1
|
McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000; 408:106-11. [PMID: 11081517 PMCID: PMC4459600 DOI: 10.1038/35040593] [Citation(s) in RCA: 833] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Members of the myocyte enhancer factor-2 (MEF2) family of transcription factors associate with myogenic basic helix-loop-helix transcription factors such as MyoD to activate skeletal myogenesis. MEF2 proteins also interact with the class II histone deacetylases HDAC4 and HDAC5, resulting in repression of MEF2-dependent genes. Execution of the muscle differentiation program requires release of MEF2 from repression by HDACs, which are expressed constitutively in myoblasts and myotubes. Here we show that HDAC5 shuttles from the nucleus to the cytoplasm when myoblasts are triggered to differentiate. Calcium/calmodulin-dependent protein kinase (CaMK) signalling, which stimulates myogenesis and prevents formation of MEF2-HDAC complexes, also induces nuclear export of HDAC4 and HDAC5 by phosphorylation of these transcriptional repressors. An HDAC5 mutant lacking two CaMK phosphorylation sites is resistant to CaMK-mediated nuclear export and acts as a dominant inhibitor of skeletal myogenesis, whereas a cytoplasmic HDAC5 mutant is unable to block efficiently the muscle differentiation program. Our results highlight a mechanism for transcriptional regulation through signal- and differentiation-dependent nuclear export of a chromatin-remodelling enzyme, and suggest that nucleo-cytoplasmic trafficking of HDACs is involved in the control of cellular differentiation.
Collapse
|
research-article |
25 |
833 |
2
|
Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O'Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 1983; 68:50-8. [PMID: 6851054 DOI: 10.1161/01.cir.68.1.50] [Citation(s) in RCA: 611] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pulse wave velocity (PWV) was measured by means of transcutaneous Doppler techniques in the aorta, right arm, and right leg of 480 normal subjects of both sexes in urban Beijing, China (age range 3 to 89 years, mean age 41 +/- 20.8 SD); supine blood pressure was recorded in the brachial artery of each subject with standard sphygmomanometric procedures. Serum cholesterol was determined in a subgroup of 79 subjects (age 17 to 85 years, mean 47 +/- 26 SD). PWV (y in cm/sec) was found to vary with age (x, years) at each of the three locations according to the following regression equations: aorta, y = 9.2x + 615, r = .673 (p less than .001); right arm, y = 4.8x + 998, r = .453 (p less than .001); right leg, y = 5.6x + 791, r = .630 (p less than .001). Systolic, diastolic, mean, and pulse pressures were found to increase with age. PWV also increased with mean supine blood pressure but was not related to serum cholesterol (average 4.49 +/- 0.11 [SEM], mmol/l). Compared with that of Western populations, serum cholesterol tended to be lower at all age groups, systolic pressure higher at ages over 35 years, and PWV higher at all ages. Because change in PWV is directly related to change in arterial compliance, these results indicate that aging and not concomitant atherosclerosis (known to be rare in Asian populations) is the dominant factor associated with reduced arterial compliance and increased left ventricular load in these subjects.
Collapse
|
|
42 |
611 |
3
|
Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 2000; 6:233-44. [PMID: 10983972 DOI: 10.1016/s1097-2765(00)00025-3] [Citation(s) in RCA: 431] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle differentiation is controlled by associations between myogenic basic-helix-loop-helix and MEF2 transcription factors. We show that chromatin associated with muscle genes regulated by these transcription factors becomes acetylated during myogenesis and that class II histone deacetylases (HDACs), which interact with MEF2, specifically suppress myoblast differentiation. These HDACs do not interact directly with MyoD, yet they suppress its myogenic activity through association with MEF2. Elevating the level of MyoD can override the repression imposed by HDACs on muscle genes. HDAC-mediated repression of myogenesis also can be overcome by CaM kinase and insulin-like growth factor (IGF) signaling. These findings reveal central roles for HDACs in chromatin remodeling during myogenesis and as intranuclear targets for signaling pathways controlled by IGF and CaM kinase.
