active DNA demethylation in regulating genes involved in pollen function.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
35 |
12
|
Davarinejad H, Huang YC, Mermaz B, LeBlanc C, Poulet A, Thomson G, Joly V, Muñoz M, Arvanitis-Vigneault A, Valsakumar D, Villarino G, Ross A, Rotstein BH, Alarcon EI, Brunzelle JS, Voigt P, Dong J, Couture JF, Jacob Y. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 2022; 375:1281-1286. [PMID: 35298257 PMCID: PMC9153895 DOI: 10.1126/science.abm5320] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. We found that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed histone H3 lysine 27 monomethylation in plants depends on H3.1, TSK, and DNA polymerase theta (Pol θ). This work reveals an H3.1-specific function during replication and a common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone monomethyltransferases and reading of the H3.1 variant.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
32 |
13
|
Bandstra NF, Skinner L, LeBlanc C, Chambers CT, Hollon EC, Brennan D, Beaver C. The Role of Child Life in Pediatric Pain Management: A Survey of Child Life Specialists. THE JOURNAL OF PAIN 2008; 9:320-9. [DOI: 10.1016/j.jpain.2007.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 09/10/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
|
17 |
32 |
14
|
Concia L, Brooks AM, Wheeler E, Zynda GJ, Wear EE, LeBlanc C, Song J, Lee TJ, Pascuzzi PE, Martienssen RA, Vaughn MW, Thompson WF, Hanley-Bowdoin L. Genome-Wide Analysis of the Arabidopsis Replication Timing Program. PLANT PHYSIOLOGY 2018; 176:2166-2185. [PMID: 29301956 PMCID: PMC5841712 DOI: 10.1104/pp.17.01537] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/03/2018] [Indexed: 05/21/2023]
Abstract
Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2'-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility.
Collapse
|
research-article |
7 |
30 |
15
|
Ahola Kohut S, LeBlanc C, O'Leary K, McPherson AC, McCarthy E, Nguyen C, Stinson J. The internet as a source of support for youth with chronic conditions: A qualitative study. Child Care Health Dev 2018; 44:212-220. [PMID: 29082537 DOI: 10.1111/cch.12535] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adolescents living with chronic conditions often portray themselves as "healthy" online, yet use the Internet as one of their top sources of health information and social communication. There is a need to develop online support programs specific to adolescents with chronic conditions in order to provide a private space to discuss concerns. This paper endeavors to increase our understanding of the online support needs and wants of these adolescents and their interest in and preferences for an online support program. METHODS A qualitative descriptive study using semistructured interviews was completed. Stratified purposive sampling was utilized to ensure a representative sample based on age and diagnosis. English speaking adolescents (aged 12-18 years) diagnosed with a chronic condition were recruited from clinic and inpatient areas across 3 paediatric hospitals in Canada. RESULTS Thirty-three participants aged 15.3 ± 1.8 years (64% female) completed the study. The main topics identified were (a) the purpose of current online activity, (b) the benefits and challenges of existing online supports, and (c) a description of ideal online resources. The purpose of online activity was social networking, information, online gaming, and social support. When accessing health information online, participants prioritized websites that were easy to access and understand despite the trustworthiness of the site. The reported benefits and challenges varied across participants with many areas perceived as both a benefit and a challenge. The majority of participants were interested in participating in an online support program that included both accurate disease-related information and a community of other adolescents to provide social support. CONCLUSIONS Adolescents with chronic conditions are interested in online support that encompasses health information and social support that is flexible and easy to navigate. Findings can be used to develop or adapt existing online support programs for adolescents with chronic conditions to help increase engagement and utilization.
Collapse
|
Multicenter Study |
7 |
26 |
16
|
Wear EE, Song J, Zynda GJ, LeBlanc C, Lee TJ, Mickelson-Young L, Concia L, Mulvaney P, Szymanski ES, Allen GC, Martienssen RA, Vaughn MW, Hanley-Bowdoin L, Thompson WF. Genomic Analysis of the DNA Replication Timing Program during Mitotic S Phase in Maize ( Zea mays) Root Tips. THE PLANT CELL 2017; 29:2126-2149. [PMID: 28842533 PMCID: PMC5635974 DOI: 10.1105/tpc.17.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 05/19/2023]
Abstract
All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the "Repli-seq" assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase.
