1
|
Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000; 25:55-7. [PMID: 10802656 DOI: 10.1038/75596] [Citation(s) in RCA: 643] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gliomas are the most common primary malignant brain tumours and are classified into four clinical grades, with the most aggressive tumours being grade 4 astrocytomas (also known as glioblastoma multiforme; GBM). Frequent genetic alterations in GBMs (refs 2-5) result in stimulation of common signal transduction pathways involving Ras, Akt and other proteins. It is not known which of these pathways, if any, are sufficient to induce GBM formation. Here we transfer, in a tissue-specific manner, genes encoding activated forms of Ras and Akt to astrocytes and neural progenitors in mice. We found that although neither activated Ras nor Akt alone is sufficient to induce GBM formation, the combination of activated Ras and Akt induces high-grade gliomas with the histological features of human GBMs. These tumours appear to arise after gene transfer to neural progenitors, but not after transfer to differentiated astrocytes. Increased activity of RAS is found in many human GBMs (ref. 11), and we show here that Akt activity is increased in most of these tumours, implying that combined activation of these two pathways accurately models the biology of this disease.
Collapse
|
|
25 |
643 |
2
|
Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15:1913-25. [PMID: 11485986 PMCID: PMC312748 DOI: 10.1101/gad.903001] [Citation(s) in RCA: 514] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present evidence that some low-grade oligodendrogliomas may be comprised of proliferating glial progenitor cells that are blocked in their ability to differentiate, whereas malignant gliomas have additionally acquired other mutations such as disruption of cell cycle arrest pathways by loss of Ink4a-Arf. We have modeled these effects in cell culture and in mice by generating autocrine stimulation of glia through the platelet-derived growth factor receptor (PDGFR). In cell culture, PDGF signaling induces proliferation of glial precursors and blocks their differentiation into oligodendrocytes and astrocytes. In addition, coexpression of PDGF and PDGF receptors has been demonstrated in human gliomas, implying that autocrine stimulation may be involved in glioma formation. In this study, using somatic cell type-specific gene transfer we investigated the functions of PDGF autocrine signaling in gliomagenesis by transferring the overexpression of PDGF-B into either nestin-expressing neural progenitors or glial fibrillary acidic protein (GFAP)-expressing astrocytes both in cell culture and in vivo. In cultured astrocytes, overexpression of PDGF-B caused significant increase in proliferation rate of both astrocytes and neural progenitors. Furthermore, PDGF gene transfer converted cultured astrocytes into cells with morphologic and gene expression characteristics of glial precursors. In vivo, gene transfer of PDGF to neural progenitors induced the formation of oligodendrogliomas in about 60% of mice by 12 wk of age; PDGF transfer to astrocytes induced the formation of either oligodendrogliomas or mixed oligoastrocytomas in about 40% of mice in the same time period. Loss of Ink4a-Arf, a mutation frequently found in high-grade human gliomas, resulted in shortened latency and enhanced malignancy of gliomas. The highest percentage of PDGF-induced malignant gliomas arose from of Ink4a-Arf null progenitor cells. These data suggest that chronic autocrine PDGF signaling can promote a proliferating population of glial precursors and is potentially sufficient to induce gliomagenesis. Loss of Ink4a-Arf is not required for PDGF-induced glioma formation but promotes tumor progression toward a more malignant phenotype.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytoma/genetics
- Astrocytoma/pathology
- Becaplermin
- Brain/cytology
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Cell Cycle/drug effects
- Cell Cycle/physiology
- Cell Differentiation/drug effects
- Cell Division
- Cell Transformation, Neoplastic
- Cells, Cultured
- Glial Fibrillary Acidic Protein/analysis
- Glial Fibrillary Acidic Protein/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Intermediate Filament Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Transgenic
- Nerve Tissue Proteins
- Nestin
- Oligodendroglioma/genetics
- Oligodendroglioma/pathology
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-sis
- Receptors, Platelet-Derived Growth Factor/physiology
- Recombinant Proteins/pharmacology
- Stem Cells/cytology
- Stem Cells/drug effects
- Transfection
Collapse
|
research-article |
24 |
514 |
3
|
Netherton MR, Dai C, Neuschütz K, Fu GC. Room-temperature alkyl-alkyl Suzuki cross-coupling of alkyl bromides that possess beta hydrogens. J Am Chem Soc 2001; 123:10099-100. [PMID: 11592890 DOI: 10.1021/ja011306o] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
24 |
355 |
4
|
Dai C, Fu GC. The first general method for palladium-catalyzed Negishi cross-coupling of aryl and vinyl chlorides: use of commercially available Pd(P(t-Bu)(3))(2) as a catalyst. J Am Chem Soc 2001; 123:2719-24. [PMID: 11456957 DOI: 10.1021/ja003954y] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With a single protocol, commercially available Pd(P(t-Bu)(3))(2) can effect the Negishi cross-coupling of a wide range of aryl and vinyl chlorides with aryl- and alkylzinc reagents. The process tolerates nitro groups, and it efficiently generates sterically hindered biaryls. In addition, a high turnover number (>3000) can be achieved.
