1
|
Ye Y, Dang D, Zhang J, Viet CT, Lam DK, Dolan JC, Gibbs JL, Schmidt BL. Nerve growth factor links oral cancer progression, pain, and cachexia. Mol Cancer Ther 2011; 10:1667-76. [PMID: 21750223 DOI: 10.1158/1535-7163.mct-11-0123] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancers often cause excruciating pain and rapid weight loss, severely reducing quality of life in cancer patients. Cancer-induced pain and cachexia are often studied and treated independently, although both symptoms are strongly linked with chronic inflammation and sustained production of proinflammatory cytokines. Because nerve growth factor (NGF) plays a cardinal role in inflammation and pain, and because it interacts with multiple proinflammatory cytokines, we hypothesized that NGF acts as a key endogenous molecule involved in the orchestration of cancer-related inflammation. NGF might be a molecule common to the mechanisms responsible for clinically distinctive cancer symptoms such as pain and cachexia as well as cancer progression. Here we reported that NGF was highly elevated in human oral squamous cell carcinoma tumors and cell cultures. Using two validated mouse cancer models, we further showed that NGF blockade decreased tumor proliferation, nociception, and weight loss by orchestrating proinflammatory cytokines and leptin production. NGF blockade also decreased expression levels of nociceptive receptors TRPV1, TRPA1, and PAR-2. Together, these results identified NGF as a common link among proliferation, pain, and cachexia in oral cancer. Anti-NGF could be an important mechanism-based therapy for oral cancer and its related symptoms.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Cachexia/etiology
- Carcinoma, Squamous Cell/complications
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mouth Neoplasms/complications
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Nerve Growth Factor/antagonists & inhibitors
- Nerve Growth Factor/metabolism
- Pain/drug therapy
- Pain/etiology
- Pain Measurement/drug effects
- RNA, Messenger/metabolism
- Receptor, PAR-2/metabolism
- Staining and Labeling
- TRPV Cation Channels/metabolism
- Transient Receptor Potential Channels/metabolism
- Weight Loss/drug effects
- Xenograft Model Antitumor Assays
Collapse
|
Research Support, N.I.H., Extramural |
14 |
117 |
2
|
Viet CT, Schmidt BL. Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol Biomarkers Prev 2008; 17:3603-11. [PMID: 19064577 DOI: 10.1158/1055-9965.epi-08-0507] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To perform methylation array analysis of 807 cancer-associated genes using tissue and saliva of oral squamous cell carcinoma (OSCC) patients with the objective of identifying highly methylated gene loci that hold diagnostic and predictive value as a biomarker. EXPERIMENTAL DESIGN We did the methylation array on DNA extracted from preoperative saliva, postoperative saliva, and tissue of 13 patients with OSCC, and saliva of 10 normal subjects. We identified sites that were highly methylated in the tissue and preoperative saliva samples but not methylated in the postoperative saliva samples or in normal subjects. RESULTS High quality DNA was obtained and the methylation array was successfully run on all samples. We identified significant differences in methylation patterns between the preoperative and postoperative saliva from cancer patients. We established a gene classifier consisting of 41 gene loci from 34 genes that showed methylation in preoperative saliva and tissue but were not methylated in postoperative saliva or normal subjects. Gene panels of 4 to 10 genes were constructed from genes in the classifier. The panels had a sensitivity of 62% to 77% and a specificity of 83% to 100% for OSCC. CONCLUSIONS We report methylation array analysis of 807 cancer-associated genes in the saliva of oral cancer patients before and after oral cancer resection. Our methylation biomarker approach shows the proof of principle that methylation array analysis of saliva can produce a set of cancer-related genes that are specific and can be used as a composite biomarker for the early detection of oral cancer.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
78 |
3
|
Viet CT, Schmidt BL. Biologic mechanisms of oral cancer pain and implications for clinical therapy. J Dent Res 2011; 91:447-53. [PMID: 21972258 DOI: 10.1177/0022034511424156] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer pain is an ever-present public health concern. With innovations in treatment, cancer patients are surviving longer, but uncontrollable pain creates a poor quality of life for these patients. Oral cancer is unique in that it causes intense pain at the primary site and significantly impairs speech, swallowing, and masticatory functions. We propose that oral cancer pain has underlying biologic mechanisms that are generated within the cancer microenvironment. A comprehensive understanding of key mediators that control cross-talk between the cancer and peripheral nervous system, and possible interventions, underlies effective cancer pain management. The purpose of this review is to explore the current studies on oral cancer pain and their implications in clinical management for cancer pain in general. Furthermore, we will explore the endogenous opioid systems and novel cancer pain therapeutics that target these systems, which could solve the issue of opiate tolerance and improve quality of life in oral cancer patients.
