1
|
Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. THE JOURNAL OF IMMUNOLOGY 2004; 171:6164-72. [PMID: 14634132 DOI: 10.4049/jimmunol.171.11.6164] [Citation(s) in RCA: 657] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is well known that inflammatory conditions of the intestinal mucosa result in compromised barrier function. Inflammation is characterized by an influx into the mucosa of immune cells that influence epithelial function by releasing proinflammatory cytokines such as IFN-gamma and TNF-alpha. Mucosal barrier function is regulated by the epithelial apical junctional complex (AJC) consisting of the tight junction and the adherens junction. Since the AJC regulates barrier function, we analyzed the influence of IFN-gamma and TNF-alpha on its structure/function and determined the contribution of apoptosis to this process using a model intestinal epithelial cell line, T84, and IFN-gamma and TNF-alpha. AJC structure/function was analyzed by confocal microscopy, biochemical analysis, and physiologic measurement of epithelial gate/fence function. Apoptosis was monitored by determining cytokeratin 18 cleavage and caspase-3 activation. IFN-gamma induced time-dependent disruptions in epithelial gate function that were potentiated by coincubation with TNF-alpha. Tight junction fence function was somewhat disrupted. Cytokine treatment was associated with internalization of AJC transmembrane proteins, junction adhesion molecule 1, occludin, and claudin-1/4 with minimal effects on the cytoplasmic plaque protein zonula occludens 1. Detergent solubility profiles of junction adhesion molecule 1 and E-cadherin and their affiliation with "raft-like" membrane microdomains were modified by these cytokines. Inhibition of cytokine-induced apoptosis did not block induced permeability defects; further emphasizing their primary influence on the epithelial AJC structure and barrier function. Our findings for the first time clearly separate the proapoptotic effects of IFN-gamma and TNF-alpha from their abilities to disrupt barrier function.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
657 |
2
|
Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104:441-51. [PMID: 11239401 DOI: 10.1016/s0092-8674(01)00231-8] [Citation(s) in RCA: 495] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.
Collapse
|
|
24 |
495 |
3
|
Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, Dermody TS, Nusrat A, Parkos CA. JAM-A regulates permeability and inflammation in the intestine in vivo. ACTA ACUST UNITED AC 2007; 204:3067-76. [PMID: 18039951 PMCID: PMC2150975 DOI: 10.1084/jem.20071416] [Citation(s) in RCA: 391] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent evidence has linked intestinal permeability to mucosal inflammation, but molecular studies are lacking. Candidate regulatory molecules localized within the tight junction (TJ) include Junctional Adhesion Molecule (JAM-A), which has been implicated in the regulation of barrier function and leukocyte migration. Thus, we analyzed the intestinal mucosa of JAM-A-deficient (JAM-A(-/-)) mice for evidence of enhanced permeability and inflammation. Colonic mucosa from JAM-A(-/-) mice had normal epithelial architecture but increased polymorphonuclear leukocyte infiltration and large lymphoid aggregates not seen in wild-type controls. Barrier function experiments revealed increased mucosal permeability, as indicated by enhanced dextran flux, and decreased transepithelial electrical resistance in JAM-A(-/-) mice. The in vivo observations were epithelial specific, because monolayers of JAM-A(-/-) epithelial cells also demonstrated increased permeability. Analyses of other TJ components revealed increased expression of claudin-10 and -15 in the colonic mucosa of JAM-A(-/-) mice and in JAM-A small interfering RNA-treated epithelial cells. Given the observed increase in colonic inflammation and permeability, we assessed the susceptibility of JAM-A(-/-) mice to the induction of colitis with dextran sulfate sodium (DSS). Although DSS-treated JAM-A(-/-) animals had increased clinical disease compared with controls, colonic mucosa showed less injury and increased epithelial proliferation. These findings demonstrate a complex role of JAM-A in intestinal homeostasis by regulating epithelial permeability, inflammation, and proliferation.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
391 |
4
|
Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:2001-9. [PMID: 11733350 PMCID: PMC1850599 DOI: 10.1016/s0002-9440(10)63051-9] [Citation(s) in RCA: 384] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) consisting of ulcerative colitis (UC) and Crohn's (CD) typically displays a waxing and waning course punctuated by disease flares that are characterized by transepithelial migration of neutrophils (PMN) and altered barrier function. Since epithelial barrier function is primarily regulated by the apical most intercellular junction referred to as the tight junction (TJ), our aim was to examine expression of TJ and adherens junction (AJ) proteins in relation to PMN infiltration in mucosal tissue samples from patients with active IBD. Expression of epithelial intercellular TJ proteins (occludin, ZO-1, claudin-1, and JAM) and subjacent AJ (beta-catenin and E-cadherin) proteins were examined by immunoflourescence/confocal microscopy, immunohistochemistry, and Western blotting. Colonic mucosa from patients with UC revealed dramatic, global down-regulation of the key TJ transmembrane protein occludin in regions of actively transmigrating PMN and in quiescent areas in the biopsy samples. Significant decreases in occludin expression were observed at the protein and mRNA levels by Western and Northern blotting. In contrast, expression of other TJ and AJ proteins such as ZO-1, claudin-1, JAM, beta-catenin, and E-cadherin were down-regulated only in epithelial cells immediately adjacent to transmigrating PMN. Analysis of inflamed mucosa from Crohn's disease patients mirrored the results obtained with UC patients. No change in TJ and AJ protein expression was observed in colonic epithelium from patients with collagenous colitis or lymphocytic colitis that are respectively characterized by a thickened subepithelial collagen plate and increased intraepithelial lymphocytes. These results suggest that occludin expression is diminished in IBD by mechanisms distinct from those regulating expression of other intercellular junction proteins. We speculate that down-regulation of epithelial occludin may play a role in enhanced paracellular permeability and PMN transmigration that is observed in active inflammatory bowel disease.
Collapse
|
research-article |
24 |
384 |
5
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
|
Review |
9 |
381 |
6
|
Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000; 113 ( Pt 13):2363-74. [PMID: 10852816 DOI: 10.1242/jcs.113.13.2363] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells form a highly selective barrier and line many organs. The epithelial barrier is maintained by closely apposed cell-cell contacts containing tight junctions, the regulation of which is incompletely understood. Here we report the cloning, tissue localization and evidence for a role in epithelial barrier regulation of an immunoglobulin superfamily member that likely represents the human homolog of murine junction adhesion molecule (JAM). Analysis of the primary structure of human JAM, cloned from T84 epithelial cells, predicts a transmembrane protein with an extracellular domain that contains two IgV loops. Monoclonal antibodies generated against the putative extracellular domain were reactive with a 35–39 kDa protein from both T84 epithelial cells and human neutrophils. By immunofluorescence, JAM mAbs labeled epithelial cells from intestine, lung, and kidney, prominently in the region of tight junctions (co-localization with occludin) and also along lateral cell membranes below the tight junctions. Flow cytometric studies confirmed predominant JAM expression in epithelial cells but also revealed expression on endothelial and hematopoietic cells of all lineages. Functional studies demonstrated that JAM specific mAbs markedly inhibited transepithelial resistance recovery of T84 monolayers after disruption of intercellular junctions (including tight junctions) by transient calcium depletion. Morphologic analysis revealed that, after disassembly of cell-cell junctions, anti-JAM inhibition of barrier function recovery correlated with a loss of both occludin and JAM, but not ZO-1, in reassembling tight junction structure. Reassembly of the major adherens junction component E-cadherin was not affected by JAM specific mAbs. Our findings suggest that JAM plays an important role in the regulation of tight junction assembly in epithelia. Furthermore, these JAM-mediated effects may occur by either direct, or indirect interactions with occludin.