Collapse
|
research-article |
8 |
22 |
17
|
Dong J, LeBlanc C, Poulet A, Mermaz B, Villarino G, Webb KM, Joly V, Mendez J, Voigt P, Jacob Y. H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. THE PLANT CELL 2021; 33:961-979. [PMID: 33793815 PMCID: PMC8226292 DOI: 10.1093/plcell/koaa027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 05/17/2023]
Abstract
Epigenetic mechanisms play diverse roles in the regulation of genome stability in eukaryotes. In Arabidopsis thaliana, genome stability is maintained during DNA replication by the H3.1K27 methyltransferases ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6, which catalyze the deposition of K27me1 on replication-dependent H3.1 variants. The loss of H3.1K27me1 in atxr5 atxr6 double mutants leads to heterochromatin defects, including transcriptional de-repression and genomic instability, but the molecular mechanisms involved remain largely unknown. In this study, we identified the transcriptional co-activator and conserved histone acetyltransferase GCN5 as a mediator of transcriptional de-repression and genomic instability in the absence of H3.1K27me1. GCN5 is part of a SAGA-like complex in plants that requires the GCN5-interacting protein ADA2b and the chromatin remodeler CHR6 to mediate the heterochromatic defects in atxr5 atxr6 mutants. Our results also indicate that Arabidopsis GCN5 acetylates multiple lysine residues on H3.1 variants, but H3.1K27 and H3.1K36 play essential functions in inducing genomic instability in the absence of H3.1K27me1. Finally, we show that H3.1K36 acetylation by GCN5 is negatively regulated by H3.1K27me1 in vitro. Overall, this work reveals a key molecular role for H3.1K27me1 in maintaining transcriptional silencing and genome stability in heterochromatin by restricting GCN5-mediated histone acetylation in plants.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
22 |
18
|
Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, Kim HS, Berube B, Major V, Calarco JP, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen RA. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation. Cell 2023; 186:4100-4116.e15. [PMID: 37643610 PMCID: PMC10529913 DOI: 10.1016/j.cell.2023.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
19 |
19
|
Pan B, Waguespack J, Schnee ME, LeBlanc C, Ricci AJ. Permeation properties of the hair cell mechanotransducer channel provide insight into its molecular structure. J Neurophysiol 2012; 107:2408-20. [PMID: 22323630 DOI: 10.1152/jn.01178.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanoelectric transducer (MET) channels, located near stereocilia tips, are opened by deflecting the hair bundle of sensory hair cells. Defects in this process result in deafness. Despite this critical function, the molecular identity of MET channels remains a mystery. Inherent channel properties, particularly those associated with permeation, provide the backbone for the molecular identification of ion channels. Here, a novel channel rectification mechanism is identified, resulting in a reduced pore size at positive potentials. The apparent difference in pore dimensions results from Ca(2+) binding within the pore, occluding permeation. Driving force for permeation at hyperpolarized potentials is increased because Ca(2+) can more easily be removed from binding within the pore due to the presence of an electronegative external vestibule that dehydrates and concentrates permeating ions. Alterations in Ca(2+) binding may underlie tonotopic and Ca(2+)-dependent variations in channel conductance. This Ca(2+)-dependent rectification provides targets for identifying the molecular components of the MET channel.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
18 |
20
|
Abstract
A cholinergic receptor on outer hair cells (OHC) in guinea pig cochlea induces a K+ current when it is activated by acetylcholine and suberyldicholine but not by nicotine or muscarine (Bobbin, 1995). This unusual receptor may contain an alpha 9-subunit. However, the pharmacology of the alpha 9-subunit cloned from rat and expressed in Xenopus oocytes does not completely match that obtained for the ACh receptor in guinea pig OHCs. The response to 1,1-dimethyl-4-phenylpiperazinium (DMPP) is large in guinea pig OHCs and small in oocytes containing receptors of the alpha 9-subunit. Therefore, we compared the effects of cholinergic receptor agonists in rat and guinea pig OHCs using the whole-cell variant of the patch-clamp technique. ACh caused the largest outward K+ current in OHCs from both rat and guinea pig. Carbachol- and suberyldicholine-induced responses were similar in magnitude in OHCs of rat and guinea pig. However, DMPP produced a small response in OHCs from rat and a large response in OHCs from guinea pig. At a concentration of 100 microM, muscarine, oxotremorine M, nicotine and cytisine induced little response in guinea pig OHCs and none in rat OHCs. Results suggest that the ACh receptor on rat OHCs is similar to the alpha 9-subunit-containing receptor expressed in oocytes but different from the ACh receptor on guinea pig OHCs.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Carbachol/pharmacology