Collapse
|
|
25 |
431 |
4
|
Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 1998; 20:809-19. [PMID: 9581771 DOI: 10.1016/s0896-6273(00)81018-1] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mice lacking the voltage-gated potassium channel alpha subunit, K(V)1.1, display frequent spontaneous seizures throughout adult life. In hippocampal slices from homozygous K(V)1.1 null animals, intrinsic passive properties of CA3 pyramidal cells are normal. However, antidromic action potentials are recruited at lower thresholds in K(V)1.1 null slices. Furthermore, in a subset of slices, mossy fiber stimulation triggers synaptically mediated long-latency epileptiform burst discharges. These data indicate that loss of K(V)1.1 from its normal localization in axons and terminals of the CA3 region results in increased excitability in the CA3 recurrent axon collateral system, perhaps contributing to the limbic and tonic-clonic components of the observed epileptic phenotype. Axonal action potential conduction was altered as well in the sciatic nerve--a deficit potentially related to the pathophysiology of episodic ataxia/myokymia, a disease associated with missense mutations of the human K(V)1.1 gene.
Collapse
|
|
27 |
423 |
5
|
McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 2000; 97:14400-5. [PMID: 11114197 PMCID: PMC18930 DOI: 10.1073/pnas.260501497] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2000] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle differentiation is controlled by interactions between myocyte enhancer factor-2 (MEF2) and myogenic basic helix-loop-helix transcription factors. Association of MEF2 with histone deacetylases (HDAC) -4 and -5 results in repression of MEF2 target genes and inhibition of myogenesis. Calcium/calmodulin-dependent protein kinase (CaMK) signaling promotes myogenesis by disrupting MEF2-HDAC complexes and stimulating HDAC nuclear export. To further define the mechanisms that confer CaMK responsiveness to HDAC4 and -5, we performed yeast two-hybrid screens to identify HDAC-interacting factors. These screens revealed interactions between HDAC4 and members of the 14-3-3 family of proteins, which function as signal-dependent intracellular chaperones. HDAC4 binds constitutively to 14-3-3 in yeast and mammalian cells, whereas HDAC5 binding to 14-3-3 is largely dependent on CaMK signaling. CaMK phosphorylates serines -259 and -498 in HDAC5, which subsequently serve as docking sites for 14-3-3. Our studies suggest that 14-3-3 binding to HDAC5 is required for CaMK-dependent disruption of MEF2-HDAC complexes and nuclear export of HDAC5, and implicate 14-3-3 as a signal-dependent regulator of muscle cell differentiation.
Collapse
|
research-article |
25 |
399 |
6
|
Abstract
Skeletal muscle cells have provided an especially auspicious system in which to dissect the roles of chromatin structure in the control of cell growth, differentiation, and development. The MyoD and MEF2 families of transcription factors act cooperatively to regulate the expression of skeletal muscle-specific genes. Recent studies have shown that these two classes of transcription factors associate with histone acetyltransferases and histone deacetylases to control the activation and repression, respectively, of the muscle differentiation program. Signaling systems that regulate the growth and differentiation of muscle cells act, at least in part, by regulating the intracellular localization and associations of these chromatin remodeling enzymes with myogenic transcription factors. We describe the molecules and mechanisms involved in chromatin remodeling during skeletal muscle development.
Collapse
|
Review |
24 |
326 |
7
|
Zhuo L, Sun B, Zhang CL, Fine A, Chiu SY, Messing A. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 1997; 187:36-42. [PMID: 9224672 DOI: 10.1006/dbio.1997.8601] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Green fluorescent protein (hGFP-S65T) was expressed in transgenic mice under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Tissues from two independent transgenic lines were characterized by Northern blot analysis and by confocal microscopy. The expression pattern in these two lines was identical in all tissues examined, and similar to that found previously with a lacZ transgene driven by the same promoter. Bright fluorescence was observed in the cell bodies and processes of unfixed or fixed astrocytes, using both whole mount and brain slice preparations, from multiple areas of the central nervous system. However, in contrast to GFAP-lacZ transgenics, retinal Müller cells expressed the GFP transgene in response to degeneration of neighboring photoreceptors. These data indicate that the 2.2-kb hGFAP promoter contains sufficient regulatory elements to direct expression in Müller cells, and that GFP is a suitable reporter gene for use in living preparations of the mammalian nervous system. Such mice should prove useful for studies of dynamic changes in astrocyte morphology during development, and in response to physiological and pathological conditions.