Collapse
|
Review |
14 |
76 |
4
|
Peterson DE, O'Shaughnessy JA, Rugo HS, Elad S, Schubert MM, Viet CT, Campbell-Baird C, Hronek J, Seery V, Divers J, Glaspy J, Schmidt BL, Meiller TF. Oral mucosal injury caused by mammalian target of rapamycin inhibitors: emerging perspectives on pathobiology and impact on clinical practice. Cancer Med 2016; 5:1897-907. [PMID: 27334013 PMCID: PMC4971919 DOI: 10.1002/cam4.761] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years oral mucosal injury has been increasingly recognized as an important toxicity associated with mammalian target of rapamycin (mTOR) inhibitors, including in patients with breast cancer who are receiving everolimus. This review addresses the state-of-the-science regarding mTOR inhibitor-associated stomatitis (mIAS), and delineates its clinical characteristics and management. Given the clinically impactful pain associated with mIAS, this review also specifically highlights new research focusing on the study of the molecular basis of pain. The incidence of mIAS varies widely (2-78%). As reported across multiple mTOR inhibitor clinical trials, grade 3/4 toxicity occurs in up to 9% of patients. Managing mTOR-associated oral lesions with topical oral, intralesional, and/or systemic steroids can be beneficial, in contrast to the lack of evidence supporting steroid treatment of oral mucositis caused by high-dose chemotherapy or radiation. However, steroid management is not uniformly efficacious in all patients receiving mTOR inhibitors. Furthermore, technology does not presently exist to permit clinicians to predict a priori which of their patients will develop these lesions. There thus remains a strategic need to define the pathobiology of mIAS, the molecular basis of pain, and risk prediction relative to development of the clinical lesion. This knowledge could lead to novel future interventions designed to more effectively prevent mIAS and improve pain management if clinically significant mIAS lesions develop.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
47 |
5
|
Ye Y, Scheff NN, Bernabé D, Salvo E, Ono K, Liu C, Veeramachaneni R, Viet CT, Viet DT, Dolan JC, Schmidt BL. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology 2018; 139:182-193. [PMID: 30009833 DOI: 10.1016/j.neuropharm.2018.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/23/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022]
Abstract
Oral cancer is often painful and lethal. Oral cancer progression and pain may result from shared pathways that involve unresolved inflammation and elevated levels of pro-inflammatory cytokines. Resolvin D-series (RvDs) are endogenous lipid mediators derived from omega-3 fatty acids that exhibit pro-resolution and anti-inflammatory actions. These mediators have recently emerged as a novel class of therapeutics for diseases that involve inflammation; the specific roles of RvDs in oral cancer and associated pain are not defined. The present study investigated the potential of RvDs (RvD1 and RvD2) to treat oral cancer and alleviate oral cancer pain. We found down-regulated mRNA levels of GPR18 and GPR32 (which code for receptors RvD1 and RvD2) in oral cancer cells. Both RvD1 and RvD2 inhibited oral cancer proliferation in vitro. Using two validated mouse oral squamous cell carcinoma xenograft models, we found that RvD2, the more potent anti-inflammatory lipid mediator, significantly reduced tumor size. The mechanism of this action might involve suppression of IL-6, C-X-C motif chemokine 10 (CXCL10), and reduction of tumor necrosis. RvD2 generated short-lasting analgesia in xenograft cancer models, which coincided with decreased neutrophil infiltration and myeloperoxidase activity. Using a cancer supernatant model, we demonstrated that RvD2 reduced cancer-derived cytokines/chemokines (TNF-α, IL-6, CXCL10, and MCP-1), cancer mediator-induced CD11b+Ly6G- myeloid cells, and nociception. We infer from our results that manipulation of the endogenous pro-resolution pathway might provide a novel approach to improve oral cancer and cancer pain treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
45 |
6
|
Viet CT, Ye Y, Dang D, Lam DK, Achdjian S, Zhang J, Schmidt BL. Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain. Pain 2011; 152:2323-2332. [PMID: 21782343 DOI: 10.1016/j.pain.2011.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 01/09/2023]
Abstract
Endothelin-1 is a vasoactive peptide that activates both the endothelin A (ET(A)) and endothelin B (ET(B)) receptors, and is secreted in high concentrations in many different cancer environments. Although ET(A) receptor activation has an established nociceptive effect in cancer models, the role of ET(B) receptors on cancer pain is controversial. EDNRB, the gene encoding the ET(B) receptor, has been shown to be hypermethylated and transcriptionally silenced in many different cancers. In this study we demonstrate that EDNRB is heavily methylated in human oral squamous cell carcinoma lesions, which are painful, but not methylated in human oral dysplasia lesions, which are typically not painful. ET(B) mRNA expression is reduced in the human oral squamous cell carcinoma lesions as a consequence of EDNRB hypermethylation. Using a mouse cancer pain model, we show that ET(B) receptor re-expression attenuates cancer-induced pain. These findings identify EDNRB methylation as a novel regulatory mechanism in cancer-induced pain and suggest that demethylation therapy targeted at the cancer microenvironment has the potential to thwart pain-producing mechanisms at the source, thus freeing patients of systemic analgesic toxicity.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
44 |
7
|
|
|
15 |
41 |
8
|
