1
|
Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82:675-84. [PMID: 7664346 DOI: 10.1016/0092-8674(95)90039-x] [Citation(s) in RCA: 1604] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
p21CIP1/WAF1 is a CDK inhibitor regulated by the tumor suppressor p53 and is hypothesized to mediate G1 arrest. p53 has been suggested to derive anti-oncogenic properties from this relationship. To test these notions, we created mice lacking p21CIP1/WAF1. They develop normally and (unlike p53-/- mice) have not developed spontaneous malignancies during 7 months of observation. Nonetheless, p21-/- embryonic fibroblasts are significantly deficient in their ability to arrest in G1 in response to DNA damage and nucleotide pool perturbation. p21-/- cells also exhibit a significant growth alteration in vitro, achieving a saturation density as high as that observed in p53-/- cells. In contrast, other aspects of p53 function, such as thymocytic apoptosis and the mitotic spindle checkpoint, appear normal. These results establish the role of p21CIP1/WAF1 in the G1 checkpoint, but suggest that the anti-apoptotic and the anti-oncogenic effects of p53 are more complex.
Collapse
|
|
30 |
1604 |
2
|
Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84:911-21. [PMID: 8601314 DOI: 10.1016/s0092-8674(00)81069-7] [Citation(s) in RCA: 776] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endochondral ossification is a major mode of bone that occurs as chondrocytes undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. We have identified a role for fibroblast growth factor receptor 3 (FGFR-3) in this process by disrupting the murine Fgfr-3 gene to produce severe and progressive bone dysplasia with enhanced and prolonged endochondral bone growth. This growth is accompanied by expansion of proliferating and hypertrophic chondrocytes within the cartilaginous growth plate. Thus, FGFR-3 appears to regulate endochondral ossification by an essentially negative mechanism, limiting rather than promoting osteogenesis. In light of these mouse results, certain human disorders, such as achondroplasia, can be interpreted as gain-of-function mutations that activate the fundamentally negative growth control exerted by the FGFR-3 kinase.
Collapse
|
|
29 |
776 |
3
|
Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999; 18:1280-91. [PMID: 10064594 PMCID: PMC1171218 DOI: 10.1093/emboj/18.5.1280] [Citation(s) in RCA: 690] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SMAD3 is one of the intracellular mediators that transduces signals from transforming growth factor-beta (TGF-beta) and activin receptors. We show that SMAD3 mutant mice generated by gene targeting die between 1 and 8 months due to a primary defect in immune function. Symptomatic mice exhibit thymic involution, enlarged lymph nodes, and formation of bacterial abscesses adjacent to mucosal surfaces. Mutant T cells exhibit an activated phenotype in vivo, and are not inhibited by TGF-beta1 in vitro. Mutant neutrophils are also impaired in their chemotactic response toward TGF-beta. Chronic intestinal inflammation is infrequently associated with colonic adenocarcinoma in mice older than 6 months of age. These data suggest that SMAD3 has an important role in TGF-beta-mediated regulation of T cell activation and mucosal immunity, and that the loss of these functions is responsible for chronic infection and the lethality of Smad3-null mice.
Collapse
|
research-article |
26 |
690 |
4
|
Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1999; 1:260-6. [PMID: 10559937 DOI: 10.1038/12971] [Citation(s) in RCA: 681] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The generation of animals lacking SMAD proteins, which transduce signals from transforming growth factor-beta (TGF-beta), has made it possible to explore the contribution of the SMAD proteins to TGF-beta activity in vivo. Here we report that, in contrast to predictions made on the basis of the ability of exogenous TGF-beta to improve wound healing, Smad3-null (Smad3ex8/ex8) mice paradoxically show accelerated cutaneous wound healing compared with wild-type mice, characterized by an increased rate of re-epithelialization and significantly reduced local infiltration of monocytes. Smad3ex8/ex8 keratinocytes show altered patterns of growth and migration, and Smad3ex8/ex8 monocytes exhibit a selectively blunted chemotactic response to TGF-beta. These data are, to our knowledge, the first to implicate Smad3 in specific pathways of tissue repair and in the modulation of keratinocyte and monocyte function in vivo.
