1
|
Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2000; 97:4985-90. [PMID: 10781109 PMCID: PMC18344 DOI: 10.1073/pnas.060034297] [Citation(s) in RCA: 418] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the potential of double-stranded RNA interference (RNAi) with gene activity in Arabidopsis thaliana. To construct transformation vectors that produce RNAs capable of duplex formation, gene-specific sequences in the sense and antisense orientations were linked and placed under the control of a strong viral promoter. When introduced into the genome of A. thaliana by Agrobacterium-mediated transformation, double-stranded RNA-expressing constructs corresponding to four genes, AGAMOUS (AG), CLAVATA3, APETALA1, and PERIANTHIA, caused specific and heritable genetic interference. The severity of phenotypes varied between transgenic lines. In situ hybridization revealed a correlation between a declining AG mRNA accumulation and increasingly severe phenotypes in AG (RNAi) mutants, suggesting that endogenous mRNA is the target of double-stranded RNA-mediated genetic interference. The ability to generate stably heritable RNAi and the resultant specific phenotypes allows us to selectively reduce gene function in A. thaliana.
Collapse
|
research-article |
25 |
418 |
2
|
Chuang CF, Running MP, Williams RW, Meyerowitz EM. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 1999; 13:334-44. [PMID: 9990857 PMCID: PMC316427 DOI: 10.1101/gad.13.3.334] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1998] [Accepted: 12/23/1998] [Indexed: 11/25/2022]
Abstract
Mutations in the PERIANTHIA (PAN) gene of Arabidopsis thaliana specifically transform flowers from tetramerous to largely pentamerous, which is a characteristic of flowers of ancestral plants. We have cloned the PAN gene and here we show that it encodes a member of the basic region/leucine zipper class of transcription factors. Immunohistochemical analysis shows that the encoded protein is present in the apical meristem, the floral meristem, each whorl of organ primordia, and in ovule primordia during wild-type flower development. PAN expression occurs independently of genes affecting floral meristem identity, floral meristem size, or floral organ number. The near absence of a phenotype in transgenic plants overexpressing PAN and the contrast between the broad expression of PAN and the specificity of its mutant phenotype suggest that its activity may be regulated post-translationally or by the presence of partner proteins. Based on these results and on data reported previously, we propose models for the role of PAN in the evolution of flower pattern in the mustard family.
Collapse
|
research-article |
26 |
140 |
3
|
Chuang CF, Ng SY. Functional divergence of the MAP kinase pathway. ERK1 and ERK2 activate specific transcription factors. FEBS Lett 1994; 346:229-34. [PMID: 8013639 DOI: 10.1016/0014-5793(94)00480-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Growth factor-receptor interactions at the cell surface eventually leading to the transcriptional activation of immediate early genes is mediated by the mitogen-activated protein kinase (MAP kinase/MAPK) cascade. Here we show that overexpression of extracellular signal-regulated kinase 1 (ERK1) cDNA, encoding p44mapk, results in the activation of Elk-1, the serum response factor accessory protein. We also show that overexpression of ERK2, encoding p42mapk, activates Myc, but not Elk-1. Therefore, the MAP kinase cascade diverges with at least one specific target for each MAP kinase isoform and provides a novel mechanism for differential regulation of this signaling pathway.
Collapse
|
|
31 |
62 |
4
|
Chen J, Morin O, Aubin M, Bucci MK, Chuang CF, Pouliot J. Dose-guided radiation therapy with megavoltage cone-beam CT. Br J Radiol 2006; 79 Spec No 1:S87-98. [PMID: 16980688 DOI: 10.1259/bjr/60612178] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Recent advances in fractionated external beam radiation therapy have increased our ability to deliver radiation doses that conform more tightly to the tumour volume. The steeper dose gradients delivered in these treatments make it increasingly important to set precisely the positions of the patient and the internal organs. For this reason, considerable research now focuses on methods using three-dimensional images of the patient on the treatment table to adapt either the patient position or the treatment plan, to account for variable organ locations. In this article, we briefly review the different adaptive methods being explored and discuss a proposed dose-guided radiation therapy strategy that adapts the treatment for future fractions to compensate for dosimetric errors from past fractions. The main component of this strategy is a procedure to reconstruct the dose delivered to the patient based on treatment-time portal images and pre-treatment megavoltage cone-beam computed tomography (MV CBCT) images of the patient. We describe the work to date performed to develop our dose reconstruction procedure, including the implementation of a MV CBCT system for clinical use, experiments performed to calibrate MV CBCT for electron density and to use the calibrated MV CBCT for dose calculations, and the dosimetric calibration of the portal imager. We also present an example of a reconstructed patient dose using a preliminary reconstruction program and discuss the technical challenges that remain to full implementation of dose reconstruction and dose-guided therapy.