Ye Y, Ono K, Bernabé DG, Viet CT, Pickering V, Dolan JC, Hardt M, Ford AP, Schmidt BL. Adenosine triphosphate drives head and neck cancer pain through P2X2/3 heterotrimers. Acta Neuropathol Commun 2014; 2:62. [PMID: 24903857 PMCID: PMC4229781 DOI: 10.1186/2051-5960-2-62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/15/2022] Open
Abstract
Introduction Cancer pain creates a poor quality of life and decreases survival. The basic neurobiology of cancer pain is poorly understood. Adenosine triphosphate (ATP) and the ATP ionotropic receptor subunits, P2X2 and P2X3, mediate cancer pain in animal models; however, it is unknown whether this mechanism operates in human, and if so, what the relative contribution of P2X2- and P2X3-containing trimeric channels to cancer pain is. Here, we studied head and neck squamous cell carcinoma (HNSCC), which causes the highest level of function-induced pain relative to other types of cancer. Results We show that the human HNSCC tissues contain significantly increased levels of ATP compared to the matched normal tissues. The high levels of ATP are secreted by the cancer and positively correlate with self-reported function-induced pain in patients. The human HNSCC microenvironment is densely innervated by nerve fibers expressing both P2X2 and P2X3 subunits. In animal models of HNSCC we showed that ATP in the cancer microenvironment likely heightens pain perception through the P2X2/3 trimeric receptors. Nerve growth factor (NGF), another cancer-derived pain mediator found in both human and mouse HNSCC, induces P2X2 and P2X3 hypersensitivity and increases subunit expression in murine trigeminal ganglion (TG) neurons. Conclusions These data identify a key peripheral mechanism in cancer pain and highlight the clinical potential of specifically targeting nociceptors expressing both P2X2 and P2X3 subunits (e.g., P2X2/3 heterotrimers) to alleviate cancer pain. Electronic supplementary material The online version of this article (doi:10.1186/2051-5960-2-62) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
41 |
9
|
Viet CT, Corby PM, Akinwande A, Schmidt BL. Review of preclinical studies on treatment of mucositis and associated pain. J Dent Res 2014; 93:868-75. [PMID: 24943201 DOI: 10.1177/0022034514540174] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral mucositis is a significant problem in cancer patients treated with radiation or chemotherapy, often hindering definitive cancer treatment. For patients with oral mucositis, pain is the most distressing symptom, leading to loss of orofacial function and poor quality of life. While oral mucositis has been well-described, its pathophysiology is poorly understood. Oral health professionals treating patients with mucositis have almost no effective therapies to treat or prevent oral mucositis. The purpose of this review is to (1) describe the current preclinical models of oral mucositis and their contribution to the understanding of mucositis pathophysiology, (2) explore preclinical studies on therapies targeting mucositis and discuss the clinical trials that have resulted from these preclinical studies, and (3) describe the proposed pathophysiology of oral mucositis pain and preclinical modeling of oral mucositis pain.
Collapse
|
Review |
11 |
40 |
10
|
Viet CT, Dang D, Ye Y, Ono K, Campbell RR, Schmidt BL. Demethylating drugs as novel analgesics for cancer pain. Clin Cancer Res 2014; 20:4882-4893. [PMID: 24963050 DOI: 10.1158/1078-0432.ccr-14-0901] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE In this study, we evaluated the analgesic potential of demethylating drugs on oral cancer pain. Although demethylating drugs could affect expression of many genes, we focused on the mu-opioid receptor (OPRM1) gene pathway, because of its role in pain processing. We determined the antinociceptive effect of OPRM1 re-expression in a mouse oral cancer model. EXPERIMENTAL DESIGN Using a mouse oral cancer model, we determined whether demethylating drugs produced antinociception through re-expression of OPRM1. We then re-expressed OPRM1 with adenoviral transduction and determined if, and by what mechanism, OPRM1 re-expression produced antinociception. To determine the clinical significance of OPRM1 on cancer pain, we quantified OPRM1 methylation in painful cancer tissues and nonpainful contralateral normal tissues of patients with oral cancer, and nonpainful dysplastic tissues of patients with oral dysplasia. RESULTS We demonstrated that OPRM1 was methylated in cancer tissue, but not normal tissue, of patients with oral cancer, and not in dysplastic tissues from patients with oral dysplasia. Treatment with demethylating drugs resulted in mechanical and thermal antinociception in the mouse cancer model. This behavioral change correlated with OPRM1 re-expression in the cancer and associated neurons. Similarly, adenoviral-mediated OPRM1 re-expression on cancer cells resulted in naloxone-reversible antinociception. OPRM1 re-expression on oral cancer cells in vitro increased β-endorphin secretion from the cancer, and decreased activation of neurons that were treated with cancer supernatant. CONCLUSION Our study establishes the regulatory role of methylation in cancer pain. OPRM1 re-expression in cancer cells produces antinociception through cancer-mediated endogenous opioid secretion. Demethylating drugs have an analgesic effect that involves OPRM1.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
31 |
11
|