Collapse
|
|
25 |
348 |
7
|
Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 1987; 80:732-42. [PMID: 3305576 PMCID: PMC442297 DOI: 10.1172/jci113128] [Citation(s) in RCA: 318] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A new method has been developed for purification of cytochrome b from stimulated human granulocytes offering the advantage of high yields from practical quantities of whole blood. Polymorphonuclear leukocytes were treated with diisopropylfluorophosphate, degranulated and disrupted by nitrogen cavitation. Membranes enriched in cytochrome b were prepared by differential centrifugation. Complete solubilization of the cytochrome from the membranes was achieved in octylglucoside after a 1-M salt wash. Wheat germ agglutinin-conjugated Sepharose 4B specifically bound the solubilized cytochrome b and afforded a threefold purification. Eluate from the immobilized wheat germ agglutinin was further enriched by chromatography on immobilized heparin. The final 260-fold purification of the b-type cytochrome with a 20-30% yield was achieved by velocity sedimentation in sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified preparation revealed two polypeptides of Mr 91,000 and Mr 22,000. Treatment of the 125I-labeled, purified preparation with peptide:N-glycosidase F, which removes N-linked sugars, decreased relative molecular weight of the larger species to approximately 50,000, whereas beta-elimination, which removes O-linked sugars, had little or no effect on the mobility of the Mr-91,000 polypeptide. Neither of the deglycosylation conditions had any effect on electrophoretic mobility of the Mr-22,000 polypeptide. Disuccinimidyl suberate cross-linked the two polypeptides to a new Mr of 120,000-135,000 by SDS-PAGE. Antibody raised to the purified preparation immunoprecipitated spectral activity and, on Western blots, bound to the Mr-22,000 polypeptide but not the Mr-91,000 polypeptide. Western blot analysis of granulocytes from patients with X-linked chronic granulomatous disease revealed a complete absence of the Mr-22,000 polypeptide. These results (a) suggest that the two polypeptides are in close association and are part of the cytochrome b, (b) provide explanation for the molecular weight discrepancies previously reported for the protein, and (c) further support the involvement of the cytochrome in superoxide production in human neutrophils.
Collapse
|
research-article |
38 |
318 |
8
|
Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL. Tight junctions are membrane microdomains. J Cell Sci 2000; 113 ( Pt 10):1771-81. [PMID: 10769208 DOI: 10.1242/jcs.113.10.1771] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tight junctions (TJ) of polarized epithelial cells regulate barrier function at mucosal surfaces. Structural proteins of TJs include hyperphosphorylated occludin (HO) and the peripheral membrane protein, ZO-1. Since TJs are dynamically regulated, and lipid-modified signal transduction proteins localize to TJs, we considered the possibility that the TJ itself is composed of microdomains with unique structure. Differential detergent extraction and isopycnic sucrose density gradients were utilized to isolate TJ-enriched membranes from a polarized intestinal epithelial cell line, T84. Here we report that major pools of hyperphosphorylated occludin (HO) and ZO-1 are found in raft-like membrane microdomains with characteristics of the previously described detergent-insoluble glycolipid rafts (DIGs). Properties of such gradient fractions included Triton X-100 (TX-100) insolubility, light scattering at 600 nm, buoyant density of approximately 1.08 g/cm(3) and increased cholesterol content compared to high density fractions. Similar results were obtained using natural epithelium. Unlike the TJ proteins HO and ZO-1, other basolateral transmembrane proteins including E-cadherin, c-met and β 1 integrin were not increased in DIG-like fractions. Immunoprecipitation studies revealed coprecipitation of a pool of occludin with caveolin-1, a scaffolding protein abundant in DIGs. Coprecipitation results were supported by immunofluorescence and immunogold labeling studies demonstrating caveolin-1 localization in the apical membrane and focal colocalization with occludin in TJs. TJ disassembly by calcium chelation resulted in displacement of TJ proteins from the ‘raft-like’ compartment. Our findings suggest that raft-like compartments play an important role in the spatial organization of TJs and probably in regulation of paracellular permeability in epithelial cells.