Collapse
|
|
19 |
58 |
5
|
Chuang CS, Su HL, Cheng FC, Hsu SH, Chuang CF, Liu CS. Quantitative evaluation of motor function before and after engraftment of dopaminergic neurons in a rat model of Parkinson's disease. J Biomed Sci 2010; 17:9. [PMID: 20152049 PMCID: PMC2838763 DOI: 10.1186/1423-0127-17-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/13/2010] [Indexed: 11/29/2022] Open
Abstract
Although gait change is considered a useful indicator of severity in animal models of Parkinson's disease, systematic and extensive gait analysis in animal models of neurological deficits is not well established. The CatWalk-assisted automated gait analysis system provides a comprehensive way to assess a number of dynamic and static gait parameters simultaneously. In this study, we used the Catwalk system to investigate changes in gait parameters in adult rats with unilateral 6-OHDA-induced lesions and the rescue effect of dopaminergic neuron transplantation on gait function. Four weeks after 6-OHDA injection, the intensity and maximal area of contact were significantly decreased in the affected paws and the swing speed significantly decreased in all four paws. The relative distance between the hind paws also increased, suggesting that animals with unilateral 6-OHDA-induced lesions required all four paws to compensate for loss of balance function. At 8 weeks post-transplantation, engrafted dopaminergic neurons expressed tyrosine hydroxylase. In addition, the intensity, contact area, and swing speed of the four limbs increased and the distance between the hind paws decreased. Partial recovery of methamphetamine-induced rotational response was also noted.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
35 |
6
|
Zytkovicz A, Daftari I, Phillips TL, Chuang CF, Verhey L, Petti PL. Peripheral dose in ocular treatments with CyberKnife and Gamma Knife radiosurgery compared to proton radiotherapy. Phys Med Biol 2007; 52:5957-71. [PMID: 17881812 DOI: 10.1088/0031-9155/52/19/016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peripheral radiation can have deleterious effects on normal tissues throughout the body, including secondary cancer induction and cataractogenesis. The aim of this study is to evaluate the peripheral dose received by various regions of the body after ocular treatment delivered with the Model C Gamma Knife, proton radiotherapy with a dedicated ocular beam employing no passive-scattering system, or a CyberKnife unit before and after supplemental shielding was introduced. TLDs were used for stray gamma and x-ray dosimetry, whereas CR-39 dosimeters were used to measure neutron contamination in the proton experiments. Doses to the contralateral eye, neck, thorax and abdomen were measured on our anthropomorphic phantom for a 56 Gy treatment to a 588 mm(3) posterior ocular lesion. Gamma Knife (without collimator blocking) delivered the highest dose in the contralateral eye, with 402-2380 mSv, as compared with 118-234 mSv for CyberKnife pre-shielding, 46-255 mSv for CyberKnife post-shielding and 9-12 mSv for proton radiotherapy. Gamma Knife and post-shielding CyberKnife delivered comparable doses proximal to the treatment site, with 190 versus 196 mSv at the thyroid, whereas protons doses at these locations were less than 10 mSv. Gamma Knife doses decreased dramatically with distance from the treatment site, delivering only 13 mSv at the lower pelvis, comparable to the proton result of 4 to 7 mSv in this region. In contrast, CyberKnife delivered between 117 and 132 mSv to the lower pelvis. In conclusion, for ocular melanoma treatments, a proton beam employing no double scattering system delivers the lowest peripheral doses proximally to the contralateral eye and thyroid when compared to radiosurgery with the Model C Gamma Knife or CyberKnife. At distal locations in the pelvis, peripheral doses delivered with proton and Gamma Knife are of an order of magnitude smaller than those delivered with CyberKnife.