Collapse
|
|
26 |
681 |
5
|
Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 2000; 97:6379-84. [PMID: 10823921 PMCID: PMC18611 DOI: 10.1073/pnas.120166297] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3) is a coactivator of nuclear receptors in the SRC family as assayed in vitro. Here, we show that mouse SRC-3 is expressed in a tissue-specific fashion and distributed mainly in the oocytes, mammary glands, hippocampus, olfactory bulb, smooth muscle, hepatocytes, and vaginal epithelium. Genetic disruption of SRC-3 in mice results in a pleiotropic phenotype showing dwarfism, delayed puberty, reduced female reproductive function, and blunted mammary gland development. Hormonal analysis indicates that SRC-3 plays a role in both the growth hormone regulatory pathway and the production of estrogen, which may explain the observed phenotypes. These results suggest that the physiological role of SRC-3 is different from that of SRC-1 and prove the diversity among coactivator family members.
Collapse
|
research-article |
25 |
386 |
6
|
Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A 1999; 96:9142-7. [PMID: 10430909 PMCID: PMC17746 DOI: 10.1073/pnas.96.16.9142] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are believed to be integral for the dynamics of many cell membrane events, including cellular interactions, signaling, and trafficking. We have investigated their roles in development and differentiation by eliminating the major synthesis pathway of GSLs through targeted disruption of the Ugcg gene encoding glucosylceramide synthase. In the absence of GSL synthesis, embryogenesis proceeded well into gastrulation with differentiation into primitive germ layers and patterning of the embryo but was abruptly halted by a major apoptotic process. In vivo, embryonic stem cells deficient in GSL synthesis were again able to differentiate into endodermal, mesodermal, and ectodermal derivatives but were strikingly deficient in their ability to form well differentiated tissues. In vitro, however, hematopoietic and neuronal differentiation could be induced. The results demonstrate that the synthesis of GSL structures is essential for embryonic development and for the differentiation of some tissues and support the concept that GSLs are involved in crucial cell interactions mediating these processes.
Collapse
|
research-article |
26 |
359 |
7
|
Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 1998; 125:753-65. [PMID: 9435295 DOI: 10.1242/dev.125.4.753] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FGFR2 is a membrane-spanning tyrosine kinase that serves as a high affinity receptor for several members of the fibroblast growth factor (FGF) family. To explore functions of FGF/FGFR2 signals in development, we have mutated FGFR2 by deleting the entire immunoglobin-like domain III of the receptor. We showed that murine FGFR2 is essential for chorioallantoic fusion and placenta trophoblast cell proliferation. Fgfr2(DeltaIgIII/DeltaIgIII) embryos displayed two distinct defects that resulted in failures in formation of a functional placenta. About one third of the mutants failed to form the chorioallantoic fusion junction and the remaining mutants did not have the labyrinthine portion of the placenta. Consequently, all mutants died at 10–11 days of gestation. Interestingly, Fgfr2(DeltaIgIII/DeltaIgIII) embryos do not form limb buds. Consistent with this defect, the expression of Fgf8, an apical ectodermal factor, is absent in the mutant presumptive limb ectoderm, and the expression of Fgf10, a mesenchymally expressed limb bud initiator, is down regulated in the underlying mesoderm. These findings provide direct genetic evidence that FGF/FGFR2 signals are absolutely required for vertebrate limb induction and that an FGFR2 signal is essential for the reciprocal regulation loop between FGF8 and FGF10 during limb induction.
Collapse
|
|
27 |
348 |
8
|
Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB. Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 2001; 276:19945-53. [PMID: 11262418 DOI: 10.1074/jbc.m102382200] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A prominent pathway of transforming growth factor (TGF)-beta signaling involves receptor-dependent phosphorylation of Smad2 and Smad3, which then translocate to the nucleus to activate transcription of target genes. To investigate the relative importance of these two Smad proteins in TGF-beta1 signal transduction, we have utilized a loss of function approach, based on analysis of the effects of TGF-beta1 on fibroblasts derived from mouse embryos deficient in Smad2 (S2KO) or Smad3 (S3KO). TGF-beta1 caused 50% inhibition of cellular proliferation in wild-type fibroblasts as assessed by [(3)H]thymidine incorporation, whereas the growth of S2KO or S3KO cells was only weakly inhibited by TGF-beta1. Lack of Smad2 or Smad3 expression did not affect TGF-beta1-induced fibronectin synthesis but resulted in markedly suppressed induction of plasminogen activator inhibitor-1 by TGF-beta1. Moreover, TGF-beta1-mediated induction of matrix metalloproteinase-2 was selectively dependent on Smad2, whereas induction of c-fos, Smad7, and TGF-beta1 autoinduction relied on expression of Smad3. Investigation of transcriptional activation of TGF-beta-sensitive reporter genes in the different fibroblasts showed that activation of the (Smad binding element)(4)-Lux reporter by TGF-beta1 was dependent on expression of Smad3, but not Smad2, whereas activation of the activin response element-Lux reporter was strongly suppressed in S2KO fibroblasts but, on the contrary, enhanced in S3KO cells. Our findings indicate specific roles for Smad2 and Smad3 in TGF-beta1 signaling.