Collapse
|
|
24 |
349 |
5
|
Dai C, Brissova M, Hang Y, Thompson C, Poffenberger G, Shostak A, Chen Z, Stein R, Powers AC. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 2012; 55:707-18. [PMID: 22167125 PMCID: PMC3268985 DOI: 10.1007/s00125-011-2369-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/11/2011] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Our understanding of the transcription factors that control the development and function of rodent islet beta cells is advancing rapidly, yet less is known of the role they play in similar processes in human islets. METHODS To characterise the abundance and regulation of key proteins involved in glucose-regulated insulin secretion in human islets, we examined the expression of MAFA, MAFB, GLUT2 (also known as SLC2A2), βGK (also known as GCK) and PDX1 in isolated, highly purified human islets with an intact insulin secretory pattern. We also assessed these features in islets from two different mouse strains (C57BL/6J and FVB). RESULTS Compared with mouse islets, human islets secreted more insulin at baseline glucose (5.6 mmol/l), but less upon stimulation with high glucose (16.7 mmol/l) or high glucose plus 3-isobutyl-1-methyl-xanthine. Human islets had relatively more MAFB than PDX1 mRNA, while mouse islets had relatively more Pdx1 than Mafb mRNA. However, v-maf musculoaponeurotic fibrosarcoma oncogene homologue (MAF) B protein was found in human islet alpha and beta cells. This is unusual as this regulator is only produced in islet alpha cells in adult mice. The expression of insulin, MAFA, βGK and PDX1 was not glucose-regulated in human islets with an intact insulin secretory pattern. CONCLUSIONS/INTERPRETATION Our results suggest that human islets have a distinctive distribution and function of key regulators of the glucose-stimulated insulin secretion pathway, emphasising the urgent need to understand the processes that regulate human islet beta cell function.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
125 |
6
|
Lv S, Han M, Yi R, Kwon S, Dai C, Wang R. Anti-TNF-α therapy for patients with sepsis: a systematic meta-analysis. Int J Clin Pract 2014; 68:520-8. [PMID: 24548627 DOI: 10.1111/ijcp.12382] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE In humans, the role of anti-tumour necrosis factor (TNF)-α therapy in severe sepsis and septic shock is debatable. The aim of this meta-analysis was to determine the efficacy of anti-TNF-α therapies against placebo in patients with severe sepsis or septic shock. METHODS A structured literature search was undertaken to identify randomised controlled trials (RCTs) conducted in patients with severe sepsis or septic shock receiving anti-TNF-α therapy or placebo. A meta-analysis on relative risk (OR) with a 95% confidence interval (95% CI) was performed. RESULTS Seventeen studies with a total of 8971 patients were included. When all forms of anti-TNF-α therapy were pooled together, there was a significant reduction of 28-day all-cause mortality with respect to placebo (OR = 0.91, 95% CI: 0.83-0.99; p = 0.04). Subgroup analysis showed that anti-TNF-α antibodies (monoclonal and polyclonal) reduced mortality (OR = 0.90, 95% CI: 0.81-0.99; p = 0.04). Monoclonal antibodies enhanced survival (OR = 0.91, 95% CI: 0.82-1.00; p = 0.05), while polyclonal antibodies or receptor blockers did not enhance survival (OR = 0.71, 95% CI: 0.39-1.28, p = 0.25; OR = 0.95, 95% CI: 0.78-1.17, p = 0.65). There was a trend towards better survival in patients with high levels of IL-6 (> 1000 pg/ml) and patients with shock if they were treated with anti-TNF-α therapy (OR = 0.85, 95% CI: 0.72-1.00; OR = 0.80, 95% CI: 0.62-1.04). Publication bias and statistical heterogeneity (I(2) < 50% and p > 0.1) were absent. Sensitivity analysis suggests that these results are highly stable. CONCLUSIONS This meta-analysis suggests that in patients with severe sepsis (before shock), immunotherapy with anti-TNF-α monoclonal antibodies reduces overall mortality. In patients with shock or high levels of IL-6 (> 1000 pg/ml), anti-TNF-α therapy may improve survival.
Collapse
|
Meta-Analysis |
11 |
116 |
7
|
Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S, Baker J, Ma C, Halder S, Montero M, Ionescu VA, Klegeris A, Vallance BA, Gibson DL. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol 2011; 301:G39-49. [PMID: 21454446 DOI: 10.1152/ajpgi.00509.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Individuals vary in their resistance to enteric infections. The role of the intestinal microbiota in altering susceptibility to enteric infection is relatively unknown. Previous studies have identified that C3H/HeOuJ mice suffer 100% mortality during Citrobacter rodentium-induced colitis, whereas C57BL/6 mice recover from infection. The basis for their differences in susceptibility is unclear and has been mainly attributed to differences in host genetics. This study investigated the role of the intestinal microbiota in altering susceptibility to C. rodentium-induced colitis. When the feces of C57BL/6 mice were gavaged into antibiotic treated C3H/HeOuJ mice, the C57BL/6 microflora led to a complete reversal in mortality patterns where 100% of the C3H/HeOuJ mice survived infection. This protection corresponded with reduced colonic pathology and less systemic pathogen load and was associated with increased inflammatory and redox responses with reduced epithelial cell death. C3H/HeOuJ mice are normally susceptible to infection-induced dehydration due to defective expression of colonic ion transporters such as Dra, CA IV, and CA I; expression of these genes was normalized when C3H/HeOuJ mice were colonized with the C57BL/6 microflora. Together, these data reveal that the colonic microbiota play a critical role in protecting against intestinal infection by inducing proinflammatory and prooxidant responses that control pathogen load as well as ion transporter gene expression previously shown to prevent fatal dehydration. Protection of mice from lethal colitis was associated with higher levels of bacteria from Bacteroidetes. This study reveals that the microbiota is sufficient to overcome inherent genetic susceptibility patterns in C3H/HeOuJ mice that cause mortality during C. rodentium infection.