Ye Y, Dang D, Viet CT, Dolan JC, Schmidt BL. Analgesia targeting IB4-positive neurons in cancer-induced mechanical hypersensitivity. THE JOURNAL OF PAIN 2012; 13:524-31. [PMID: 22483679 DOI: 10.1016/j.jpain.2012.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/02/2012] [Accepted: 01/16/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cancer patients often suffer from pain and most will be prescribed μ-opioids. μ-opioids are not satisfactory in treating cancer pain and are associated with multiple debilitating side effects. Recent studies show that μ and δ opioid receptors are separately expressed on IB4 (-) and IB4 (+) neurons, which control thermal and mechanical pain, respectively. In this study we investigated IB4 (+) and IB4 (-) neurons in mechanical and thermal hypersensitivity in an orthotopic mouse oral cancer model. We used a δ opioid receptor agonist and a P2X(3) antagonist to target IB4 (+) neurons and to demonstrate that this subset plays a key role in cancer-induced mechanical allodynia, but not in thermal hyperalgesia. Moreover, selective removal of IB4 (+) neurons using IB4-saporin impacts cancer-induced mechanical but not thermal hypersensitivity. Our results demonstrate that peripherally administered pharmacological agents targeting IB4 (+) neurons, such as a selective δ-opioid receptor agonist or P2X(3) antagonist, might be useful in treating oral cancer pain. PERSPECTIVE To clarify the mechanisms of oral cancer pain, we examined the differential role of IB4 (+) and IB4 (-) neurons. Characterization of these 2 subsets of putative nociceptors is important for further development of effective clinical cancer pain relief.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
29 |
12
|
Viet CT, Dang D, Aouizerat BE, Miaskowski C, Ye Y, Viet DT, Ono K, Schmidt BL. OPRM1 Methylation Contributes to Opioid Tolerance in Cancer Patients. THE JOURNAL OF PAIN 2017; 18:1046-1059. [PMID: 28456745 DOI: 10.1016/j.jpain.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
Abstract
Cancer patients in pain require high doses of opioids and quickly become opioid-tolerant. Previous studies have shown that chronic cancer pain as well as high-dose opioid use lead to mu-opioid receptor downregulation. In this study we explore downregulation of the mu-opioid receptor gene (OPRM1), as a mechanism for opioid tolerance in the setting of opioid use for cancer pain. We demonstrate in a cohort of 84 cancer patients that high-dose opioid use correlates with OPRM1 hypermethylation in peripheral leukocytes of these patients. We then reverse-translate our clinical findings by creating a mouse cancer pain model; we create opioid tolerance in the mouse cancer model to mimic opioid tolerance in the cancer patients. Using this model we determine the functional significance of OPRM1 methylation on cancer pain and opioid tolerance. We focus on 2 main cells within the cancer microenvironment: the cancer cell and the neuron. We show that targeted re-expression of mu-opioid receptor on cancer cells inhibits mechanical and thermal hypersensitivity, and prevents opioid tolerance, in the mouse model. The resultant analgesia and protection against opioid tolerance are likely due to preservation of mu-opioid receptor expression on the cancer-associated neurons. PERSPECTIVE We demonstrate that epigenetic regulation of OPRM1 contributes to opioid tolerance in cancer patients, and that targeted gene therapy could treat cancer-induced nociception and opioid tolerance in a mouse cancer model.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
18 |
13
|
Ye Y, Jensen DD, Viet CT, Pan HL, Campana WM, Amit M, Boada MD. Advances in Head and Neck Cancer Pain. J Dent Res 2022; 101:1025-1033. [PMID: 35416080 PMCID: PMC9305840 DOI: 10.1177/00220345221088527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) affects over 890,000 people annually worldwide and has a mortality rate of 50%. Aside from poor survival, HNC pain impairs eating, drinking, and talking in patients, severely reducing quality of life. Different pain phenotype in patients (allodynia, hyperalgesia, and spontaneous pain) results from a combination of anatomical, histopathological, and molecular differences between cancers. Poor pathologic features (e.g., perineural invasion, lymph node metastasis) are associated with increased pain. The use of syngeneic/immunocompetent animal models, as well as a new mouse model of perineural invasion, provides novel insights into the pathobiology of HNC pain. Glial and immune modulation of the tumor microenvironment affect not only cancer progression but also pain signaling. For example, Schwann cells promote cancer cell proliferation, migration, and secretion of nociceptive mediators, whereas neutrophils are implicated in sex differences in pain in animal models of HNC. Emerging evidence supports the existence of a functional loop of cross-activation between the tumor microenvironment and peripheral nerves, mediated by a molecular exchange of bioactive contents (pronociceptive and protumorigenic) via paracrine and autocrine signaling. Brain-derived neurotrophic factor, tumor necrosis factor α, legumain, cathepsin S, and A disintegrin and metalloprotease 17 expressed in the HNC microenvironment have recently been shown to promote HNC pain, further highlighting the importance of proinflammatory cytokines, neurotrophic factors, and proteases in mediating HNC-associated pain. Pronociceptive mediators, together with nerve injury, cause nociceptor hypersensitivity. Oncogenic, pronociceptive mediators packaged in cancer cell-derived exosomes also induce nociception in mice. In addition to increased production of pronociceptive mediators, HNC is accompanied by a dampened endogenous antinociception system (e.g., downregulation of resolvins and µ-opioid receptor expression). Resolvin treatment or gene delivery of µ-opioid receptors provides pain relief in preclinical HNC models. Collectively, recent studies suggest that pain and HNC progression share converging mechanisms that can be targeted for cancer treatment and pain management.