Collapse
|
|
28 |
295 |
8
|
McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A 1996; 93:6361-6. [PMID: 8692820 PMCID: PMC39027 DOI: 10.1073/pnas.93.13.6361] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is a member of the family of intermediate filament structural proteins and is found predominantly in astrocytes of the central nervous system (CNS). To assess the function of GFAP, we created GFAP-null mice using gene targeting in embryonic stem cells. The GFAP-null mice have normal development and fertility, and show no gross alterations in behavior or CNS morphology. Astrocytes are present in the CNS of the mutant mice, but contain a severely reduced number of intermediate filaments. Since astrocyte processes contact synapses and may modulate synaptic function, we examined whether the GFAP-null mice were altered in long-term potentiation in the CA1 region of the hippocampus. The GFAP-null mice displayed enhanced long-term potentiation of both population spike amplitude and excitatory post-synaptic potential slope compared to control mice. These data suggest that GFAP is important for astrocyte-neuronal interactions, and that astrocyte processes play a vital role in modulating synaptic efficacy in the CNS. These mice therefore represent a direct demonstration that a primary defect in astrocytes influences neuronal physiology.
Collapse
|
research-article |
29 |
255 |
9
|
McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 2001; 21:6312-21. [PMID: 11509672 PMCID: PMC87361 DOI: 10.1128/mcb.21.18.6312-6321.2001] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 06/21/2001] [Indexed: 01/12/2023] Open
Abstract
Activation of muscle-specific genes by the MEF2 transcription factor is inhibited by class II histone deacetylases (HDACs) 4 and 5, which contain carboxy-terminal deacetylase domains and amino-terminal extensions required for association with MEF2. The inhibitory action of HDACs is overcome by myogenic signals which disrupt MEF2-HDAC interactions and stimulate nuclear export of these transcriptional repressors. Nucleocytoplasmic trafficking of HDAC5 is mediated by binding of the chaperone protein 14-3-3 to two phosphoserine residues (Ser-259 and Ser-498) in its amino-terminal extension. Here we show that HDAC4 and -5 each contain a signal-responsive nuclear export sequence (NES) at their extreme carboxy termini. The NES is conserved in another class II HDAC, HDAC7, but is absent in class I HDACs and the HDAC-related corepressor, MEF2-interacting transcription repressor. Our results suggest that this conserved NES is inactive in unphosphorylated HDAC5, which is localized to the nucleus, and that calcium-calmodulin-dependent protein kinase (CaMK)-dependent binding of 14-3-3 to phosphoserines 259 and 498 activates the NES, with consequent export of the transcriptional repressor to the cytoplasm. A single amino acid substitution in this NES is sufficient to retain HDAC5 in the nucleus in the face of CaMK signaling. These findings provide molecular insight into the mechanism by which extracellular cues alter chromatin structure to promote muscle differentiation and other MEF2-regulated processes.
Collapse
|
research-article |
24 |
229 |
10
|
Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ. Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. ACTA ACUST UNITED AC 2005; 11:513-25. [PMID: 15869430 DOI: 10.1089/ten.2005.11.513] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain tissue engineering in the postinjury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. In this article, a hyaluronic acid (HA)-poly-D-lysine (PDL) copolymer hydrogel with an open porous structure and viscoelastic properties similar to neural tissue has been developed for brain tissue engineering. The chemicophysical properties of the hydrogel with HA:PDL ratios of 10:1, 5:1, and 4:1 were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectrometry. Neural cells cultured in the hydrogel were studied by phase-contrast microscope and SEM. The incorporation of PDL peptides into the HA-PDL hydrogel allowed for the modulation of neuronal cell adhesion and neural network formation. Macrophages and multinucleated foreign body giant cells found at the site of implantation of the hydrogel in the rat brain within the first weeks postimplantation decreased in numbers after 6 weeks, consistent with the host response to inert implants in numerous tissues. Of importance was the infiltration of the hydrogel by glial fibrillary acidic protein-positive cells-reactive astrocytes-by immunohistochemistry and the contiguity between the hydrogel and the surrounding tissue demonstrated by SEM. These findings indicated the compatibility of this hydrogel with brain tissue. Collectively, the results demonstrate the promise of an HA-PDL hydrogel as a scaffold material for the repair of defects in the brain.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
168 |
11
|
Zhang CL, McKinsey TA, Lu JR, Olson EN. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 2001; 276:35-9. [PMID: 11022042 DOI: 10.1074/jbc.m007364200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class II histone deacetylases (HDACs) 4, 5, and 7 share a common structural organization, with a carboxyl-terminal catalytic domain and an amino-terminal extension that mediates interactions with members of the myocyte enhancer factor-2 (MEF2) family of transcription factors. Association of these HDACs with MEF2 factors represses transcription of MEF2 target genes. MEF2-interacting transcription repressor (MITR) shares homology with the amino-terminal extensions of class II HDACs and also acts as a transcriptional repressor, but lacks a histone deacetylase catalytic domain. This suggests that MITR represses transcription by recruiting other corepressors. We show that the amino-terminal regions of MITR and class II HDACs interact with the transcriptional corepressor, COOH-terminal-binding protein (CtBP), through a CtBP-binding motif (P-X-D-L-R) conserved in MITR and HDACs 4, 5, and 7. Mutation of this sequence in MITR abolishes interaction with CtBP and impairs, but does not eliminate, the ability of MITR to inhibit MEF2-dependent transcription. The residual repressive activity of MITR mutants that fail to bind CtBP can be attributed to association with other HDAC family members. These findings reveal CtBP-dependent and -independent mechanisms for transcriptional repression by MITR and show that MITR represses MEF2 activity through recruitment of multicomponent corepressor complexes that include CtBP and HDACs.