Collapse
|
|
14 |
109 |
8
|
Wang J, Guan X, Guo F, Zhou J, Chang A, Sun B, Cai Y, Ma Z, Dai C, Li X, Wang B. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis 2013; 4:e845. [PMID: 24113179 PMCID: PMC3824666 DOI: 10.1038/cddis.2013.356] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023]
Abstract
Reciprocal relationship usually exists between osteoblastogenesis and adipogenesis, with factors stimulating one of these processes at the same time inhibiting the other. In the present study, miR-30e was found to be involved in the reciprocal regulation of osteoblast and adipocyte differentiation. Our data indicated that miR-30e was induced in primarily cultured mouse bone marrow stromal cell, mesenchymal cell line C3H10T1/2 and preadipocyte 3T3-L1 after adipogenic treatment. Conversely, it was reduced in mouse stromal line ST2 and preosteoblast MC3T3-E1 after osteogenic treatment. Enforced expression of miR-30e in 3T3-L1 significantly suppressed the growth of the cells and induced the preadipocytes to differentiate into mature adipocytes, along with increased expression of adipocyte-specific transcription factors peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα) and C/EBPβ, and the marker gene aP2. In contrast, inhibition of the endogenous miR-30e enhanced the cell growth and repressed preadipocytes to differentiate. Conversely, supplementing miR-30e activity blocked, whereas knocking down miR-30e enforced the preosteoblast MC3T3-E1 to fully differentiate. Furthermore, miR-30e overexpression stimulated adipocyte formation and inhibited osteoblast differentiation from marrow stromal cells. Low-density lipoprotein receptor-related protein 6 (LRP6), one of the critical coreceptor for Wnts, was shown to be a direct target of miR-30e by using the luciferase assay. Knockdown of LRP6 in 3T3-L1 cells downregulated β-catenin/T-cell factor (TCF) transcriptional activity and dramatically potentiated the differentiation of the cells into mature adipocytes. Taken together, the present work suggests that the expression of miR-30e is indispensable for maintaining the balance of adipocytes and osteoblasts by targeting the canonical Wnt/β-catenin signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
102 |
9
|
Luther JM, Luo P, Kreger MT, Brissova M, Dai C, Whitfield TT, Kim HS, Wasserman DH, Powers AC, Brown NJ. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia 2011; 54:2152-63. [PMID: 21519965 PMCID: PMC3216479 DOI: 10.1007/s00125-011-2158-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/28/2011] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Aldosterone concentrations increase in obesity and predict the onset of diabetes. We investigated the effects of aldosterone on glucose homeostasis and insulin secretion in vivo and in vitro. METHODS We assessed insulin sensitivity and insulin secretion in aldosterone synthase-deficient (As [also known as Cyp11b2](-/-)) and wild-type mice using euglycaemic-hyperinsulinaemic and hyperglycaemic clamps, respectively. We also conducted studies during high sodium intake to normalise renin activity and potassium concentration in As (-/-) mice. We subsequently assessed the effect of aldosterone on insulin secretion in vitro in the presence or absence of mineralocorticoid receptor antagonists in isolated C57BL/6J islets and in the MIN6 beta cell line. RESULTS Fasting glucose concentrations were reduced in As (-/-) mice compared with wild-type. During hyperglycaemic clamps, insulin and C-peptide concentrations increased to a greater extent in As (-/-) than in wild-type mice. This was not attributable to differences in potassium or angiotensin II, as glucose-stimulated insulin secretion was enhanced in As (-/-) mice even during high sodium intake. There was no difference in insulin sensitivity between As (-/-) and wild-type mice in euglycaemic-hyperinsulinaemic clamp studies. In islet and MIN6 beta cell studies, aldosterone inhibited glucose- and isobutylmethylxanthine-stimulated insulin secretion, an effect that was not blocked by mineralocorticoid receptor antagonism, but was prevented by the superoxide dismutase mimetic tempol. CONCLUSIONS/INTERPRETATION We demonstrated that aldosterone deficiency or excess modulates insulin secretion in vivo and in vitro via reactive oxygen species and in a manner that is independent of mineralocorticoid receptors. These findings provide insight into the mechanism of glucose intolerance in conditions of relative aldosterone excess.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
83 |
10
|
Wang X, Ho C, Tsatskis Y, Law J, Zhang Z, Zhu M, Dai C, Wang F, Tan M, Hopyan S, McNeill H, Sun Y. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci Robot 2019; 4:4/28/eaav6180. [DOI: 10.1126/scirobotics.aav6180] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