Collapse
|
|
3 |
17 |
14
|
Ono K, Ye Y, Viet CT, Dang D, Schmidt BL. TRPV1 expression level in isolectin B₄-positive neurons contributes to mouse strain difference in cutaneous thermal nociceptive sensitivity. J Neurophysiol 2015; 113:3345-55. [PMID: 25787958 DOI: 10.1152/jn.00973.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Differential thermal nociception across inbred mouse strains has genetic determinants. Thermal nociception is largely attributed to the heat/capsaicin receptor transient receptor potential vanilloid 1 (TRPV1); however, the contribution of this channel to the genetics of thermal nociception has not been revealed. In this study we compared TRPV1 expression levels and electrophysiological properties in primary sensory neurons and thermal nociceptive behaviors between two (C57BL/6 and BALB/c) inbred mouse strains. Using immunofluorescence and patch-clamp physiology methods, we demonstrated that TRPV1 expression was significantly higher in isolectin B4 (IB4)-positive trigeminal sensory neurons of C57BL/6 relative to BALB/c; the expression in IB4-negative neurons was similar between the strains. Furthermore, using electrophysiological cell classification (current signature method), we showed differences between the two strains in capsaicin sensitivity in IB4-positive neuronal cell types 2 and 13, which were previously reported as skin nociceptors. Otherwise electrophysiological membrane properties of the classified cell types were similar in the two mouse strains. In publicly available nocifensive behavior data and our own behavior data from the using the two mouse strains, C57BL/6 exhibited higher sensitivity to heat stimulation than BALB/c, independent of sex and anatomical location of thermal testing (the tail, hind paw, and whisker pad). The TRPV1-selective antagonist JNJ-17203212 inhibited thermal nociception in both strains; however, removing IB4-positive trigeminal sensory neurons with IB4-conjugated saporin inhibited thermal nociception on the whisker pad in C57BL/6 but not in BALB/c. These results suggest that TRPV1 expression levels in IB4-positive type 2 and 13 neurons contributed to differential thermal nociception in skin of C57BL/6 compared with BALB/c.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
15 |
15
|
Viet CT, Yu G, Asam K, Thomas CM, Yoon AJ, Wongworawat YC, Haghighiabyaneh M, Kilkuts CA, McGue CM, Couey MA, Callahan NF, Doan C, Walker PC, Nguyen K, Kidd SC, Lee SC, Grandhi A, Cheng AC, Patel AA, Philipone E, Ricks OL, Allen CT, Aouizerat BE. The REASON score: an epigenetic and clinicopathologic score to predict risk of poor survival in patients with early stage oral squamous cell carcinoma. Biomark Res 2021; 9:42. [PMID: 34090518 PMCID: PMC8178935 DOI: 10.1186/s40364-021-00292-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a capricious cancer with poor survival rates, even for early-stage patients. There is a pressing need to develop more precise risk assessment methods to appropriately tailor clinical treatment. Genome-wide association studies have not produced a viable biomarker. However, these studies are limited by using heterogeneous cohorts, not focusing on methylation although OSCC is a heavily epigenetically-regulated cancer, and not combining molecular data with clinicopathologic data for risk prediction. In this study we focused on early-stage (I/II) OSCC and created a risk score called the REASON score, which combines clinicopathologic characteristics with a 12-gene methylation signature, to predict the risk of 5-year mortality. METHODS We combined data from an internal cohort (n = 515) and The Cancer Genome Atlas (TCGA) cohort (n = 58). We collected clinicopathologic data from both cohorts to derive the non-molecular portion of the REASON score. We then analyzed the TCGA cohort DNA methylation data to derive the molecular portion of the risk score. RESULTS 5-year disease specific survival was 63% for the internal cohort and 86% for the TCGA cohort. The clinicopathologic features with the highest predictive ability among the two the cohorts were age, race, sex, tobacco use, alcohol use, histologic grade, stage, perineural invasion (PNI), lymphovascular invasion (LVI), and margin status. This panel of 10 non-molecular features predicted 5-year mortality risk with a concordance (c)-index = 0.67. Our molecular panel consisted of a 12-gene methylation signature (i.e., HORMAD2, MYLK, GPR133, SOX8, TRPA1, ABCA2, HGFAC, MCPH1, WDR86, CACNA1H, RNF216, CCNJL), which had the most significant differential methylation between patients who survived vs. died by 5 years. All 12 genes have already been linked to survival in other cancers. Of the genes, only SOX8 was previously associated with OSCC; our study was the first to link the remaining 11 genes to OSCC survival. The combined molecular and non-molecular panel formed the REASON score, which predicted risk of death with a c-index = 0.915. CONCLUSIONS The REASON score is a promising biomarker to predict risk of mortality in early-stage OSCC patients. Validation of the REASON score in a larger independent cohort is warranted.