Collapse
|
|
24 |
164 |
12
|
Zhang F, Dong L, Zhang CP, Li B, Wen J, Gao W, Sun S, Lv F, Tian H, Tuomilehto J, Qi L, Zhang CL, Yu Z, Yang X, Hu G. Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008. Diabet Med 2011; 28:652-7. [PMID: 21569085 DOI: 10.1111/j.1464-5491.2010.03205.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the trend in the prevalence of gestational diabetes mellitus during 1999-2008 in women living in urban Tianjin, China. METHODS A universal screening for gestational diabetes mellitus has become an integral part of the antenatal care in Tianjin, China from 1998. A total of 105,473 pregnant women living in the six urban districts of Tianjin, China, participated in the gestational diabetes mellitus screening programme between December 1998 and December 2008. The screening test consisted of a 50-g 1-h glucose test. Women who had a glucose reading ≥7.8 mmol/l at the initial screening were invited to undergo the standard 2-h oral glucose tolerance test with a 75-g glucose load. Gestational diabetes mellitus was confirmed using the World Health Organization's diagnostic criteria. RESULTS The adjusted prevalence of gestational diabetes mellitus increased by 2.8 times during 1999-2008, from 2.4 to 6.8% (P<0.0001 for linear trend). In 2008, the age-specific prevalence of gestational diabetes mellitus was the highest among women aged 30-34 years (11.3%) and lowest among women aged 25 and under (1.2%). In women aged 35 years and more, the prevalence was 5.3%. CONCLUSIONS The prevalence of gestational diabetes mellitus has markedly been increasing in a universally screened urban Chinese female population and has become an important public health problem in China.
Collapse
|
|
14 |
152 |
13
|
Kossakowska AE, Edwards DR, Lee SS, Urbanski LS, Stabbler AL, Zhang CL, Phillips BW, Zhang Y, Urbanski SJ. Altered balance between matrix metalloproteinases and their inhibitors in experimental biliary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1895-902. [PMID: 9846979 PMCID: PMC1866318 DOI: 10.1016/s0002-9440(10)65703-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A rat model of common bile duct ligation (BDL)-induced hepatic fibrosis was used to assess the expression and activities of collagen-degrading proteinases and their inhibitors during the progression of fibrosis. Expression of four members of the matrix metalloproteinase (MMP) family (MMP-2/gelatinase A, MMP-3, MMP-9/gelatinase B, and MMP-13) and three tissue inhibitors of metalloproteinases-1, -2, and -3 (TIMP-1, TIMP-2, and TIMP-3) were evaluated by Northern blot analysis of RNA from liver tissue isolated at 0, 2, 5, 10, 20, and 30 days after either a BDL or sham operation. In addition, we analyzed free gelatinase and TIMP activities by zymography and reverse zymography, respectively. We found that the proteolytic activities of MMP-2 and MMP-9 increased by 2 days after ligation, reached maximal levels at day 10, and remained high through the study period, whereas the gelatinolytic activities in plasma were unchanged. The increase in gelatinase activities was accompanied by an increase in the TIMP mRNA transcripts. TIMP-1 transcripts appeared at day 2, increased until day 10, and remained elevated throughout the study period. TIMP-2 and TIMP-3 transcripts become detectable on day 10 and remained stable afterwards. No corresponding increase in TIMP protein activity was detected by reverse zymography. This appears to result from the formation of TIMP/MMP complexes. These findings indicate a likely surplus in the BDL model of fibrosis of free gelatinases as compared with the TIMPs. Thus, excessive TIMP production is not a sufficient explanation for the observed extracellular matrix accumulation, but complex changes in the local MMP/TIMP balance may underlie the pathomechanisms of fibrosis.