Collapse
|
Journal Article |
18 |
26 |
7
|
Chen ML, Yuan TT, Chuang CF, Huang YT, Chung IC, Huang WC. A Novel Enolase-1 Antibody Targets Multiple Interacting Players in the Tumor Microenvironment of Advanced Prostate Cancer. Mol Cancer Ther 2022; 21:1337-1347. [PMID: 35700013 PMCID: PMC9662882 DOI: 10.1158/1535-7163.mct-21-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/11/2021] [Accepted: 06/03/2022] [Indexed: 01/07/2023]
Abstract
Prostate cancer is one of the most common causes of cancer death in men worldwide, and the treatment options are limited for patients with advanced stages of prostate cancer. Upon oncogenic or inflammatory stimulation, tumor cells or immune cells express cell surface enolase-1 (ENO1) as plasminogen receptor to facilitate their migration via plasmin activation. Little is known about the roles of ENO1 in prostate cancer, especially in the tumor microenvironment (TME). We hypothesized that targeting surface ENO1 with specific mAbs would exert multifactorial therapeutic potentials against prostate cancer. In vivo, we showed ENO1 mAb (HuL227) reduced the growth of subcutaneous PC-3 xenograft, monocytes recruitment, and intratumoral angiogenesis. In a PC-3 intratibial implantation model, HuL227 reduced tumor growth and osteoclast activation in the bone. To investigate the antitumor mechanism of ENO1 mAb, we found that blocking surface ENO1 significantly reduced VEGF-A-induced tube formation of endothelial cells in vitro. Furthermore, HuL227 inhibited inflammation-enhanced osteoclasts activity and the secretion of invasion-related cytokines CCL2 and TGFβ from osteoclasts. In addition, inflammation-induced migration and chemotaxis of androgen-independent prostate cancer cells were dose-dependently inhibited by HuL227. In summary, we showed that, ENO1 mAb targets multiple TME niches involved in prostate cancer progression and bone metastasis via a plasmin-related mechanism, which may provide a novel immunotherapy approach for men with advanced prostate cancer.
Collapse
|
research-article |
3 |
15 |
8
|
Lin YP, Yeh CY, Huang PY, Wang ZY, Cheng HH, Li YT, Chuang CF, Huang PC, Tang KT, Ma HP, Chang YC, Yeh SR, Chen H. A Battery-Less, Implantable Neuro-Electronic Interface for Studying the Mechanisms of Deep Brain Stimulation in Rat Models. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:98-112. [PMID: 25838526 DOI: 10.1109/tbcas.2015.2403282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although deep brain stimulation (DBS) has been a promising alternative for treating several neural disorders, the mechanisms underlying the DBS remain not fully understood. As rat models provide the advantage of recording and stimulating different disease-related regions simultaneously, this paper proposes a battery-less, implantable neuro-electronic interface suitable for studying DBS mechanisms with a freely-moving rat. The neuro-electronic interface mainly consists of a microsystem able to interact with eight different brain regions bi-directionally and simultaneously. To minimize the size of the implant, the microsystem receives power and transmits data through a single coil. In addition, particular attention is paid to the capability of recording neural activities right after each stimulation, so as to acquire information on how stimulations modulate neural activities. The microsystem has been fabricated with the standard 0.18 μm CMOS technology. The chip area is 7.74 mm (2) , and the microsystem is able to operate with a single supply voltage of 1 V. The wireless interface allows a maximum power of 10 mW to be transmitted together with either uplink or downlink data at a rate of 2 Mbps or 100 kbps, respectively. The input referred noise of recording amplifiers is 1.16 μVrms, and the stimulation voltage is tunable from 1.5 V to 4.5 V with 5-bit resolution. After the electrical functionality of the microsystem is tested, the capability of the microsystem to interface with rat brain is further examined and compared with conventional instruments. All experimental results are presented and discussed in this paper.