Collapse
|
|
24 |
334 |
9
|
Oettgen HC, Martin TR, Wynshaw-Boris A, Deng C, Drazen JM, Leder P. Active anaphylaxis in IgE-deficient mice. Nature 1994; 370:367-70. [PMID: 8047141 DOI: 10.1038/370367a0] [Citation(s) in RCA: 295] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The IgE-triggered release of mast cell mediators in response to antigen is thought to be the primary event in immediate hypersensitivity reactions such as systemic anaphylaxis. Although mast cells and basophils can be activated in vitro by non-IgE stimuli, it is not known whether these triggers lead to physiological changes in vivo. To investigate this possibility, we generated mice with a homozygous null mutation of the C epsilon gene. Such mice make no IgE, but produce other immunoglobulin isotypes normally. We report that despite the IgE deficiency, sensitized mutant mice become anaphylactic on antigen challenge and display tachycardia and pulmonary function changes similar to those seen in wild-type animals. These responses are accompanied by vascular leak, sharply elevated plasma histamine and rapid death. IgE-independent anaphylaxis does not depend on complement activation, but, as indicated in studies using genetically immunodeficient RAG-2- and SCID mice, does require a functional immune system. Such results clearly demonstrate that non-IgE pathways for hypersensitivity reactions exist in mice.
Collapse
|
|
31 |
295 |
10
|
Gong DW, Monemdjou S, Gavrilova O, Leon LR, Marcus-Samuels B, Chou CJ, Everett C, Kozak LP, Li C, Deng C, Harper ME, Reitman ML. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem 2000; 275:16251-7. [PMID: 10748195 DOI: 10.1074/jbc.m910177199] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uncoupling protein-3 (UCP3) is a mitochondrial protein that can diminish the mitochondrial membrane potential. Levels of muscle Ucp3 mRNA are increased by thyroid hormone and fasting. Ucp3 has been proposed to influence metabolic efficiency and is a candidate obesity gene. We have produced a Ucp3 knockout mouse to test these hypotheses. The Ucp3 (-/-) mice had no detectable immunoreactive UCP3 by Western blotting. In mitochondria from the knockout mice, proton leak was greatly reduced in muscle, minimally reduced in brown fat, and not reduced at all in liver. These data suggest that UCP3 accounts for much of the proton leak in skeletal muscle. Despite the lack of UCP3, no consistent phenotypic abnormality was observed. The knockout mice were not obese and had normal serum insulin, triglyceride, and leptin levels, with a tendency toward reduced free fatty acids and glucose. Knockout mice showed a normal circadian rhythm in body temperature and motor activity and had normal body temperature responses to fasting, stress, thyroid hormone, and cold exposure. The base-line metabolic rate and respiratory exchange ratio were the same in knockout and control mice, as were the effects of fasting, a beta3-adrenergic agonist (CL316243), and thyroid hormone on these parameters. The phenotype of Ucp1/Ucp3 double knockout mice was indistinguishable from Ucp1 single knockout mice. These data suggest that Ucp3 is not a major determinant of metabolic rate but, rather, has other functions.