Collapse
|
research-article |
4 |
15 |
16
|
Ye Y, Bae SS, Viet CT, Troob S, Bernabé D, Schmidt BL. IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma. Behav Brain Funct 2014; 10:5. [PMID: 24524628 PMCID: PMC3942073 DOI: 10.1186/1744-9081-10-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/30/2014] [Indexed: 11/20/2022] Open
Abstract
Background Cancer pain severely limits function and significantly reduces quality of life. Subtypes of sensory neurons involved in cancer pain and proliferation are not clear. Methods We produced a cancer model by inoculating human oral squamous cell carcinoma (SCC) cells into the hind paw of athymic mice. We quantified mechanical and thermal nociception using the paw withdrawal assays. Neurotoxins isolectin B4-saporin (IB4-SAP), or capsaicin was injected intrathecally to selectively ablate IB4(+) neurons or TRPV1(+) neurons, respectively. JNJ-17203212, a TRPV1 antagonist, was also injected intrathecally. TRPV1 protein expression in the spinal cord was quantified with western blot. Paw volume was measured by a plethysmometer and was used as an index for tumor size. Ki-67 immunostaining in mouse paw sections was performed to evaluate cancer proliferation in situ. Results We showed that mice with SCC exhibited both mechanical and thermal hypersensitivity. Selective ablation of IB4(+) neurons by IB4-SAP decreased mechanical allodynia in mice with SCC. Selective ablation of TRPV1(+) neurons by intrathecal capsaicin injection, or TRPV1 antagonism by JNJ-17203212 in the IB4-SAP treated mice completely reversed SCC-induced thermal hyperalgesia, without affecting mechanical allodynia. Furthermore, TRPV1 protein expression was increased in the spinal cord of SCC mice compared to normal mice. Neither removal of IB4(+) or TRPV1(+) neurons affected SCC proliferation. Conclusions We show in a mouse model that IB4(+) neurons play an important role in cancer-induced mechanical allodynia, while TRPV1 mediates cancer-induced thermal hyperalgesia. Characterization of the sensory fiber subtypes responsible for cancer pain could lead to the development of targeted therapeutics.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
14 |
17
|
Convertino M, Samoshkin A, Viet CT, Gauthier J, Li Fraine SP, Sharif-Naeini R, Schmidt BL, Maixner W, Diatchenko L, Dokholyan NV. Differential Regulation of 6- and 7-Transmembrane Helix Variants of μ-Opioid Receptor in Response to Morphine Stimulation. PLoS One 2015; 10:e0142826. [PMID: 26554831 PMCID: PMC4640872 DOI: 10.1371/journal.pone.0142826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
The pharmacological effect of opioids originates, at the cellular level, by their interaction with the μ-opioid receptor (mOR) resulting in the regulation of voltage-gated Ca2+ channels and inwardly rectifying K+ channels that ultimately modulate the synaptic transmission. Recently, an alternative six trans-membrane helix isoform of mOR, (6TM-mOR) has been identified, but its function and signaling are still largely unknown. Here, we present the structural and functional mechanisms of 6TM-mOR signaling activity upon binding to morphine. Our data suggest that despite the similarity of binding modes of the alternative 6TM-mOR and the dominant seven trans-membrane helix variant (7TM-mOR), the interaction with morphine generates different dynamic responses in the two receptors, thus, promoting the activation of different mOR-specific signaling pathways. We characterize a series of 6TM-mOR-specific cellular responses, and observed that they are significantly different from those for 7TM-mOR. Morphine stimulation of 6TM-mOR does not promote a cellular cAMP response, while it increases the intracellular Ca2+ concentration and reduces the cellular K+ conductance. Our findings indicate that 6TM-mOR has a unique contribution to the cellular opioid responses. Therefore, it should be considered as a relevant target for the development of novel pharmacological tools and medical protocols involving the use of opioids.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
13 |
18
|
Viet CT, Dierks EJ, Cheng AC, Patel AA, Chang SC, Couey MA, Watters AL, Hoang T, Xiao HD, Crittenden MR, Leidner RS, Seung SK, Young KH, Bell RB. Transoral robotic surgery and neck dissection for HPV-positive oropharyngeal carcinoma: Importance of nodal count in survival. Oral Oncol 2020; 109:104770. [PMID: 32599498 DOI: 10.1016/j.oraloncology.2020.104770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND In this study we determine the survival in patients with HPV-positive oropharyngeal carcinoma treated with transoral robotic surgery (TORS), neck dissection and risk-adapted adjuvant therapy. METHODS We retrospectively identified 122 patients with HPV-positive oropharyngeal carcinoma treated with TORS and neck dissection between 2011 and 2018. Survival probability was calculated. We determined the effect of the type of neck dissection performed (modified radical neck dissection-MRND vs. selective neck dissection - SND), extranodal extension (ENE), margin status, and presence of ≥ 5 metastatic nodes on survival. RESULTS Our patient population had a five-year overall survival of 91.0% (95% C.I. 85-97%). The five-year probability of recurrence or cancer-associated death was 0.0977 (95% C.I. 0.0927-0.1027). The five-year probability of cancer-associated death was 0.0528 (95% C.I. 0.048-0.0570). All patients who died of their disease had distant metastasis. Our PEG dependence rate was 0%. Patients with ENE and positive margins who underwent adjuvant chemoradiation did not have worse survival. Presence of ≥ 5 metastatic nodes portended worse survival after controlling for age, positive ENE and margins. Low yield (<18 nodes) on neck dissection worsened DFS on multivariable analysis. Furthermore, patients who underwent SND did not have worse OS than those who underwent MRND. CONCLUSION Our study demonstrates that surgery could be simplified by performing TORS with SND rather than MRND. The one true poor prognostic factor in HPV-positive oropharyngeal carcinoma patients who undergo surgery is high nodal burden. Patients with high nodal burden are much more likely to die from their disease.