Collapse
|
|
9 |
14 |
9
|
Sudhyadhom A, Kirby N, Faddegon B, Chuang CF. Technical Note: Preferred dosimeter size and associated correction factors in commissioning high dose per pulse, flattening filter free x-ray beams. Med Phys 2016; 43:1507-13. [PMID: 26936734 DOI: 10.1118/1.4941691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High dose rate flattening filter free (FFF) beams pose new challenges and considerations for accurate reference and relative dosimetry. The authors report errors associated with commonly used ion chambers and introduce simple methods to mitigate them. METHODS Dosimetric errors due to (1) ion recombination effects of high dose per pulse (DPP) FFF beams and (2) volume-averaging effects of the radial profile were examined on a TrueBeam STx. Four commonly used cylindrical ion chambers spanning a range of lengths (0.29-2.3 cm) and volumes (0.016-0.6 cm(3)) were used to determine the magnitude of these effects for 6 and 10 MV unflattened x-ray beams (6XFFF and 10XFFF, respectively). Two methods were used to determine the magnitude of ion collection efficiency: (1) direct measurement of the percent depth dose (PDD) for the clinical, high DPP beam in comparison to that obtained after reducing the DPP and (2) measurement of Pion as a function of depth. Two methods were used to quantify the magnitude of volume-averaging: (1) direct measurement of volume-averaging via cross-calibration and (2) calculation of volume-averaging from radial profiles of the beam. Finally, a simple analytical expression for the radial profile volume-averaging correction factor, Prp = [OAR(0.29L)](-1), or the inverse of the off-axis ratio of dose at 0.29L, where L is the length of the chamber's sensitive volume, is introduced to mitigate the volume-averaging effect in Farmer-type chambers. RESULTS Errors in measured PDD for the clinical beams were 1.3% ± 0.07% and 1.6% ± 0.07% at 35 cm depth for the 6XFFF and 10XFFF beam, respectively, using an IBA CC13 ion chamber, due to charge recombination with a high DPP. Volume-averaging effects were 0.4% and 0.7% for the 6XFFF and 10XFFF beam, respectively, when measured with a Farmer-type chamber. For the application of TG-51, these errors combine when using a CC13 to measure the PDD and a Farmer for absolute output dosimetry for a total error of up to 2% at dmax for the 10XFFF beam. CONCLUSIONS Relative and absolute dosimetry in high DPP, unflattened x-ray beams of 10 MV or higher requires corrections for charge recombination and/or volume-averaging when dosimeters with certain geometries are used. Chambers used for PDD measurement are available that do not require a correction for charge recombination. A simple analytical expression of the correction factor Prp was introduced in this work to account for volume-averaging effects in Farmer chambers. Choice of an appropriate dosimeter coupled with application of the established correction factors Pion and Prp reduces the uncertainty in the PDD measurement and the reference dose measurement.
Collapse
|
Journal Article |
9 |
11 |
10
|
Lin YL, Lu MY, Chuang CF, Kuo Y, Lin HE, Li FA, Wang JR, Hsueh YP, Liao F. TLR7 Is Critical for Anti-Viral Humoral Immunity to EV71 Infection in the Spinal Cord. Front Immunol 2021; 11:614743. [PMID: 33679702 PMCID: PMC7935532 DOI: 10.3389/fimmu.2020.614743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/22/2020] [Indexed: 01/28/2023] Open
Abstract
Enterovirus 71 (EV71) is a positive single-stranded RNA (ssRNA) virus from the enterovirus genus of Picornaviridae family and causes diseases ranged from the mild disease of hand, foot and mouth disease (HFMD) to the severe disease of neurological involvement in young children. TLR7 is an intracellular pattern recognition receptor (PRR) recognizing viral ssRNA. In this study, we investigated the role of TLR7 in EV71 infection in mouse pups (10-12 days old) and found that wild-type (WT) and TLR7 knock-out (TLR7KO) mice infected with EV71 showed similar limb paralysis at the onset and peak of the disease, comparable loss of motor neurons, and similar levels of antiviral molecules in the spinal cord. These results suggest that TLR7 is not the absolute PRR for EV71 in the spinal cord. Interestingly, TLR7KO mice infected with EV71 exhibited significantly delayed recovery from limb paralysis compared with WT mice. TLR7KO mice infected with EV71 showed significantly decreased levels of IgM and IgG2, important antibodies for antiviral humoral immunity. Furthermore, TLR7KO mice infected with EV71 showed a decrease of germinal center B cells in the spleen compared with WT mice. Altogether, our study suggests that TLR7 plays a critical role in anti-viral humoral immunity rather than in being a PRR in the spinal cord during EV71 infection in young mice.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