Collapse
|
|
25 |
316 |
9
|
Ivanov AI, Nusrat A, Parkos CA. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 2003; 15:176-88. [PMID: 14528017 PMCID: PMC307538 DOI: 10.1091/mbc.e03-05-0319] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The adherens junction (AJ) and tight junction (TJ) are key regulators of epithelial polarity and barrier function. Loss of epithelial phenotype is accompanied by endocytosis of AJs and TJs via unknown mechanisms. Using a model of calcium depletion, we defined the pathway of internalization of AJ and TJ proteins (E-cadherin, p120 and beta-catenins, occludin, JAM-1, claudins 1 and 4, and ZO-1) in T84 epithelial cells. Proteinase protection assay and immunocytochemistry revealed orchestrated internalization of AJs and TJs into a subapical cytoplasmic compartment. Disruption of caveolae/lipid rafts did not prevent endocytosis, nor did caveolin-1 colocalize with internalized junctional proteins. Furthermore, AJ and TJ proteins did not colocalize with the macropinocytosis marker dextran. Inhibitors of clathrin-mediated endocytosis blocked internalization of AJs and TJs, and junctional proteins colocalized with clathrin and alpha-adaptin. AJ and TJ proteins were observed to enter early endosomes followed by movement to organelles that stained with syntaxin-4 but not with markers of late and recycling endosomes, lysosomes, or Golgi. These results indicate that endocytosis of junctional proteins is a clathrin-mediated process leading into a unique storage compartment. Such mechanisms may mediate the disruption of intercellular contacts during normal tissue remodeling and in pathology.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
309 |
10
|
Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A 1995; 92:10629-33. [PMID: 7479854 PMCID: PMC40665 DOI: 10.1073/pnas.92.23.10629] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The rho family of GTP-binding proteins regulates actin filament organization. In unpolarized mammalian cells, rho proteins regulate the assembly of actin-containing stress fibers at the cell-matrix interface. Polarized epithelial cells, in contrast, are tall and cylindrical with well developed intercellular tight junctions that permit them to behave as biologic barriers. We report that rho regulates filamentous actin organization preferentially in the apical pole of polarized intestinal epithelial cells and, in so doing, influences the organization and permeability of the associated apical tight junctions. Thus, barrier function, which is an essential characteristic of columnar epithelia, is regulated by rho.
Collapse
|
research-article |
30 |
305 |
11
|
Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 2006; 19:923-33. [PMID: 15923402 DOI: 10.1096/fj.04-3260com] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased epithelial permeability is observed in inflammatory states. However, the mechanism by which inflammatory mediators such as IFN-gamma increase epithelial permeability is unknown. We recently observed that IFN-gamma induces disassembly of tight junctions (TJ); in this study we asked whether such TJ disassembly is mediated by endocytosis of junctional proteins. The role of three major internalization pathways in disruption of TJ in IFN-gamma-treated intestinal epithelial cells was analyzed using selective inhibitors and markers of the pathways. No role for the clathrin- and caveolar-mediated endocytosis in the IFN-gamma-induced internalization of TJ proteins was observed. However, inhibitors of macropinocytosis blocked internalization of TJ proteins and junctional proteins colocalized with macropinocytosis markers, dextran and phosphatidylinositol-3,4,5-trisphosphate. Internalized TJ proteins were identified in early and recycling endosomes but not in late endosomes/lysosomes. These results for the first time suggest that IFN-gamma produces a leaky epithelial barrier by inducing macropinoytosis of TJ proteins.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
19 |
291 |
12
|
Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA, Nusrat A. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 2005; 16:5040-52. [PMID: 16055505 PMCID: PMC1237102 DOI: 10.1091/mbc.e05-03-0193] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disruption of epithelial barrier by proinflammatory cytokines such as IFN-gamma represents a major pathophysiological consequence of intestinal inflammation. We have previously shown that IFN-gamma increases paracellular permeability in model T84 epithelial cells by inducing endocytosis of tight junction (TJ) proteins occludin, JAM-A, and claudin-1. The present study was designed to dissect mechanisms of IFN-gamma-induced endocytosis of epithelial TJ proteins. IFN-gamma treatment of T84 cells resulted in internalization of TJ proteins into large actin-coated vacuoles that originated from the apical plasma membrane and resembled the vacuolar apical compartment (VAC) previously observed in epithelial cells that lose cell polarity. The IFN-gamma dependent formation of VACs required ATPase activity of a myosin II motor but was not dependent on rapid turnover of F-actin. In addition, activated myosin II was observed to colocalize with VACs after IFN-gamma exposure. Pharmacological analyses revealed that formation of VACs and endocytosis of TJ proteins was mediated by Rho-associated kinase (ROCK) but not myosin light chain kinase (MLCK). Furthermore, IFN-gamma treatment resulted in activation of Rho GTPase and induced expressional up-regulation of ROCK. These results, for the first time, suggest that IFN-gamma induces endocytosis of epithelial TJ proteins via RhoA/ROCK-mediated, myosin II-dependent formation of VACs.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
279 |
13
|
Parkos CA, Delp C, Arnaout MA, Madara JL. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J Clin Invest 1991; 88:1605-12. [PMID: 1682344 PMCID: PMC295682 DOI: 10.1172/jci115473] [Citation(s) in RCA: 279] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neutrophils (PMN) migrate across intestinal epithelia in many disease states. Although such migration serves as a histological index of disease activity, little is known concerning the molecular events underlying PMN-intestinal epithelial interactions. We have studied chemotactic peptide-driven movement of PMN across cultured monolayers of the human intestinal epithelial cell line T84. Using a transmigration microassay, we show that both the decreased transepithelial resistance (76 +/- 3%) and transmigration (4 +/- 0.6 x 10(5) PMN.cm-2, when PMN applied at 6 x 10(6).cm-2) are largely prevented by MAbs which recognize either subunit of the PMN surface heterodimeric adhesion glycoprotein, CD11b/CD18. In contrast, such PMN-epithelial interactions are unaffected by MAbs recognizing either of the remaining two alpha subunits CD11a or CD11c. PMN from a leukocyte adherence deficiency patient also failed to migrate across epithelial monolayers thus confirming a requirement for CD11/18 integrins. By modifying our microassay, we were able to assess PMN transmigration across T84 monolayers in the physiological direction (which, for technical reasons, has not been studied in epithelia): transmigration was again largely attenuated by MAb to CD18 or CD11b (86 +/- 2% and 73 +/- 3% inhibition, respectively) but was unaffected by MAb to CD11a, CD11c. For standard conditions of PMN density, PMN transmigration in the physiological direction was 5-20 times more efficient than in the routinely studied opposite direction.