Collapse
|
|
25 |
292 |
11
|
Yang X, Li C, Xu X, Deng C. The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A 1998; 95:3667-72. [PMID: 9520423 PMCID: PMC19893 DOI: 10.1073/pnas.95.7.3667] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Members of the transforming growth factor (TGF)-beta superfamily have been shown to play a variety of important roles in embryogenesis, including dorsal and ventral mesoderm induction. The tumor suppressor SMAD4, also known as DPC4, is believed to be an essential factor that mediates TGF-beta signals. To explore functions of SMAD4 in development, we have mutated it by truncating its functional C-domain. We show that Smad4 is expressed ubiquitously during murine embryogenesis. Mice heterozygous for the Smad4(ex8/+) mutation are developmentally normal, whereas homozygotes die between embryonic day 6.5 (E6.5) and 8.5. All Smad4(ex8/ex8) mutants are developmentally delayed at E6 and show little or no elongation in the extraembryonic portion of late egg cylinder stage embryos. Consistent with this, cultured Smad4(ex8/ex8) blastocyst outgrowths suffer cellular proliferation defects and fail to undergo endoderm differentiation. Although a portion of mutant embryos at E8.5 show an increase in the embryonic ectoderm and endoderm, morphological and molecular analyses indicate that they do not form mesoderm. Altogether, these data demonstrate that SMAD4-mediated signals are required for epiblast proliferation, egg cylinder formation, and mesoderm induction.
Collapse
|
research-article |
27 |
272 |
12
|
Su WC, Kitagawa M, Xue N, Xie B, Garofalo S, Cho J, Deng C, Horton WA, Fu XY. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997; 386:288-92. [PMID: 9069288 DOI: 10.1038/386288a0] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.
Collapse
|
|
28 |
255 |
13
|
Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 1999; 96:10483-8. [PMID: 10468635 PMCID: PMC17915 DOI: 10.1073/pnas.96.18.10483] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscarinic acetylcholine receptors (M(1)-M(5)) regulate many key functions of the central and peripheral nervous system. Primarily because of the lack of receptor subtype-selective ligands, the precise physiological roles of the individual muscarinic receptor subtypes remain to be elucidated. Interestingly, the M(4) receptor subtype is expressed abundantly in the striatum and various other forebrain regions. To study its potential role in the regulation of locomotor activity and other central functions, we used gene-targeting technology to create mice that lack functional M(4) receptors. Pharmacologic analysis of M(4) receptor-deficient mice indicated that M(4) receptors are not required for muscarinic receptor-mediated analgesia, tremor, hypothermia, and salivation. Strikingly, M(4) receptor-deficient mice showed an increase in basal locomotor activity and greatly enhanced locomotor responses (as compared with their wild-type littermates) after activation of D1 dopamine receptors. These results indicate that M(4) receptors exert inhibitory control on D1 receptor-mediated locomotor stimulation, probably at the level of striatal projection neurons where the two receptors are coexpressed at high levels. Our findings offer new perspectives for the treatment of Parkinson's disease and other movement disorders that are characterized by an imbalance between muscarinic cholinergic and dopaminergic neurotransmission.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Analgesia
- Animals
- Apomorphine/pharmacology
- Brain/physiology
- Corpus Striatum/physiology
- Dopamine Agonists/pharmacology
- Hypothermia/physiopathology
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Oxotremorine/pharmacology
- Prosencephalon/physiology
- Quinpirole/pharmacology
- Radioligand Assay
- Receptor, Muscarinic M4
- Receptors, Dopamine D1/physiology
- Receptors, Muscarinic/deficiency
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/physiology
- Salivation/drug effects
- Tremor/chemically induced
- Tremor/physiopathology
Collapse
|
research-article |
26 |
250 |
14
|
Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, Deng C, Fan C, Di S, Sun Y, Yi W. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis 2016; 7:e2234. [PMID: 27228349 PMCID: PMC4917669 DOI: 10.1038/cddis.2016.140] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors involved in cardiovascular diseases. Notably, numerous studies have demonstrated that TLR4 activates the expression of several of pro-inflammatory cytokine genes that play pivotal roles in myocardial inflammation, particularly myocarditis, myocardial infarction, ischemia-reperfusion injury, and heart failure. In addition, TLR4 is an emerging target for anti-inflammatory therapies. Given the significance of TLR4, it would be useful to summarize the current literature on the molecular mechanisms and roles of TLR4 in myocardial inflammation. Thus, in this review, we first introduce the basic knowledge of the TLR4 gene and describe the activation and signaling pathways of TLR4 in myocardial inflammation. Moreover, we highlight the recent progress of research on the involvement of TLR4 in myocardial inflammation. The information reviewed here may be useful to further experimental research and to increase the potential of TLR4 as a therapeutic target.