Collapse
|
research-article |
27 |
150 |
14
|
Zhang CL, McKinsey TA, Olson EN. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A 2001; 98:7354-9. [PMID: 11390982 PMCID: PMC34672 DOI: 10.1073/pnas.131198498] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2001] [Indexed: 11/18/2022] Open
Abstract
Activation of muscle-specific genes by members of the myocyte enhancer factor 2 (MEF2) and MyoD families of transcription factors is coupled to histone acetylation and is inhibited by class II histone deacetylases (HDACs) 4 and 5, which interact with MEF2. The ability of HDAC4 and -5 to inhibit MEF2 is blocked by phosphorylation of these HDACs at two conserved serine residues, which creates docking sites for the intracellular chaperone protein 14-3-3. When bound to 14-3-3, HDACs are released from MEF2 and transported to the cytoplasm, thereby allowing MEF2 to stimulate muscle-specific gene expression. MEF2-interacting transcription repressor (MITR) shares homology with the amino-terminal regions of HDAC4 and -5, but lacks an HDAC catalytic domain. Despite the absence of intrinsic HDAC activity, MITR acts as a potent inhibitor of MEF2-dependent transcription. Paradoxically, however, MITR has minimal inhibitory effects on the skeletal muscle differentiation program. We show that a substitution mutant of MITR containing alanine in place of two serine residues, Ser-218 and Ser-448, acts as a potent repressor of myogenesis. Our findings indicate that promyogenic signals antagonize the inhibitory action of MITR by targeting these serines for phosphorylation. Phosphorylation of Ser-218 and Ser-448 stimulates binding of 14-3-3 to MITR, disrupts MEF2:MITR interactions, and alters the nuclear distribution of MITR. These results reveal a role for MITR as a signal-dependent regulator of muscle differentiation.
Collapse
|
research-article |
24 |
93 |
15
|
Qin JZ, Zhang CL, Kamarashev J, Dummer R, Burg G, Döbbeling U. Interleukin-7 and interleukin-15 regulate the expression of the bcl-2 and c-myb genes in cutaneous T-cell lymphoma cells. Blood 2001; 98:2778-83. [PMID: 11675351 DOI: 10.1182/blood.v98.9.2778] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-7 (IL-7) and IL-15 have been recently identified as growth factors for cutaneous T-cell lymphoma (CTCL) cells, and they protect these cells from cell death. Using the CTCL cell line SeAx as a test system now shows that IL-7 and IL-15 are indeed necessary to maintain high levels of bcl-2. The up-regulation of bcl-2 was paralleled by increased DNA-binding activities of the transcription factors STAT2, STAT5, STAT6, and c-Myb to bcl-2 gene promoter-enhancer elements. Because STAT5 and c-Myb positively regulate bcl-2, IL-7 and IL-15 may mediate some of their effects on cell death survival gene expression through these 2 factors. Constitutive activities of the 3 STAT factors and c-Myb were found in the IL-7- and IL-15-independent CTCL cell lines HUT78 and MyLa 2059. The c-Myb protein was also present in CTCL cells of the skin lesions of all investigated patients. These results indicate that IL-7 and IL-15 may increase bcl-2 expression in CTCL cells by the activation of c-myb and STAT factors.