The capability to directly interrogate intracellular structures inside a single cell for measurement and manipulation is important for understanding subcellular and suborganelle activities, diagnosing diseases, and developing new therapeutic approaches. Compared with measurements of single cells, physical measurement and manipulation of subcellular structures and organelles remain underexplored. To improve intracellular physical measurement and manipulation, we have developed a multipole magnetic tweezers system for micromanipulation involving submicrometer position control and piconewton force control of a submicrometer magnetic bead inside a single cell for measurement in different locations (spatial) and different time points (temporal). The bead was three-dimensionally positioned in the cell using a generalized predictive controller that addresses the control challenge caused by the low bandwidth of visual feedback from high-resolution confocal imaging. The average positioning error was quantified to be 0.4 μm, slightly larger than the Brownian motion–imposed constraint (0.31 μm). The system is also capable of applying a force up to 60 pN with a resolution of 4 pN for a period of time longer than 30 min. The measurement results revealed that significantly higher stiffness exists in the nucleus’ major axis than in the minor axis. This stiffness polarity is likely attributed to the aligned actin filament. We also showed that the nucleus stiffens upon the application of an intracellularly applied force, which can be attributed to the response of structural protein lamin A/C and the intracellular stress fiber actin filaments.
Collapse
|
|
6 |
75 |
11
|
Abstract
Reversible C(6)F(5) transfer takes place between the boron centers in the anion formed by methide abstraction from [MeZr{N(SiMe(3))(2)}(3)] or [Cp(2)ZrMe(2)] (L(n)M-CH(3) in the reaction scheme) by the perfluorinated diborane 1. The solution chemistry of the metallocenium ion pairs formed from 1 and [Cp(2)ZrMe(2)] is correlated with the observed ethylene polymerization behavior of 1 in comparison to the monoborane B(C(6)F(5))(3), the related diborane 1,2-C(6)H(4)[B(C(6)F(5))(2)](2), and the 9,10-diboraanthracene compound 9,10-(C(6)F(5))(2)C(12)B(2)F(8).
Collapse
|
|
26 |
74 |
12
|
Yang J, Dai C, Liu Y. Systemic administration of naked plasmid encoding hepatocyte growth factor ameliorates chronic renal fibrosis in mice. Gene Ther 2001; 8:1470-9. [PMID: 11593360 DOI: 10.1038/sj.gt.3301545] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2001] [Accepted: 07/05/2001] [Indexed: 11/08/2022]
Abstract
The progression of chronic renal diseases is considered as an irreversible process that eventually leads to end-stage renal failure characterized by extensive tissue fibrosis. At present, chronic renal fibrosis is incurable and the incidence of affected patients is on the rise worldwide. In this study, we demonstrate that delivery of hepatocyte growth factor (HGF) gene via systemic administration of naked plasmid vector markedly ameliorated renal fibrosis in an animal model of chronic renal disease induced by unilateral ureteral obstruction. A high level of exogenous HGF protein was detected in the obstructed kidneys following intravenous injection of naked plasmid encoding human HGF. Delivery of human HGF gene induced a sustained activation of extracellular signal-regulated kinases-1 and -2 in the obstructed kidneys. Exogenous HGF expression dramatically inhibited alpha-smooth muscle actin expression, attenuated renal interstitial accumulation and deposition of collagen I and fibronectin. In addition, exogenous HGF suppressed renal expression of pro-fibrogenic cytokine TGF-beta1 and its type I receptor in vivo. These results suggest that systemic administration of naked plasmid vector introduces a high level of exogenous HGF to the diseased kidneys, and that HGF gene transfer may provide a novel therapeutic strategy for amelioration of chronic renal fibrosis in vivo.
Collapse
|
|
24 |
73 |
13
|
Conlin VS, Wu X, Nguyen C, Dai C, Vallance BA, Buchan AMJ, Boyer L, Jacobson K. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G735-50. [PMID: 19661153 DOI: 10.1152/ajpgi.90551.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Attaching and effacing bacterial pathogens attach to the apical surface of epithelial cells and disrupt epithelial barrier function, increasing permeability and allowing luminal contents access to the underlying milieu. Previous in vitro studies demonstrated that the neuropeptide vasoactive intestinal peptide (VIP) regulates epithelial paracellular permeability, and the high concentrations and close proximity of VIP-containing nerve fibers to intestinal epithelial cells would support such a function in vivo. The aim of this study was to examine whether VIP treatment modulated Citrobacter rodentium-induced disruption of intestinal barrier integrity and to identify potential mechanisms of action. Administration of VIP had no effect on bacterial attachment although histopathological scoring demonstrated a VIP-induced amelioration of colitis-induced epithelial damage compared with controls. VIP treatment prevented the infection-induced increase in mannitol flux a measure of paracellular permeability, resulting in levels similar to control mice, and immunohistochemical studies demonstrated that VIP prevented the translocation of tight junction proteins: zonula occludens-1, occludin, and claudin-3. Enteropathogenic Escherichia coli (EPEC) infection of Caco-2 monolayers confirmed a protective role for VIP on epithelial barrier function. VIP prevented EPEC-induced increase in long myosin light chain kinase (MLCK) expression and myosin light chain phosphorylation (p-MLC). Furthermore, MLCK inhibition significantly attenuated bacterial-induced epithelial damage both in vivo and in vitro. In conclusion, our results indicate that VIP protects the colonic epithelial barrier by minimizing bacterial-induced redistribution of tight junction proteins in part through actions on MLCK and MLC phosphorylation.