Collapse
|
Review |
9 |
245 |
15
|
Dirksen A, Piitulainen E, Parr DG, Deng C, Wencker M, Shaker SB, Stockley RA. Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. Eur Respir J 2009; 33:1345-53. [PMID: 19196813 DOI: 10.1183/09031936.00159408] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessment of emphysema-modifying therapy is difficult, but newer outcome measures offer advantages over traditional methods. The EXAcerbations and Computed Tomography scan as Lung End-points (EXACTLE) trial explored the use of computed tomography (CT) densitometry and exacerbations for the assessment of the therapeutic effect of augmentation therapy in subjects with alpha(1)-antitrypsin (alpha(1)-AT) deficiency. In total, 77 subjects (protease inhibitor type Z) were randomised to weekly infusions of 60 mg x kg(-1) human alpha(1)-AT (Prolastin) or placebo for 2-2.5 yrs. The primary end-point was change in CT lung density, and an exploratory approach was adopted to identify optimal methodology, including two methods of adjustment for lung volume variability and two statistical approaches. Other end-points were exacerbations, health status and physiological indices. CT was more sensitive than other measures of emphysema progression, and the changes in CT and forced expiratory volume in 1 s were correlated. All methods of densitometric analysis concordantly showed a trend suggestive of treatment benefit (p-values for Prolastin versus placebo ranged 0.049-0.084). Exacerbation frequency was unaltered by treatment, but a reduction in exacerbation severity was observed. In patients with alpha(1)-AT deficiency, CT is a more sensitive outcome measure of emphysema-modifying therapy than physiology and health status, and demonstrates a trend of treatment benefit from alpha(1)-AT augmentation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
236 |
16
|
Franklin DS, Godfrey VL, O'Brien DA, Deng C, Xiong Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20:6147-58. [PMID: 10913196 PMCID: PMC86090 DOI: 10.1128/mcb.20.16.6147-6158.2000] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The presence of two families of seven distinct mammalian cyclin-dependent kinase (CDK) inhibitor genes is thought to mediate the complexity of connecting a variety of cellular processes to the cell cycle control pathway. The distinct pattern of tissue expression of CDK inhibitor genes suggests that they may function as tumor suppressors with different tissue specificities. To test this hypothesis, we have characterized two strains of double mutant mice lacking either p18(INK4c) and p27(KIP1) or p18(INK4c) and p21(CIP1/WAF1). Loss of both p18 and p27 function resulted in the spontaneous development by 3 months of age of at least eight different types of hyperplastic tissues and/or tumors in the pituitary, adrenals, thyroid, parathyroid, testes, pancreas, duodenum, and stomach. Six of these hyperplastic tissues and tumors were in endocrine organs, and several types of tumors routinely developed within the same animal, a phenotype reminiscent of that seen in combined human multiple endocrine neoplasia syndromes. The p18-p21 double null mice, on the other hand, developed pituitary adenomas, multifocal gastric neuroendocrine hyperplasia, and lung bronchioalveolar tumors later in life. G(1) CDK2 and CDK4 kinase activities were increased in both normal and neoplastic tissues derived from mice lacking individual CDK inhibitors and were synergistically stimulated by the simultaneous loss of two CDK inhibitors. This indicates that an increase in G(1) CDK kinase activity is a critical step during but is not sufficient for tumor growth. Our results suggest that functional collaborations between distinct CDK inhibitor genes are tissue specific and confer yet another level of regulation in cell growth control and tumor suppression.
Collapse
|
research-article |
25 |
210 |
17
|
Deng C, Kaplan MJ, Yang J, Ray D, Zhang Z, McCune WJ, Hanash SM, Richardson BC. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. ARTHRITIS AND RHEUMATISM 2001; 44:397-407. [PMID: 11229472 DOI: 10.1002/1529-0131(200102)44:2<397::aid-anr59>3.0.co;2-n] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Previous studies have shown that inhibiting T cell DNA methylation causes a lupus-like disease by modifying gene expression. T cells from patients with lupus exhibit diminished levels of DNA methyltransferase (MTase) enzyme activity, hypomethylated DNA, and changes in gene expression similar to those exhibited by T cells treated with methylation inhibitors, suggesting that DNA hypomethylation may contribute to human lupus. Since it is known that DNA MTase levels are regulated by the ras-mitogen-activated protein kinase (MAPK) pathway, this study sought to determine whether decreased ras-MAPK signaling could account for the DNA hypomethylation in lupus T cells. METHODS DNA MTase messenger RNA (mRNA) from lupus patients and from healthy controls was quantitated by Northern analysis, and ras-MAPK signaling was determined by immunoblotting with antibodies to the activated forms of extracellular receptor-associated kinase (ERK). Results were compared with those in T cells in which ras-MAPK signaling was inhibited with a soluble inhibitor of MAPK ERK I (MEK1). RESULTS T cells from patients with active lupus had diminished DNA MTase mRNA levels and decreased signaling through the ras-MAPK pathway. Inhibiting signaling through the ras-MAPK pathway with the MEK1 inhibitor decreased DNA MTase mRNA and enzyme activity to the levels seen in lupus T cells, and resulted in DNA hypomethylation resembling that seen in lupus T cells. CONCLUSION These results suggest that a decrease in signaling through the ras-MAPK pathway may be responsible for the decreased MTase activity and DNA hypomethylation in patients with lupus.