Collapse
|
|
24 |
87 |
16
|
Zhang CL, Dreier JP, Heinemann U. Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants. Epilepsy Res 1995; 20:105-11. [PMID: 7750506 DOI: 10.1016/0920-1211(94)00067-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lowering of extracellular Mg2+ results in various forms of epileptiform activity in different parts of temporal lobe slices [5,22] which contain neocortical areas such as areas Te2 or Te3, the entorhinal cortex (EC), subiculum, hippocampal areas CA1 to CA3 and the dentate gyrus [5,11]. In the EC, the subiculum and Te2/Te3 seizure-like events (SLEs) with tonic and clonic electrographic discharge patterns, negative slow field potentials and ionic changes comparable to those during tonic-clonic seizures in intact animals were observed. After 30 to 120 min of recurrent seizure activity (80 +/- 37 min) the seizure-like events (SLEs) developed into a state of late recurrent discharges (LRDs). Since previous studies had shown that the LRDs do not respond to valproic acid in contrast to a blocking effect of this drug on SLEs, we investigated the effects of the clinically employed anticonvulsants phenytoin, carbamazepine, phenobarbital, midazolam and ethosuximide on LRDs. All these agents were unable to block the LRDs in the EC, subiculum and Te2/Te3. This was found true both for concentrations which can block SLEs and for higher concentrations. Thus we conclude that this activity may represent a model of difficult to treat status epilepticus.
Collapse
|
|
30 |
87 |
17
|
Tian WM, Zhang CL, Hou SP, Yu X, Cui FZ, Xu QY, Sheng SL, Cui H, Li HD. Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. J Control Release 2005; 102:13-22. [PMID: 15653130 DOI: 10.1016/j.jconrel.2004.09.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Nogo-66 and NgR are important receptors inhibiting neuronal regeneration and therefore are targets for treating CNS injury. Antagonists of this receptor including blocking antibodies are potential therapeutic agents for CNS axonal injuries such as spinal cord and brain trauma. A new antibody (IgG) releasing system has been developed by covalently attaching IgG to the biodegradable hyaluronic acid (HA) hydrogel via the hydrolytically unstable hydrazone linkage, aiming to deliver the antibody of CNS regeneration inhibitors to the injured brain. In this paper we describe the synthesis, physico-chemical characteristics and test results of biological activity of antibody released from hyluronic acid hydrogel. To form the conjugates the antibody is attached to the polymer backbone using a condensation reaction between aldehyde group of the antibody and hydrazide group of the HA hydrogel. Furthermore, pH sensitive linkage-hydrozone has been formed between hydrogel and antibody. The amount of conjugated antibodies can reach 135 microg antibody/mg hydrogel in the dry state. At low pH, the antibodies released quite fast. However, the antibodies released much slower in neutral and alkaline environment. The bioactivity of antibody released from hydrogel was retained as demonstrated by indirect immunofluorescence technique.
Collapse
|
|
20 |
78 |
18
|
Fan QQ, Zhang CL, Qiao JB, Cui PF, Xing L, Oh YK, Jiang HL. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials 2019; 230:119616. [PMID: 31837823 DOI: 10.1016/j.biomaterials.2019.119616] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
As hepatic stellate cells (HSCs) are essential for hepatic fibrogenesis, HSCs targeted nano-drug delivery system is a research hotspot in liver fibrosis therapy. However, the excessive deposition of fibrosis collagen (mainly collagen I) in the space of Disse associated with hepatic fibrogenesis would significantly hinder nano-formulation delivery to HSCs. Here, we have prepared a collagenase I and retinol co-decorated polymeric micelle that possess nanodrill-like and HSCs-target function based on poly-(lactic-co-glycolic)-b-poly (ethylene glycol)-maleimide (PLGA-PEG-Mal) (named CRM) for liver fibrosis therapy. Upon encountering collagen I barrier, CRM exerted a nanodrill-like function, efficiently degrading pericellular collagen I and showing greater uptake by human HSCs than other micelle formulations. Besides, CRM could realize excellent accumulation in the fibrotic liver and accurate targeting to activated HSCs in mouse hepatic fibrosis model. Moreover, CRM loaded with nilotinib (CRM/NIL), a second-generation tyrosine kinase inhibitor used in the treatment of liver fibrosis, showed optimal antifibrotic activity. This work suggests that CRM with dual function is an efficient carrier for liver fibrosis drug delivery and collagenase I decorating could be a new strategy for building more efficient HSCs targeted nano-drug delivery system.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
72 |
19
|