- Cell Separation
- Dose-Response Relationship, Drug
- Guinea Pigs
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/physiology
- Muscarinic Agonists/pharmacology
- Nicotinic Agonists/pharmacology
- Patch-Clamp Techniques
- Potassium/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/metabolism
- Receptors, Cholinergic/physiology
- Species Specificity
Collapse
|
|
29 |
16 |
21
|
Chen C, LeBlanc C, Bobbin RP. Differences in the distribution of responses to ATP and acetylcholine between outer hair cells of rat and guinea pig. Hear Res 1997; 110:87-94. [PMID: 9282891 DOI: 10.1016/s0378-5955(97)00069-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adenosine 5' triphosphate (ATP) and acetylcholine (ACh) are neurotransmitters (ACh) and/or modulators (ATP) in the mammalian cochlea. In guinea pig, it appears that both neurotransmitters have a similar response distribution, with larger responses being evoked by the ligands in short hair cells compared to long hair cells (e.g., Chen et al., 1995b. Noise exposure alters the response of outer hair cells to ATP. Hear. Res. 88, 215-221.; Erostegui et al., 1994. In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells. Hear. Res. 74, 135 147). The purpose of the present study was to test whether the distribution of responses to ACh and ATP in the OHCs of rat is the same as guinea pig. The ligand-induced current was monitored using the whole-cell configuration of the patch-clamp technique. Results show that in guinea pig OHCs, extracellular application of 100 microM ATP induced a current response in a majority of the same cells that responded to the application of 100 microM ACh. In contrast in rat OHCs, 100 microM ATP did not induce a current in the majority of cells that responded to the application of 100 microM ACh. N-methyl-glucamine (NMG+) substituted for K+ in the pipette solution failed to unmask an ATP-evoked inward current in rat OHCs. In addition, no response was produced in rat or guinea pig OHCs by adenosine, adenosine 5'-monophosphate (AMP) or adenosine 5'-diphosphate (ADP) at 100 microM. Results suggest that in guinea pig ACh-gated channels are present on most of the same OHCs that have ATP-gated ion channels, whereas in rat ACh-gated ion channels are present without ATP-gated channels on some OHCs.
Collapse
|
Comparative Study |
28 |
15 |
22
|
Deacon T, Whatley B, LeBlanc C, Lin L, Isacson O. Pig fetal septal neurons implanted into the hippocampus of aged or cholinergic deafferented rats grow axons and form cross-species synapses in appropriate target regions. Cell Transplant 1999; 8:111-29. [PMID: 10338280 DOI: 10.1177/096368979900800104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anatomical specificity of axon growth from fetal pig septal xenografts was studied by transplanting septal cells from E30-35 pig fetuses into cholinergic deafferented (192-IgG-saporin-infused) rats or into aged rats (> 18 months). Cell suspensions (100,000 cells/microl) were injected bilaterally into the dorsal and ventral hippocampus of immunosuppressed rats (10 mg/kg/day cyclosporine A). To assess axonal growth and synapse formation, acetylcholinesterase histochemistry, an antibody to choline acetyltransferase (ChAT), and three pig-positive/rat-negative antibodies: bovine 70kD neurofilament (NF70), human low-affinity NGF receptor (hNGFr), and human synaptobrevin (hSB) were used. In rats with surviving grafts at 6 months, NF70 axonal labeling was more extensive than either ChAT or hNGFr labeling. All three markers demonstrated graft axons extending selectively through the hippocampal CA fields and the molecular layer of the dentate gyrus. Graft axons did not extend into adjacent entorhinal cortex or neocortex. The distribution of pig hSB-positive synapses correlated with AChE-positive fiber outgrowth in to the host. Electron microscopic analysis of hSB-immunostained hippocampal sections revealed pig presynaptic terminals in contact with normal rat postsynaptic structures in the CA fields and the dentate gyrus. These data demonstrate target-appropriate growth of pig cholinergic axons and the formation of cross-species synapses in the deafferented or aged rat hippocampus.