Collapse
|
|
16 |
68 |
14
|
Zhang G, Dai C. Gene polymorphisms of homocysteine metabolism-related enzymes in Chinese patients with occlusive coronary artery or cerebral vascular diseases. Thromb Res 2001; 104:187-95. [PMID: 11672761 DOI: 10.1016/s0049-3848(01)00352-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mutations in homocysteine (Hcy) metabolism-related enzyme genes including methylenetetrahydrofolate reductase (MTHFR) C677T, cystathionine beta-synthase (CBS) 844ins68, and methionine synthase (MS) A2756G have been identified as genetic risk factors for thromboembolic events. It has been noticed that these gene mutations have heterogeneous distributions among different ethnic groups or geographic areas. The data on the prevalence of the gene mutations in Chinese population is not yet available. In the present study, we have investigated the frequency of the MTHFR C677T, CBS 844ins68, and MS A2756G mutations in 102 patients with ischemic stroke (IS), 73 patients with myocardial infarction (MI) and 100 healthy controls. The distributive frequencies of the gene variations are as follows: In the IS, MI and control groups, the mutant homozygote for MTHFR C677T is 15 (14.7%), 8 (11.7%) and 16 (16.0%), respectively, and the T allele frequency is 37.7%, 33.6% and 39.5%, respectively; the heterozygote for CBS 844ins68 is 1 (1.0%), 1 (1.4%) and 5 (5.0%), respectively; the heterozygote for MS A2756G is 18 (17.6%), 14 (19.2%) and 17 (17.0%), and the G allele frequency is 8.8%, 11.0% and 9.5%, respectively. The carrier of both MS A2756G and MTHFR C677T (combined mutations) is 14 (12.7%), 8(11.0%) and 12(12.0%), respectively. There is no statistically significant difference between the patient groups and the control group in the frequencies of these single mutation or combined mutations. The heterozygosity of CBS 844ins68 yields an odds ratio (OR) of 0.19 (95% confidence interval (CI) 0.02-1.43) for IS and 0.26 (95% CI 0.03-2.31) for MI. The T allele of MTHFR C677T yields an OR of 0.93 for IS (95% CI 0.62-1.39) and 0.77 for MI (95% CI 0.50-1.21). The G allele of MS A2756G yields an OR of 0.92(95% CI 0.47-1.81) for IS and 1.17 (95% CI 0.58-2.37) for MI. Our results suggest that neither single mutation nor combined mutations in MTHFR C677T, CBS 844ins68 and MS A2756G represent an independent risk factor for increasing IS and coronary artery disease risks in Chinese population. However, CBS 844ins68 may be a protective factor against vascular thromboembolic disease. The prevalence of CBS 844ins68 and MS A2756G in Chinese population is obviously lower than in Western Caucasian population.
Collapse
|
|
24 |
63 |
15
|
Stoica VA, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter MR, Yadav A, Damodaran AR, Das S, Stone GA, Karapetrova J, Walko DA, Zhang X, Martin LW, Ramesh R, Chen LQ, Wen H, Gopalan V, Freeland JW. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. NATURE MATERIALS 2019; 18:377-383. [PMID: 30886403 DOI: 10.1038/s41563-019-0311-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Stimulation with ultrafast light pulses can realize and manipulate states of matter with emergent structural, electronic and magnetic phenomena. However, these non-equilibrium phases are often transient and the challenge is to stabilize them as persistent states. Here, we show that atomic-scale PbTiO3/SrTiO3 superlattices, counterpoising strain and polarization states in alternate layers, are converted by sub-picosecond optical pulses to a supercrystal phase. This phase persists indefinitely under ambient conditions, has not been created via equilibrium routes, and can be erased by heating. X-ray scattering and microscopy show this unusual phase consists of a coherent three-dimensional structure with polar, strain and charge-ordering periodicities of up to 30 nm. By adjusting only dielectric properties, the phase-field model describes this emergent phase as a photo-induced charge-stabilized supercrystal formed from a two-phase equilibrium state. Our results demonstrate opportunities for light-activated pathways to thermally inaccessible and emergent metastable states.