Pearson A, Huang Z, Ingalls AE, Romanek CS, Wiegel J, Freeman KH, Smittenberg RH, Zhang CL. Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 2004; 70:5229-37. [PMID: 15345404 PMCID: PMC520871 DOI: 10.1128/aem.70.9.5229-5237.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids of the Crenarchaeota. The structurally unusual GDGT crenarchaeol has been proposed as a taxonomically specific biomarker for the marine planktonic group I archaea. It is found ubiquitously in the marine water column and in sediments. In this work, samples of microbial community biomass were obtained from several alkaline and neutral-pH hot springs in Nevada, United States. Lipid extracts of these samples were analyzed by high-performance liquid chromatography-mass spectrometry and by gas chromatography-mass spectrometry. Each sample contained GDGTs, and among these compounds was crenarchaeol. The distribution of archaeal lipids in Nevada hot springs did not appear to correlate with temperature, as has been observed in the marine environment. Instead, a significant correlation with the concentration of bicarbonate was observed. Archaeal DNA was analyzed by denaturing gradient gel electrophoresis. All samples contained 16S rRNA gene sequences which were more strongly related to thermophilic crenarchaeota than to Cenarchaeum symbiosum, a marine nonthermophilic crenarchaeon. The occurrence of crenarchaeol in environments containing sequences affiliated with thermophilic crenarchaeota suggests a wide phenotypic distribution of this compound. The results also indicate that crenarchaeol can no longer be considered an exclusive biomarker for marine species.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
65 |
20
|
Kenzelmann M, Harris AB, Jonas S, Broholm C, Schefer J, Kim SB, Zhang CL, Cheong SW, Vajk OP, Lynn JW. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. PHYSICAL REVIEW LETTERS 2005; 95:087206. [PMID: 16196899 DOI: 10.1103/physrevlett.95.087206] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Indexed: 05/04/2023]
Abstract
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T(N)<41 K is accompanied by ferroelectric order for T<28 K. To understand this, we establish the magnetic structure above and below the ferroelectric transition using neutron diffraction. In the paraelectric phase, the spin structure is incommensurate and longitudinally modulated. In the ferroelectric phase, however, there is a transverse incommensurate spiral. We show that the spiral breaks spatial inversion symmetry and can account for magnetoelectricity in TbMnO3.
Collapse
|
|
20 |
64 |
21
|
Ma CJ, Ni L, Zhang Y, Zhang CL, Wu XY, Atia AN, Thayer P, Moorman JP, Yao ZQ. PD-1 negatively regulates interleukin-12 expression by limiting STAT-1 phosphorylation in monocytes/macrophages during chronic hepatitis C virus infection. Immunology 2010; 132:421-31. [PMID: 21091911 DOI: 10.1111/j.1365-2567.2010.03382.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is remarkably efficient at evading host immunity to establish chronic infection. During chronic HCV infection, interleukin-12 (IL-12) produced by monocytes/macrophages (M/Mφ) is significantly suppressed. Programmed death-1 (PD-1), an inhibitory receptor on immune cells, plays a pivotal role in suppressing T-cell responses during chronic viral infection. To determine whether PD-1 regulates IL-12 production by M/Mφ during chronic HCV infection, we examined the expressions of PD-1, its ligand PDL-1, and their relationship with IL-12 production in M/Mφ from HCV-infected, HCV-resolved, and healthy subjects by flow cytometry. Toll-like receptor (TLR) -mediated IL-12 production by M/Mφ was selectively suppressed, while PD-1/PDL-1 expressions were up-regulated, in HCV-infected subjects compared with HCV-resolved or healthy subjects. Up-regulation of PD-1 was inversely associated with the degree of IL-12 inhibition in HCV infection. Interestingly, the reduced response of M/Mφ from HCV-infected individuals to TLR ligands appeared not to be the result of a lack of the ability to sense pathogen, but to an impaired activation of intracellular janus kinase/signal transducer and activator of transfection (STAT) pathway as represented by inhibited STAT-1 phosphorylation in M/Mφ from HCV-infected individuals compared with HCV-negative subjects. Successful HCV treatment with pegylated interferon/ribavirin or blocking PD-1/PDL-1 engagement ex vivo led to reduced PD-1 expression and improved IL-12 production as well as STAT-1 activation in M/Mφ from HCV-infected individuals. These results suggest that the PD-1 inhibitory pathway may negatively regulate IL-12 expression by limiting STAT-1 phosphorylation in M/Mφ during chronic HCV infection.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
60 |
22
|