Collapse
|
|
26 |
14 |
23
|
Bobbin RP, Fallon M, LeBlanc C, Baber A. Evidence that glutathione is the unidentified amine (Unk 2.5) released by high potassium into cochlear fluids. Hear Res 1995; 87:49-54. [PMID: 8567442 DOI: 10.1016/0378-5955(95)00077-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An unidentified substance, Unk 2.5, may be important in the function of the cochlea. The efflux of Unk 2.5 into cochlear fluids is increased by intense sound (Bobbin and Fallon, 1992) and by exposure of the cochlear tissue to high concentrations of K+ (Bobbin et al., 1990,1991; Bobbin and Fallon, 1992). The unidentified chemical eluted at 2.5 min in chromatograms obtained by HPLC utilizing fluorescence detection and precolumn o-phthalaldehyde (OPA) derivatization of samples of effluent from the cochlea (e.g., Bobbin et al., 1990). The purpose of this investigation was to provide evidence as to the identity of this unidentified chemical we call Unk 2.5. Therefore, we carried out additional HPLC assays on samples obtained during perfusion of the cochlear perilymph compartment. Glutathione (GSH) was found to elute at the same time (@ 2.5 min) as Unk 2.5 in HPLC chromatograms utilizing precolumn derivatization with OPA and mercaptoethanol. In addition, both Unk 2.5 and GSH reacted with OPA without mercaptoethanol present in the reaction mixture to give a peak at 2.5 min in the chromatogram, but failed to show this peak if stored in solutions with a pH > 7 for several days before the reaction. Results indicate that Unk 2.5 is GSH or a closely related compound. Given this probable identification GSH, aka Unk 2.5, has been demonstrated to be released from tissue in the cochlea by high concentrations of K+ (Bobbin et al., 1990,1991) and by intense sound (124 dB SPL; Bobbin and Fallon, 1992).
Collapse
|
|
30 |
9 |
24
|
Corcoran ET, LeBlanc C, Huang YC, Arias Tsang M, Sarkiss A, Hu Y, Pedmale UV, Jacob Y. Systematic histone H4 replacement in Arabidopsis thaliana reveals a role for H4R17 in regulating flowering time. THE PLANT CELL 2022; 34:3611-3631. [PMID: 35879829 PMCID: PMC9516085 DOI: 10.1093/plcell/koac211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 06/13/2023]
Abstract
Despite the broad array of roles for epigenetic mechanisms on regulating diverse processes in eukaryotes, no experimental system is currently available in plants for the direct assessment of histone function. In this work, we present the development of a genetic strategy in Arabidopsis (Arabidopsis thaliana) whereby modified histone H4 transgenes can completely replace the expression of endogenous histone H4 genes. Accordingly, we established a collection of plants expressing different H4 point mutants targeting residues that may be post-translationally modified in vivo. To demonstrate its utility, we screened this new H4 mutant collection to uncover substitutions in H4 that alter flowering time. We identified different mutations in the H4 tail (H4R17A) and the H4 globular domain (H4R36A, H4R39K, H4R39A, and H4K44A) that strongly accelerate the floral transition. Furthermore, we identified a conserved regulatory relationship between H4R17 and the ISWI chromatin remodeling complex in plants: As with other biological systems, H4R17 regulates nucleosome spacing via ISWI. Overall, this work provides a large set of H4 mutants to the plant epigenetics community that can be used to systematically assess histone H4 function in Arabidopsis and a roadmap to replicate this strategy for studying other histone proteins in plants.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
7 |
25
|
Wheeler E, Brooks AM, Concia L, Vera DL, Wear EE, LeBlanc C, Ramu U, Vaughn MW, Bass HW, Martienssen RA, Thompson WF, Hanley-Bowdoin L. Arabidopsis DNA Replication Initiates in Intergenic, AT-Rich Open Chromatin. PLANT PHYSIOLOGY 2020; 183:206-220. [PMID: 32205451 PMCID: PMC7210620 DOI: 10.1104/pp.19.01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 05/04/2023]
Abstract
The selection and firing of DNA replication origins play key roles in ensuring that eukaryotes accurately replicate their genomes. This process is not well documented in plants due in large measure to difficulties in working with plant systems. We developed a new functional assay to label and map very early replicating loci that must, by definition, include at least a subset of replication origins. Arabidopsis (Arabidopsis thaliana) cells were briefly labeled with 5-ethynyl-2'-deoxy-uridine, and nuclei were subjected to two-parameter flow sorting. We identified more than 5500 loci as initiation regions (IRs), the first regions to replicate in very early S phase. These were classified as strong or weak IRs based on the strength of their replication signals. Strong initiation regions were evenly spaced along chromosomal arms and depleted in centromeres, while weak initiation regions were enriched in centromeric regions. IRs are AT-rich sequences flanked by more GC-rich regions and located predominantly in intergenic regions. Nuclease sensitivity assays indicated that IRs are associated with accessible chromatin. Based on these observations, initiation of plant DNA replication shows some similarity to, but is also distinct from, initiation in other well-studied eukaryotic systems.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
7 |