Collapse
|
|
6 |
63 |
16
|
Holland EC, Li Y, Celestino J, Dai C, Schaefer L, Sawaya RA, Fuller GN. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1031-7. [PMID: 10980141 PMCID: PMC1885688 DOI: 10.1016/s0002-9440(10)64615-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cells of origin for oligodendrogliomas and astrocytomas are not known but are presumed to be oligodendrocyte and astrocyte precursors, respectively. In this paper we report the generation of mixed gliomas from in vivo transformation of glial fibrillary acidic protein (GFAP)-positive cells (differentiated astrocytes) with polyoma virus middle T antigen (MTA). MTA is a powerful oncogene that activates a number of signal transduction pathways, including those proposed to be involved in gliomagenesis, and has been shown to induce tumors in many cell types. We have achieved transfer of MTA expression specifically to GFAP(+) cells in vivo using somatic cell gene transfer, and find resultant formation of anaplastic gliomas with mixed astrocytoma and oligodendroglioma morphological features. We conclude that GFAP- expressing astrocytes, with appropriate signaling abnormalities, can serve as the cell of origin for oligodendrogliomas, astrocytomas, or mixed gliomas.
Collapse
|
research-article |
25 |
61 |
17
|
Xiao CG, de Groat WC, Godec CJ, Dai C, Xiao Q. "Skin-CNS-bladder" reflex pathway for micturition after spinal cord injury and its underlying mechanisms. J Urol 1999; 162:936-42. [PMID: 10458412 DOI: 10.1097/00005392-199909010-00094] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE A "skin-CNS-bladder" reflex pathway for inducing micturition after spinal cord injury has been established in cat. This reflex pathway which is basically a somatic reflex arc with a modified efferent limb that passes somatic motor impulses to the bladder, has been designed to allow spinal cord injured patients to initiate voiding by scratching the skin. MATERIALS AND METHODS The skin-CNS-bladder reflex was established in the cat by intradural microanastomosis of the left L7 ventral root (VR) to the S1 VR while leaving the L7 dorsal root (DR) intact to conduct cutaneous afferent signals that can trigger the new micturition reflex arc. After allowing 11 weeks for axonal regeneration, urodynamic, pharmacological and electrophysiological studies were conducted in pentobarbital or chloralose anesthetized animals. RESULTS A detrusor contraction was initiated at short latency by scratching the skin or by percutaneous electrical stimulation in the L7 dermatome. Maximal bladder pressures during this stimulation were similar to those activated by bladder distension in control animals. Electrophysiological recording revealed that single stimuli (0.3 to 3 mA, 0.02 to 0.2 msec duration) to the left L7 spinal nerve in which the efferent axons had degenerated evoked action potentials (0.5 to 1 mV) in the left S1 spinal nerve distal to the anastomosis. In addition, increases in bladder pressure were elicited by trains of the stimuli (5 to 20 Hz, 5 seconds) applied to the L7 spinal nerve. Urodynamic studies including external sphincter EMG recording demonstrated that the new reflex pathway could initiate voiding without detrusor-external urethral sphincter dyssynergia. Atropine (0.05 mg./kg., i.v.) or trimethaphan (5 mg./kg., i.v.), a ganglionic blocking agent, depressed the bladder contractions elicited by skin stimulation. The skin-CNS-bladder reflex could also be elicited after transecting the spinal cord at the L2-L3 or L7-S1 levels. CONCLUSION The cross-wired somato-autonomic bladder reflex is effective in initiating bladder contractions and coordinated voiding in cats with an intact neuraxis and can also induce bladder contractions after acute transection of the lumbar spinal cord. The new pathway is mediated by cholinergic transmission involving both nicotinic and muscarinic receptors. It is concluded that somatic motor axons can innervate bladder parasympathetic ganglion cells and thereby transfer somatic reflex activity to the bladder smooth muscle.
Collapse
|
|
26 |
58 |
18
|
Biancone L, Andres G, Ahn H, Lim A, Dai C, Noelle R, Yagita H, De Martino C, Stamenkovic I. Distinct regulatory roles of lymphocyte costimulatory pathways on T helper type-2 mediated autoimmune disease. J Exp Med 1996; 183:1473-81. [PMID: 8666905 PMCID: PMC2192532 DOI: 10.1084/jem.183.4.1473] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We assessed the role of CD40-CD40L, cytotoxic T lymphocyte (CTL)A4/CD28-B7s, and CD2-CD48/CD58 lymphocyte costimulatory pathways in the development of mercury chloride (HgCl2)-induced autoimmune disease in mice, which is believed to be mediated by T helper (Th) subset Th2. Inhibition of CD40-CD40-L and CTLA4/CD28-B7s interactions by anti-CD40-L antibody and soluble CTLA4-immunoglobulin (Ig) fusion protein, respectively, abrogated the autoimmune disease without affecting interleukin 4 (IL-4) production, showing the importance of physical contact between T and B lymphocytes in the Th2-mediated process. In contrast, two anti-CD2 antibodies that have been shown to induce immunosuppression of Th1-mediated events exacerbated the autoantibody response and augmented IgG1, IgE, and IL-4 production, transforming a mild mesangial glomerulopathy into a severe systemic immune complex disease. These observations demonstrate that manipulation of lymphocyte accessory counterreceptor interactions may affect the course of Th2-associated autoimmune disease and suggest that signals resulting from CD2 engagement play an essential role in the regulation of the Th1-Th2 effector equilibrium.