Collapse
|
|
24 |
189 |
18
|
Kawai H, Allende ML, Wada R, Kono M, Sango K, Deng C, Miyakawa T, Crawley JN, Werth N, Bierfreund U, Sandhoff K, Proia RL. Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 2001; 276:6885-8. [PMID: 11133999 DOI: 10.1074/jbc.c000847200] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gangliosides are a family of glycosphingolipids that contain sialic acid. Although they are abundant on neuronal cell membranes, their precise functions and importance in the central nervous system (CNS) remain largely undefined. We have disrupted the gene encoding GD3 synthase (GD3S), a sialyltransferase expressed in the CNS that is responsible for the synthesis of b-series gangliosides. GD3S-/- mice, even with an absence of b-series gangliosides, appear to undergo normal development and have a normal life span. To further restrict the expression of gangliosides, the GD3S mutant mice were crossbred with mice carrying a disrupted GalNAcT gene encoding beta1,4-N-acetylgalactosaminyltransferase. These double mutant mice expressed GM3 as their major ganglioside. In contrast to the single mutant mice, the double mutants displayed a sudden death phenotype and were extremely susceptible to induction of lethal seizures by sound stimulus. These results demonstrate unequivocally that gangliosides play an essential role in the proper functioning of the CNS.
Collapse
|
|
24 |
184 |
19
|
Lane TF, Deng C, Elson A, Lyu MS, Kozak CA, Leder P. Expression of Brca1 is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice. Genes Dev 1995; 9:2712-22. [PMID: 7590247 DOI: 10.1101/gad.9.21.2712] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have isolated genomic and cDNA clones of Brca1, a mouse homolog of the recently cloned breast cancer-associated gene, BRCA1. Brca1 encodes an 1812-amino-acid protein with a conserved zinc finger domain and significant homology to the human protein. Brca1 maps to Chromosome 11 within a region of conserved synteny with human chromosome 17, consistent with the mapping of the human gene to 17q21. Brca1 transcripts are expressed in a variety of cultured cells but reveal a specific and dynamic expression pattern during embryonic development. For example, expression is observed first in the otic vesicle of embryonic day 9.5 (E9.5) embryos. This expression diminishes and is replaced by expression in the neuroectoderm at E10.5. By E11-12.5, higher levels are observed in differentiating keratinocytes and in whisker pad primordia. Transcripts also become evident in epithelial cells of the E14-17 kidney. Brca1 expression occurs in differentiating epithelial cells of several adult organs as well, suggesting a general role in the functional maturation of these tissues. Consistent with this, Brca1 transcripts are expressed in both alveolar and ductal epithelial cells of the mammary gland. During pregnancy, there is a large increase in Brca1 mRNA in mammary epithelial cells, an increase that parallels their functional differentiation. Because high rates of breast cancer are associated with loss of BRCA1 in humans, it is possible that this gene provides an important growth regulatory function in mammary epithelial cells. In addition, increased transcription of mammary Brca1 during pregnancy might contribute, in part, to the reduced cancer risk associated with exposure to pregnancy and lactation.