Zhao JH, Zhang YL, Wang LW, Wang JY, Zhang CL. Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol 2012; 28:2107-12. [PMID: 22806033 DOI: 10.1007/s11274-012-1015-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/30/2012] [Indexed: 11/28/2022]
|
|
13 |
59 |
23
|
Qin JZ, Kamarashev J, Zhang CL, Dummer R, Burg G, Döbbeling U. Constitutive and interleukin-7- and interleukin-15-stimulated DNA binding of STAT and novel factors in cutaneous T cell lymphoma cells. J Invest Dermatol 2001; 117:583-9. [PMID: 11564163 DOI: 10.1046/j.0022-202x.2001.01436.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On testing cutaneous T cell lymphoma cell lines and skin lesions, we found that the transcription factors STAT2, STAT3, STAT5, and STAT6 (STAT, signal transducer and activator of transcription) were present in the nuclei of these cells and that the binding to their specific DNA binding sites was stimulated by interleukin-7 and interleukin-15. DNA binding studies also revealed the presence of three additional DNA factors in cutaneous T cell lymphoma cells that bound to the same sequences and could also be stimulated by interleukin-7 and interleukin-15. One of these novel factors was also present in the adult T cell leukemia cell line Jurkat and malignant T cells from the blood of Sézary syndrome patients, but not in normal peripheral blood lymphocytes. It may therefore be a marker of T cell leukemia. It seems to interfere with the binding of STAT1 to the sis inducible element, suggesting that the DNA binding activity of STAT1 in cutaneous T cell lymphoma cells is disturbed.
Collapse
|
|
24 |
55 |
24
|
Chiu SY, Zhou L, Zhang CL, Messing A. Analysis of potassium channel functions in mammalian axons by gene knockouts. JOURNAL OF NEUROCYTOLOGY 1999; 28:349-64. [PMID: 10739576 DOI: 10.1023/a:1007013731231] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mammalian axons express a rich repertoire of various K channel subtypes whose distribution is profoundly affected by myelination. In the past two decades, functional analysis of axonal K channels has been approached primarily through pharmacology. Recently, gene knockout techniques have been used to specifically delete a particular K channel subtype from axons. This is significant since the bulk of K channels in a myelinated nerve are covered by the myelin, making functional analysis of specific K channel subtypes by traditional means difficult. This review summarizes the first mutational analysis of this sort performed on an axonal fast K channel termed Kv1.1. This K channel is concealed by the myelin loops in the paranodes of all major myelinated fiber tracts, and exhibits highly heterogeneous distribution even in certain non-myelinated CNS axons. Physiological analysis of Kv1.1 null mutants suggest novel functions for this axonal K channel subtype, including modulation of conduction failures at branch points and stabilization of transition zones in myelinated nerves.
Collapse
|
Review |
26 |
48 |
25
|
Nozaki M, Tada M, Kobayashi H, Zhang CL, Sawamura Y, Abe H, Ishii N, Van Meir EG. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro Oncol 2001. [PMID: 11550308 DOI: 10.1215/s1522851798000179] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Loss of function of the p53 tumor suppressor gene due to mutation occurs early in astrocytoma tumorigenesis in about 30-40% of cases. This is believed to confer a growth advantage to the cells, allowing them to clonally expand due to loss of the p53-controlled G1 checkpoint and apoptosis. Genetic instability due to the impaired ability of p53 to mediate DNA damage repair further facilitates the acquisition of new genetic abnormalities, leading to malignant progression of an astrocytoma into anaplastic astrocytoma. This is reflected by a high rate of p53 mutation (60-70%) in anaplastic astrocytomas. The cell cycle control gets further compromised in astrocytoma by alterations in one of the G1/S transition control genes, either loss of the p16/CDKN2 or RB genes or amplification of the cyclin D gene. The final progression process leading to glioblastoma multiforme seems to need additional genetic abnormalities in the long arm of chromosome 10; one of which is deletion and/or functional loss of the PTEN/MMAC1 gene. Glioblastomas also occur as primary (de novo) lesions in patients of older age, without p53 gene loss but with amplification of the epidermal growth factor receptor (EGFR) genes. In contrast to the secondary glioblastomas that evolve from astrocytoma cells with p53 mutations in younger patients, primary glioblastomas seem to be resistant to radiation therapy and thus show a poorer prognosis. The evaluation and design of therapeutic modalities aimed at preventing malignant progression of astrocytomas and glioblastomas should now be based on stratifying patients with astrocytic tumors according to their genetic diagnosis.
Collapse
|
Review |
24 |
46 |