Collapse
|
research-article |
29 |
55 |
19
|
Zheng X, Liang Y, Kang A, Ma SJ, Xing L, Zhou YY, Dai C, Xie H, Xie L, Wang GJ, Hao HP. Peripheral immunomodulation with ginsenoside Rg1 ameliorates neuroinflammation-induced behavioral deficits in rats. Neuroscience 2013; 256:210-22. [PMID: 24161284 DOI: 10.1016/j.neuroscience.2013.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023]
Abstract
Neuroinflammatory disturbances have been closely associated with depression and many other neuropsychiatric diseases. Although targeting neuroinflammatory mediators with centrally acting drugs has shown certain promise, its translation is faced with several challenges especially drug delivery and safety concerns. Here, we report that neuroinflammation-induced behavioral abnormality could be effectively attenuated with immunomodulatory agents that need not to gain brain penetration. In a rat model with intracerebral lipopolysaccharide (LPS) challenge, we validated that ginsenoside Rg1 (Rg1), a well-established anti-inflammatory agent, was unable to produce a direct action in the brain. Interestingly, peripherally restricted Rg1 could effectively attenuate the weight loss, anorexic- and depressive-like behavior as well as neurochemical disturbances associated with central LPS challenge. Biochemical assay of neuroimmune mediators in the periphery revealed that Rg1 could mitigate the deregulation of the hypothalamic-pituitary-adrenal axis and selectively blunt the increase in circulating interleukin-6 levels. Furthermore, these peripheral regulatory effects were accompanied by dampened microglial activation, mitigated expression of pro-inflammatory mediators and neurotoxic species in the central compartment. Taken together, our work suggested that targeting the peripheral immune system may serve as a novel therapeutic approach to neuroinflammation-induced neuropsychiatric disorders. Moreover, our findings provided the rationale for employing peripherally active agents like Rg1 to combat mental disturbances.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
48 |
20
|
Sharif T, Ahn DG, Liu RZ, Pringle E, Martell E, Dai C, Nunokawa A, Kwak M, Clements D, Murphy JP, Dean C, Marcato P, McCormick C, Godbout R, Gujar SA, Lee PWK. The NAD(+) salvage pathway modulates cancer cell viability via p73. Cell Death Differ 2016; 23:669-80. [PMID: 26586573 PMCID: PMC4986639 DOI: 10.1038/cdd.2015.134] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022] Open
Abstract
The involvement of the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway in cancer cell survival is poorly understood. Here we show that the NAD(+) salvage pathway modulates cancer cell survival through the rarely mutated tumour suppressor p73. Our data show that pharmacological inhibition or knockdown of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD(+) salvage pathway, enhances autophagy and decreases survival of cancer cells in a p53-independent manner. Such NAMPT inhibition stabilizes p73 independently of p53 through increased acetylation and decreased ubiquitination, resulting in enhanced autophagy and cell death. These effects of NAMPT inhibition can be effectively reversed using nicotinamide mononucleotide (NMN), the enzymatic product of NAMPT. Similarly, knockdown of p73 also decreases NAMPT inhibition-induced autophagy and cell death, whereas overexpression of p73 alone enhances these effects. We show that the breast cancer cell lines (MCF-7, MDA-MB-231 and MDA-MB-468) harbour significantly higher levels of NAMPT and lower levels of p73 than does the normal cell line (MCF-10A), and that NAMPT inhibition is cytotoxic exclusively to the cancer cells. Furthermore, data from 176 breast cancer patients demonstrate that higher levels of NAMPT and lower levels of p73 correlate with poorer patient survival, and that high-grade tumours have significantly higher NAMPT/p73 mRNA ratios. Therefore, the inverse relationship between NAMPT and p73 demonstrable in vitro is also reflected from the clinical data. Taken together, our studies reveal a new NAMPT-p73 nexus that likely has important implications for cancer diagnosis, prognosis and treatment.