Collapse
|
|
30 |
156 |
20
|
Albrecht JH, Poon RY, Ahonen CL, Rieland BM, Deng C, Crary GS. Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver. Oncogene 1998; 16:2141-50. [PMID: 9572495 DOI: 10.1038/sj.onc.1201728] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In tissue culture systems, p21 and p27 inhibit cyclin-dependent kinase (CDK) activity and cell cycle progression in response to numerous stimuli, but little is known about their involvement in cell growth in vivo. We examined the modulation of CDK activity by these proteins after 70% partial hepatectomy (PH), an in vivo model of synchronous hepatocyte cell cycle progression. After PH in BALB/c mice, p21 was induced during the prereplicative (G1) phase and was maximally expressed after peak hepatocyte DNA synthesis. p27 was present in quiescent liver and was minimally induced after PH. p21 and p27 immunoprecipitated with CDK2, CDK4, and cyclin D1 in the regenerating liver. The activity of CDK2-, CDK4- and cyclin D1-associated kinases was upregulated after PH, and maximal activity of these enzyme complexes corresponded to peak DNA synthesis. Immunodepletion experiments suggested that p27 plays a role in downregulating CDK2 activity before and after peak DNA synthesis. Compared to cogenic wild-type mice, p21-/- mice demonstrated evidence of markedly accelerated hepatocyte progression through G1 phase after PH: DNA synthesis, upregulation of cyclin A and PCNA, induction of cyclin D1- and CDK2-associated kinase activity, and appearance of a phosphorylated retinoblastoma protein (Rb) species occurred earlier in the p21-/- mice. These results suggest that p21 and p27 modulate CDK activity in the regenerating liver, and that p21 regulates the rate of progression through G1 phase of the cell cycle in vivo.
Collapse
|
|
27 |
154 |
21
|
Lechleider RJ, Ryan JL, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts AB. Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol 2001; 240:157-67. [PMID: 11784053 DOI: 10.1006/dbio.2001.0469] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Smad family of intracellular signaling intermediates transduce signals downstream from the transforming growth factor beta (TGF-beta) family of receptor serine threonine kinases. The original member of this family, Smad1, has been shown to mediate signals from receptors for the bone morphogenetic proteins (BMPs), a large group of ligands in the TGF-beta superfamily that mediate important developmental events. We have targeted the Smad1 gene in mice and created mutants null at this locus. Smad1 mutant mice die at approximately 9.5 days postcoitum due to defects in allantois formation. In Smad1 mutant mice, the allantois fails to fuse to the chorion, resulting in a lack of placenta and failure to establish a definitive embryonic circulation. Although vasculogenesis is initiated in the mutant allantois, the vessels formed are disorganized, and VCAM-1 protein, a marker for distal allantois development, is not expressed. Smad1 null fibroblasts are still able to respond to BMP2, however, suggesting that the defect observed in the developing extraembryonic tissue is caused by a very specific loss of transcriptional activity regulated by Smad1. Our data further demonstrate that although highly similar structurally, Smad proteins are not functionally homologous.
Collapse
|
|
24 |
153 |
22
|
Balasa B, Deng C, Lee J, Bradley LM, Dalton DK, Christadoss P, Sarvetnick N. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med 1997; 186:385-91. [PMID: 9236190 PMCID: PMC2198999 DOI: 10.1084/jem.186.3.385] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune myasthenia gravis (EAMG) is an animal model of human myasthenia gravis (MG). In mice, EAMG is induced by immunization with Torpedo californica acetylcholine receptor (AChR) in complete Freund's adjuvant (CFA). However, the role of cytokines in the pathogenesis of EAMG is not clear. Because EAMG is an antibody-mediated disease, it is of the prevailing notion that Th2 but not Th1 cytokines play a role in the pathogenesis of this disease. To test the hypothesis that the Th1 cytokine, interferon (IFN)-gamma, plays a role in the development of EAMG, we immunized IFN-gamma knockout (IFN-gko) (-/-) mice and wild-type (WT) (+/+) mice of H-2(b) haplotype with AChR in CFA. We observed that AChR-primed lymph node cells from IFN-gko mice proliferated normally to AChR and to its dominant pathogenic alpha146-162 sequence when compared with these cells from the WT mice. However, the IFN-gko mice had no signs of muscle weakness and remained resistant to clinical EAMG at a time when the WT mice exhibited severe muscle weakness and some died. The resistance of IFN-gko mice was associated with greatly reduced levels of circulating anti-AChR antibody levels compared with those in the WT mice. Comparatively, immune sera from IFN-gko mice showed a dramatic reduction in mouse AChR-specific IgG1 and IgG2a antibodies. However, keyhole limpet hemocyanin (KLH)-priming of IFN-gko mice readily elicited both T cell and antibody responses, suggesting that IFN-gamma regulates the humoral immune response distinctly to self (AChR) versus foreign (KLH) antigens. We conclude that IFN-gamma is required for the generation of a pathogenic anti-AChR humoral immune response and for conferring susceptibility of mice to clinical EAMG.