Collapse
|
|
5 |
11 |
19
|
Ono K, Viet CT, Ye Y, Dang D, Hitomi S, Toyono T, Inenaga K, Dolan JC, Schmidt BL. Cutaneous pigmentation modulates skin sensitivity via tyrosinase-dependent dopaminergic signalling. Sci Rep 2017; 7:9181. [PMID: 28835637 PMCID: PMC5569050 DOI: 10.1038/s41598-017-09682-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
We propose a new mechanism of sensory modulation through cutaneous dopaminergic signalling. We hypothesize that dopaminergic signalling contributes to differential cutaneous sensitivity in darker versus lighter pigmented humans and mouse strains. We show that thermal and mechanical cutaneous sensitivity is pigmentation dependent. Meta-analyses in humans and mice, along with our own mouse behavioural studies, reveal higher thermal sensitivity in pigmented skin relative to less-pigmented or albino skin. We show that dopamine from melanocytes activates the D1-like dopamine receptor on primary sensory neurons. Dopaminergic activation increases expression of the heat-sensitive TRPV1 ion channel and reduces expression of the mechanically-sensitive Piezo2 channel; thermal threshold is lower and mechanical threshold is higher in pigmented skin.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
10 |
20
|
Doan C, Aouizerat BE, Ye Y, Dang D, Asam K, Bhattacharya A, Howard T, Patel YK, Viet DT, Figueroa JD, Zhong JF, Thomas CM, Morlandt AB, Yu G, Callahan NF, Allen CT, Grandhi A, Herford AS, Walker PC, Nguyen K, Kidd SC, Lee SC, Inman JC, Slater JM, Viet CT. Neurotrophin Pathway Receptors NGFR and TrkA Control Perineural Invasion, Metastasis, and Pain in Oral Cancer. Adv Biol (Weinh) 2022; 6:e2200190. [PMID: 35925599 PMCID: PMC9533666 DOI: 10.1002/adbi.202200190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Oral squamous cell carcinoma (OSCC) patients suffer from poor survival due to metastasis or locoregional recurrence, processes that are both facilitated by perineural invasion (PNI). OSCC has higher rates of PNI than other cancer subtypes, with PNI present in 80% of tumors. Despite the impact of PNI on oral cancer prognosis and pain, little is known about the genes that drive PNI, which in turn drive pain, invasion, and metastasis. In this study, clinical data, preclinical, and in vitro models are leveraged to elucidate the role of neurotrophins in OSCC metastasis, PNI, and pain. The expression data in OSCC patients with metastasis, PNI, or pain demonstrate dysregulation of neurotrophin genes. TrkA and nerve growth factor receptor (NGFR) are focused, two receptors that are activated by NGF, a neurotrophin expressed at high levels in OSCC. It is demonstrated that targeted knockdown of these two receptors inhibits proliferation and invasion in an in vitro and preclinical model of OSCC, and metastasis, PNI, and pain. It is further determined that TrkA knockdown alone inhibits thermal hyperalgesia, whereas NGFR knockdown alone inhibits mechanical allodynia. Collectively the results highlight the ability of OSCC to co-opt different components of the neurotrophin pathway in metastasis, PNI, and pain.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
6 |
21
|
Ye Y, Bernabé DG, Salvo E, Viet CT, Ono K, Dolan JC, Janal M, Aouizerat BE, Miaskowski C, Schmidt BL. Alterations in opioid inhibition cause widespread nociception but do not affect anxiety-like behavior in oral cancer mice. Neuroscience 2017; 363:50-61. [PMID: 28673713 DOI: 10.1016/j.neuroscience.2017.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023]
Abstract
Widespread pain and anxiety are commonly reported in cancer patients. We hypothesize that cancer is accompanied by attenuation of endogenous opioid-mediated inhibition, which subsequently causes widespread pain and anxiety. To test this hypothesis we used a mouse model of oral squamous cell carcinoma (SCC) in the tongue. We found that mice with tongue SCC exhibited widespread nociceptive behaviors in addition to behaviors associated with local nociception that we reported previously. Tongue SCC mice exhibited a pattern of reduced opioid receptor expression in the spinal cord; intrathecal administration of respective mu (MOR), delta (DOR), and kappa (KOR) opioid receptor agonists reduced widespread nociception in mice, except for the fail flick assay following administration of the MOR agonist. We infer from these findings that opioid receptors contribute to widespread nociception in oral cancer mice. Despite significant nociception, mice with tongue SCC did not differ from sham mice in anxiety-like behaviors as measured by the open field assay and elevated maze. No significant differences in c-Fos staining were found in anxiety-associated brain regions in cancer relative to control mice. No correlation was found between nociceptive and anxiety-like behaviors. Moreover, opioid receptor agonists did not yield a statistically significant effect on behaviors measured in the open field and elevated maze in cancer mice. Lastly, we used an acute cancer pain model (injection of cancer supernatant into the mouse tongue) to test whether adaptation to chronic pain is responsible for the absence of greater anxiety-like behavior in cancer mice. No changes in anxiety-like behavior were observed in mice with acute cancer pain.