Collapse
|
research-article |
34 |
279 |
14
|
Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 1987; 327:717-20. [PMID: 3600768 DOI: 10.1038/327717a0] [Citation(s) in RCA: 277] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bacteriocidal capacity of phagocytic cells is impaired in X-linked chronic granulomatous disease (X-CGD), a disorder characterized by the absence of functional plasma-membrane-associated NADPH oxidase. The components of this oxidase system, their correspondence with specific genetic loci, and the primary protein defect in X-CGD remain incompletely defined. We recently reported cloning of the putative X-CGD gene on the basis of DNA linkage. To identify the predicted protein in vivo, antibodies were raised to a synthetic peptide derived from the complementary DNA sequence and to a fusion protein produced in Escherichia coli. In Western blots antisera detect a neutrophil protein of relative molecular mass in 90,000 (90K) that is absent in X-CGD patients. Antisera also react with the larger component of cytochrome b recently purified from neutrophil plasma membranes as a complex of glycosylated 90K and non-glycosylated 22K polypeptides. Based on our identification of the X-CGD protein in vivo, we propose that one of its critical roles is to interact with the 22K species to form a functional cytochrome b complex.
Collapse
|
|
38 |
277 |
15
|
Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:512-24. [PMID: 20581053 DOI: 10.2353/ajpath.2010.100168] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II-dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia.
Collapse
|
Review |
15 |
275 |
16
|
Nava P, Koch S, Laukoetter MG, Lee WY, Kolegraff K, Capaldo CT, Beeman N, Addis C, Gerner-Smidt K, Neumaier I, Skerra A, Li L, Parkos CA, Nusrat A. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 2010; 32:392-402. [PMID: 20303298 PMCID: PMC2859189 DOI: 10.1016/j.immuni.2010.03.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/16/2009] [Accepted: 01/15/2010] [Indexed: 12/23/2022]
Abstract
Inflammatory cytokines have been proposed to regulate epithelial homeostasis during intestinal inflammation. We report here that interferon-gamma (IFN-gamma) regulates the crucial homeostatic functions of cell proliferation and apoptosis through serine-threonine protein kinase AKT-beta-catenin and Wingless-Int (Wnt)-beta-catenin signaling pathways. Short-term exposure of intestinal epithelial cells to IFN-gamma resulted in activation of beta-catenin through AKT, followed by induction of the secreted Wnt inhibitor Dkk1. Consequently, we observed an increase in Dkk1-mediated apoptosis upon extended IFN-gamma treatment and reduced proliferation through depletion of the Wnt coreceptor LRP6. These effects were enhanced by tumor necrosis factor-alpha (TNF-alpha), suggesting synergism between the two cytokines. Consistent with these results, colitis in vivo was associated with decreased beta-catenin-T cell factor (TCF) signaling, loss of plasma membrane-associated LRP6, and reduced epithelial cell proliferation. Proliferation was partially restored in IFN-gamma-deficient mice. Thus, we propose that IFN-gamma regulates intestinal epithelial homeostasis by sequential regulation of converging beta-catenin signaling pathways.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
267 |
17
|
Leoni G, Neumann PA, Kamaly N, Quiros M, Nishio H, Jones HR, Sumagin R, Hilgarth RS, Alam A, Fredman G, Argyris I, Rijcken E, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Farokhzad OC, Neish AS, Nusrat A. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest 2015; 125:1215-27. [PMID: 25664854 DOI: 10.1172/jci76693] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/02/2015] [Indexed: 12/13/2022] Open
Abstract
Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
257 |
18
|
Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, Parkos CA, Denning TL. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 2012; 121:4787-95. [PMID: 22045567 DOI: 10.1172/jci59150] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/21/2011] [Indexed: 12/17/2022] Open
Abstract