Collapse
|
research-article |
28 |
150 |
23
|
Chen L, Li C, Qiao W, Xu X, Deng C. A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001; 10:457-65. [PMID: 11181569 DOI: 10.1093/hmg/10.5.457] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations in fibroblast growth factor receptor 3 (FGFR3) result in several types of human skeletal dysplasia, including the neonatally lethal dwarfism known as thanatophoric dysplasia. An engineered Ser(365)-->Cys substitution in mouse FGFR3, which is equivalent to a mutation associated with thanatophoric dysplasia-I in humans, has now been shown to cause severe dwarfism but not neonatal death. The mutant mice exhibit shortened limbs as a result of markedly reduced proliferation and impaired differentiation of growth plate chondrocytes. The receptor-activating mutation also resulted in downregulation of expression of the Indian hedgehog (IHH) and parathyroid hormone-related protein (PTHrP) receptor genes, both of which are important for bone growth. Interactions between FGFR3- and PTHrP-receptor-mediated signals during endochondral ossification were examined with embryonic metatarsal bones maintained in culture under defined conditions. Consistent with the in vivo observations, FGF2 inhibited bone growth in culture and induced downregulation of IHH and PTHrP receptor gene expression. Furthermore, PTHrP partially reversed the inhibition of long bone growth caused by activation of FGFR3; however, it impaired the differentiation of chondrocytes in an FGFR3-independent manner. These observations suggest that FGFR3 and IHH-PTHrP signals are transmitted by two interacting parallel pathways that mediate both overlapping and distinct functions during endochondral ossification.
Collapse
|
|
24 |
138 |
24
|
Liu Y, Wada R, Kawai H, Sango K, Deng C, Tai T, McDonald MP, Araujo K, Crawley JN, Bierfreund U, Sandhoff K, Suzuki K, Proia RL. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J Clin Invest 1999; 103:497-505. [PMID: 10021458 PMCID: PMC408106 DOI: 10.1172/jci5542] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1998] [Accepted: 12/22/1998] [Indexed: 11/17/2022] Open
Abstract
Inherited defects in the degradation of glycosphingolipids (GSLs) cause a group of severe diseases known as GSL storage disorders. There are currently no effective treatments for the majority of these disorders. We have explored a new treatment paradigm, substrate deprivation therapy, by constructing a genetic model in mice. Sandhoff's disease mice, which abnormally accumulate GSLs, were bred with mice that were blocked in their synthesis of GSLs. The mice with simultaneous defects in GSL synthesis and degradation no longer accumulated GSLs, had improved neurologic function, and had a much longer life span. However, these mice eventually developed a late-onset neurologic disease because of accumulation of another class of substrate, oligosaccharides. The results support the validity of the substrate deprivation therapy and also highlight some limitations.
Collapse
|
research-article |
26 |
137 |
25
|
Deng C, Capecchi MR. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 1992; 12:3365-71. [PMID: 1321331 PMCID: PMC364584 DOI: 10.1128/mcb.12.8.3365-3371.1992] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mutations were targeted to the Hprt locus of mouse embryo-derived stem cells by using 22 different sequence replacement and sequence insertion vectors. The targeting frequency was examined at two sites within the Hprt locus as a function of the extent of homology between the targeting vector and the target locus. The targeting frequency was also compared by using vectors prepared from isogenic and nonisogenic DNA sources. With one exception, all of the vectors showed the same exponential dependence of targeting efficiency on the extent of homology between the targeting vector and the target locus. This was true regardless of whether they were sequence replacement or sequence insertion vectors, whether they were directed toward either of the two different sites within the Hprt locus, or whether they were prepared from isogenic or nonisogenic DNA sources. Vectors prepared from isogenic DNA targeted four to five times more efficiently than did the corresponding vectors prepared from nonisogenic DNA. The single case of unexpectedly low targeting efficiency involved one of the vectors prepared from nonisogenic DNA and could be attributed to an unfavorable distribution of heterology between the Hprt sequences present in the targeting vector and the endogenous Hprt gene.
Collapse
|
research-article |
33 |
136 |