Collapse
|
Journal Article |
8 |
6 |
22
|
Dang D, Ye Y, Aouizerat BE, Patel YK, Viet DT, Chan KC, Ono K, Doan C, Figueroa JD, Yu G, Viet CT. Targeting the endothelin axis as a therapeutic strategy for oral cancer metastasis and pain. Sci Rep 2020; 10:20832. [PMID: 33257729 PMCID: PMC7704690 DOI: 10.1038/s41598-020-77642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
Metastasis reduces survival in oral cancer patients and pain is their greatest complaint. We have shown previously that oral cancer metastasis and pain are controlled by the endothelin axis, which is a pathway comprised of the endothelin A and B receptors (ETAR and ETBR). In this study we focus on individual genes of the pathway, demonstrating that the endothelin axis genes are methylated and dysregulated in cancer tissue. Based on these findings in patients, we hypothesize that ETAR and ETBR play dichotomous roles in oral carcinogenesis and pain, such that ETAR activation and silenced ETBR expression result in increased carcinogenesis and pain. We test a treatment strategy that targets the dichotomous functions of the two receptors by inhibiting ETAR with macitentan, an ETAR antagonist approved for treatment of pulmonary hypertension, and re-expressing the ETBR gene with adenovirus transduction, and determine the treatment effect on cancer invasion (i.e., metastasis), proliferation and pain in vitro and in vivo. We demonstrate that combination treatment of macitentan and ETBR gene therapy inhibits invasion, but not proliferation, in cell culture and in a mouse model of tongue cancer. Furthermore, the treatment combination produces an antinociceptive effect through inhibition of endothelin-1 mediated neuronal activation, revealing the analgesic potential of macitentan. Our treatment approach targets a pathway shown to be dysregulated in oral cancer patients, using gene therapy and repurposing an available drug to effectively treat both oral cancer metastasis and pain in a preclinical model.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
5 |
23
|
Viet CT, Zhang X, Xu K, Yu G, Asam K, Thomas CM, Callahan NF, Doan C, Walker PC, Nguyen K, Kidd SC, Lee SC, Grandhi A, Allen CT, Young S, Melville JC, Shum JW, Viet DT, Herford AS, Roden DF, Gonzalez ML, Zhong JF, Aouizerat BE. Brush swab as a noninvasive surrogate for tissue biopsies in epigenomic profiling of oral cancer. Biomark Res 2021; 9:90. [PMID: 34930473 PMCID: PMC8686381 DOI: 10.1186/s40364-021-00349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. METHODS Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. RESULTS There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). CONCLUSIONS Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.
Collapse
|
research-article |
4 |
5 |
24
|
Callahan N, Pu JJ, Richard Su YX, Zbarsky SJD, Weyh A, Viet CT. Benefits and Controversies of Midface and Maxillary Reconstruction. Atlas Oral Maxillofac Surg Clin North Am 2024; 32:109-116. [PMID: 39059870 DOI: 10.1016/j.cxom.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
Review |
1 |
1 |
25
|
McGue CM, Mañón VA, Viet CT. Advances in Tissue Engineering and Implications for Oral and Maxillofacial Reconstruction. JOURNAL OF THE CALIFORNIA DENTAL ASSOCIATION 2021; 49:685-694. [PMID: 34887651 PMCID: PMC8653764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Reconstructive surgery in the oral and maxillofacial region poses many challenges due to the complexity of the facial skeleton and the presence of composite defects involving soft tissue, bone and nerve defects. METHODS Current methods of reconstruction include autologous grafting techniques with local or regional rotational flaps or microvascular free flaps, allografts, xenografts and prosthetic devices. RESULTS Tissue engineering therapies utilizing stem cells provide promise for enhancing the current reconstructive options. CONCLUSIONS This article is a review on tissue engineering strategies applicable to specialists who treat oral and maxillofacial defects. PRACTICAL IMPLICATIONS We review advancements in hard tissue regeneration for dental rehabilitation, soft tissue engineering, nerve regeneration and innovative strategies for reconstruction of major defects.
Collapse
|
research-article |
4 |
|