The two most common forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis, affect approximately 1 million people in the United States. Uncontrolled APC reactivity toward commensal bacteria is implicated in the pathogenesis of the disease. A number of functionally distinct APC populations exist in the mucosal lamina propria (LP) below the intestinal epithelium, but their relative contributions to inflammation remain unclear. Here, we demonstrate in mice important roles for the chemokine receptor CX3CR1 in maintaining LP macrophage populations, preventing translocation of commensal bacteria to mesenteric lymph nodes (mLNs), and limiting colitogenic Th17 responses. CX3CR1 was found to be expressed in resident LP macrophages (defined as CD11b(+)F4/80(+)) but not DCs (defined as CD11c(+)CD103(+)). LP macrophage frequency and number were decreased in two strains of CX3CR1-knockout mice and in mice deficient in the CX3CR1 ligand CX3CL1. All these knockout strains displayed markedly increased translocation of commensal bacteria to mLNs. Additionally, the severity of DSS-induced colitis was dramatically enhanced in the knockout mice as compared with controls. Disease severity could be limited by either administration of neutralizing IL-17A antibodies or transfer of CX3CR1-sufficient macrophages. Our data thus suggest key roles for the CX3CR1/CX3CL1 axis in the intestinal mucosa; further clarification of CX3CR1 function will likely direct efforts toward therapeutic intervention for mucosal inflammatory disorders such as IBD.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
248 |
19
|
Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology 2016; 151:733-746.e12. [PMID: 27342212 PMCID: PMC5037035 DOI: 10.1053/j.gastro.2016.06.022] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. METHODS Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. RESULTS F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. CONCLUSIONS Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
247 |
20
|
Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Neish AS, Nusrat A. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2012; 123:443-54. [PMID: 23241962 DOI: 10.1172/jci65831] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 01/05/2023] Open
Abstract
N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
238 |
21
|
Nusrat A, von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 2001; 69:1329-36. [PMID: 11179295 PMCID: PMC98024 DOI: 10.1128/iai.69.3.1329-1336.2001] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2000] [Accepted: 11/20/2000] [Indexed: 12/13/2022] Open
Abstract
The anaerobic bacterium Clostridium difficile is the etiologic agent of pseudomembranous colitis. C. difficile toxins TcdA and TcdB are UDP-glucosyltransferases that monoglucosylate and thereby inactivate the Rho family of GTPases (W. P. Ciesla, Jr., and D. A. Bobak, J. Biol. Chem. 273:16021-16026, 1998). We utilized purified reference toxins of C. difficile, TcdA-10463 (TcdA) and TcdB-10463 (TcdB), and a model intestinal epithelial cell line to characterize their influence on tight-junction (TJ) organization and hence to analyze the mechanisms by which they contribute to the enhanced paracellular permeability and disease pathophysiology of pseudomembranous colitis. The increase in paracellular permeability induced by TcdA and TcdB was associated with disorganization of apical and basal F-actin. F-actin restructuring was paralleled by dissociation of occludin, ZO-1, and ZO-2 from the lateral TJ membrane without influencing the subjacent adherens junction protein, E-cadherin. In addition, we observed decreased association of actin with the TJ cytoplasmic plaque protein ZO-1. Differential detergent extraction and fractionation in sucrose density gradients revealed TcdB-induced redistribution of occludin and ZO-1 from detergent-insoluble fractions constituting "raft-like" membrane microdomains, suggesting an important role of Rho proteins in maintaining the association of TJ proteins with such microdomains. These toxin-mediated effects on actin and TJ structure provide a mechanism for early events in the pathophysiology of pseudomembranous colitis.