Collapse
|
research-article |
9 |
46 |
21
|
Du K, Zhang M, Dai C, Zhou ZN, Xie YW, Ren ZH, Tian H, Chen LQ, Van Tendeloo G, Zhang Z. Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution. Nat Commun 2019; 10:4864. [PMID: 31653843 PMCID: PMC6814840 DOI: 10.1038/s41467-019-12864-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/30/2019] [Indexed: 12/01/2022] Open
Abstract
Topological structures based on controllable ferroelectric or ferromagnetic domain configurations offer the opportunity to develop microelectronic devices such as high-density memories. Despite the increasing experimental and theoretical insights into various domain structures (such as polar spirals, polar wave, polar vortex) over the past decade, manipulating the topological transformations of polar structures and comprehensively understanding its underlying mechanism remains lacking. By conducting an in-situ non-contact bias technique, here we systematically investigate the real-time topological transformations of polar structures in PbTiO3/SrTiO3 multilayers at an atomic level. The procedure of vortex pair splitting and the transformation from polar vortex to polar wave and out-of-plane polarization are observed step by step. Furthermore, the redistribution of charge in various topological structures has been demonstrated under an external bias. This provides new insights for the symbiosis of polar and charge and offers an opportunity for a new generation of microelectronic devices. Direct observation of the dynamic evolution of polar domain structures at atomic level remains challenging. Here, the authors report the observation of real-time topological transformations of polar structures in PbTiO3/SrTiO3 multilayers.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
33 |
22
|
Shi D, Dai C, Qin J, Gu W. Negative regulation of the p300-p53 interplay by DDX24. Oncogene 2015; 35:528-36. [PMID: 25867071 PMCID: PMC4603993 DOI: 10.1038/onc.2015.77] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/15/2022]
Abstract
Numerous studies indicate that p300 acts as a key transcriptional cofactor in vivo, at least, in part, through modulating activities of p53 by acetylation. Nevertheless, the regulation of the p53-p300 interplay is not completely understood. Here, we have identified the DEAD box RNA helicase DDX24 as a novel regulator of the p300-p53 axis. We found that DDX24 interacts with p300, and this interaction leads to suppression of p300 mediated acetylation of p53. Notably, RNAi-mediated knockdown of endogenous DDX24 significantly increases the acetylation levels of endogenous p53 in human cancer cells and subsequently promotes p53-mediated activation of its transcriptional targets such as p21 and PUMA. In contrast, DDX24 expression inhibits the p300-p53 interaction and suppresses p300-mediated acetylation of p53. Moreover, DDX24 is overexpressed in human cancer cells and reduction of DDX24 protein levels by RNAi induces cell cycle arrest and senescence in a p53 dependent manner. These results reveal DDX24 as an important regulator of p300 and suggest that the modulation of the p53-p300 interplay by DDX24 is critical in controlling p53 activities in human cancer cells.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
30 |
23
|
Zheng Y, Lu X, Lai L, Yu L, Zheng H, Dai C. The micelle thermodynamics and mixed properties of sulfobetaine-type zwitterionic Gemini surfactant with nonionic and anionic surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
5 |
29 |
24
|
Abstract
Gliomas are primary central nervous system tumors that arise from astrocytes, oligodendrocytes or their precursors. Gliomas can be classified into several groups according to their histologic characteristics, the most malignant of the gliomas is glioblastoma multiforme. In contrast to the long-standing and well-defined histopathology, the underlying molecular and genetic bases for gliomas are only just emerging. Many genetic alterations have been identified in human gliomas, however, establishing unequivocal correlation between these genetic alterations and gliomagenesis requires accurate animal models for this disease. Here we are reviewing the existing animal models for gliomas with different strategies and our current knowledge on the important issues about this disease, such as activation of signal transduction pathways, disruption of cell cycle arrest pathways, cell-of-origin of gliomas, and therapeutic strategies.
Collapse
|
Review |
24 |
28 |
25
|
Baker J, Brown K, Rajendiran E, Yip A, DeCoffe D, Dai C, Molcan E, Chittick SA, Ghosh S, Mahmoud S, Gibson DL. Medicinal lavender modulates the enteric microbiota to protect against Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2012; 303:G825-36. [PMID: 22821949 DOI: 10.1152/ajpgi.00327.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease, inclusive of Crohn's disease and ulcerative colitis, consists of immunologically mediated disorders involving the microbiota in the gastrointestinal tract. Lavender oil is a traditional medicine used to relieve many gastrointestinal disorders. The goal of this study was to examine the therapeutic effects of the essential oil obtained from a novel lavender cultivar, Lavandula×intermedia cultivar Okanagan lavender (OLEO), in a mouse model of acute colitis caused by Citrobacter rodentium. In colitic mice, oral gavage with OLEO resulted in less severe disease, including decreased morbidity and mortality, reduced intestinal tissue damage, and decreased infiltration of neutrophils and macrophages, with reduced levels of TNF-α, IFN-γ, IL-22, macrophage inflammatory protein-2α, and inducible nitric oxide synthase expression. This was associated with increased levels of regulatory T cell populations compared with untreated colitic mice. Recently, we demonstrated that the composition of the enteric microbiota affects susceptibility to C. rodentium-induced colitis. Here, we found that oral administration of OLEO induced microbiota enriched with members of the phylum Firmicutes, including segmented filamentous bacteria, which are known to protect against the damaging effects of C. rodentium. Additionally, during infection, OLEO treatment promoted the maintenance of microbiota loads, with specific increases in Firmicutes bacteria and decreases in γ-Proteobacteria. We observed that Firmicutes bacteria were intimately associated with the apical region of the intestinal epithelial cells during infection, suggesting that their protective effect was through contact with the gut wall. Finally, we show that OLEO inhibited C. rodentium growth and adherence to Caco-2 cells, primarily through the activities of 1,8-cineole and borneol. These results indicate that while OLEO promoted Firmicutes populations, it also controlled pathogen load through antimicrobial activity. Overall, our results reveal that OLEO can protect against colitis through the microbial-immunity nexus and that a pharmacological agent, in this case OLEO, alters the normal enteric microbiota.
Collapse
|
|
13 |
25 |