Collapse
|
research-article |
24 |
237 |
22
|
Madara JL, Patapoff TW, Gillece-Castro B, Colgan SP, Parkos CA, Delp C, Mrsny RJ. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest 1993; 91:2320-5. [PMID: 8486793 PMCID: PMC288238 DOI: 10.1172/jci116462] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation.
Collapse
|
research-article |
32 |
222 |
23
|
Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD1). J Biophys Biochem Cytol 1995; 130:1473-82. [PMID: 7559767 PMCID: PMC2120570 DOI: 10.1083/jcb.130.6.1473] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have demonstrated that the leukocyte integrin Mac-1 adheres to several cell surface and soluble ligands including intercellular adhesion molecule-1, fibrinogen, iC3b, and factor X. However, experiments with Mac-1-expressing transfectants, purified Mac-1, and mAbs to Mac-1 indicate the existence of additional ligands. In this paper, we demonstrate a direct interaction between Mac-1 and heparan sulfate glycans. Heparin affinity resins immunoprecipitate Mac-1, and neutrophils and transfectant cells that express Mac-1 bind to heparin and heparan sulfate, but not to other sulfated glycosaminoglycans. Inhibition studies with mAbs and chemically modified forms of heparin suggest the I domain as a recognition site on Mac-1 for heparin, and suggest that either N- or O-sulfation is sufficient for heparin to bind efficiently to Mac-1. Under conditions of continuous flow in which heparins and E-selectin are cosubstrates, neutrophils tether to E-selectin and form firm adhesions through a Mac-1-heparin interaction.
Collapse
|
research-article |
30 |
221 |
24
|
Parkos CA, Dinauer MC, Walker LE, Allen RA, Jesaitis AJ, Orkin SH. Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b. Proc Natl Acad Sci U S A 1988; 85:3319-23. [PMID: 3368442 PMCID: PMC280200 DOI: 10.1073/pnas.85.10.3319] [Citation(s) in RCA: 213] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cytochrome b comprising 91-kDa and 22-kDa subunits is a critical component of the membrane-bound oxidase of phagocytes that generates superoxide. This important microbicidal system is impaired in inherited disorders known as chronic granulomatous disease (CGD). Previously we determined the sequence of the larger subunit from the cDNA of the CGD gene, the X chromosome locus affected in "X-linked" CGD. To complete the primary structure of the cytochrome b and to assess expression of the smaller subunit, we isolated cDNA clones for the 22-kDa polypeptide by immunoscreening and confirmed their authenticity by direct N-terminal protein sequencing. Although the deduced amino acid sequence of the 22-kDa subunit is not overtly similar to other known cytochromes, we observed a 31-amino acid stretch of 39% identity with polypeptide I of mitochondrial cytochrome c oxidase centered on a potential heme-coordinating histidine. Similarities in the hydropathy profiles and spacing of histidines of the 22-kDa protein and myoglobin suggest structural motifs in common with other heme-containing proteins that are not readily revealed by primary amino acid sequences. Although RNA for the larger subunit has been found only in cells of the phagocytic lineage, stable RNA encoding the 22-kDa subunit was observed in all cell types. However, the stable 22-kDa protein was detected only in phagocytic cells that were expressing the larger subunit RNA. This observation suggests that the large subunit may play a role in regulating the assembly of the heterodimeric cytochrome b.
Collapse
|
research-article |
37 |
213 |
25
|
Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ. Association of a Ras-related protein with cytochrome b of human neutrophils. Nature 1989; 342:198-200. [PMID: 2509942 DOI: 10.1038/342198a0] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of the superoxide generating system in human neutrophils is thought to involve the interaction or assembly of cytochrome b with other cytosolic and membrane proteins. We have now co-isolated by conventional purification procedures a protein of relative molecular mass 22,000 with cytochrome b. This Ras-related protein is not a fragment of either of the subunits of cytochrome b, and its primary structure, as determined by the sequencing of its complementary DNA, is identical to that predicted from a recently cloned ras-related gene, rap1 (also termed Krev-1). Immunoaffinity purification on anti-cytochrome and anti-Ras immunoaffinity matrices indicates an association between cytochrome b and the Ras-related protein. The association of a Ras-related GTP-binding protein with cytochrome b of human neutrophils could indicate a role for such a protein in the transduction, regulation or structure of the superoxide generating system.
Collapse
|
|
36 |
200 |