4 |
11
|
Lu MY, Lin YL, Kuo Y, Chuang CF, Wang JR, Liao F. Muscle Tissue Damage and Recovery After EV71 Infection Correspond to Dynamic Macrophage Phenotypes. Front Immunol 2021; 12:648184. [PMID: 34305887 PMCID: PMC8299204 DOI: 10.3389/fimmu.2021.648184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/28/2021] [Indexed: 12/01/2022] Open
Abstract
Enterovirus 71 (EV71) is a positive single-stranded RNA virus from the enterovirus genus of the Picornaviridae family. Most young children infected with EV71 develop mild symptoms of hand, foot and mouth disease, but some develop severe symptoms with neurological involvement. Limb paralysis from EV71 infection is presumed to arise mainly from dysfunction of motor neurons in the spinal cord. However, EV71 also targets and damages skeletal muscle, which may also contribute to the debilitating symptoms. In this study, we have delineated the impacts of EV71 infection on skeletal muscle using a mouse model. Mouse pups infected with EV71 developed limb paralysis, starting at day 3 post-infection and peaking at day 5-7 post-infection. At later times, mice recovered gradually but not completely. Notably, severe disease was associated with high levels of myositis accompanied by muscle calcification and persistent motor end plate abnormalities. Interestingly, macrophages exhibited a dynamic change in phenotype, with inflammatory macrophages (CD45+CD11b+Ly6Chi) appearing in the early stage of infection and anti-inflammatory/restorative macrophages (CD45+CD11b+Ly6Clow/-) appearing in the late stage. The presence of inflammatory macrophages was associated with severe inflammation, while the restorative macrophages were associated with recovery. Altogether, we have demonstrated that EV71 infection causes myositis, muscle calcification and structural defects in motor end plates. Subsequent muscle regeneration is associated with a dynamic change in macrophage phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
3 |
12
|
Chuang CF, Wu CW, Weng Y, Hu PS, Yeh SR, Chang YC. High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex Pyramidal Tract Neurons by a Process Involving Local Glutamate, GABA and Dopamine Receptors in Hemi-Parkinsonian Rats. CHINESE J PHYSIOL 2018; 61:92-105. [PMID: 29590745 DOI: 10.4077/cjp.2018.bag561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used to treat advanced Parkinson’s disease (PD).
Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural
activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted
unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the
neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS)
upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of
hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and
STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression
in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics
resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The
number of PT neurons expressing high levels of c-Fos was significantly reduced by local application
of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric
acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor
cortex. The results indicate that the coincident activations of synapses and dopamine receptors in
the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The
implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS
on the movement disorders of PD are also discussed.
Collapse
|
Journal Article |
7 |
2 |
13
|
Huang WC, Chuang CF, Huang YT, Chung IC, Chen ML, Chuang TY, Yang XL, Chou YY, Liu CH, Chen NY, Chen CJ, Yuan TT. Monoclonal enolase-1 blocking antibody ameliorates pulmonary inflammation and fibrosis. Respir Res 2023; 24:280. [PMID: 37964270 PMCID: PMC10647181 DOI: 10.1186/s12931-023-02583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease with limited therapeutic options. The infiltration of monocytes and fibroblasts into the injured lungs is implicated in IPF. Enolase-1 (ENO1) is a cytosolic glycolytic enzyme which could translocate onto the cell surface and act as a plasminogen receptor to facilitate cell migration via plasmin activation. Our proprietary ENO1 antibody, HL217, was screened for its specific binding to ENO1 and significant inhibition of cell migration and plasmin activation (patent: US9382331B2). METHODS In this study, effects of HL217 were evaluated in vivo and in vitro for treating lung fibrosis. RESULTS Elevated ENO1 expression was found in fibrotic lungs in human and in bleomycin-treated mice. In the mouse model, HL217 reduced bleomycin-induced lung fibrosis, inflammation, body weight loss, lung weight gain, TGF-β upregulation in bronchial alveolar lavage fluid (BALF), and collagen deposition in lung. Moreover, HL217 reduced the migration of peripheral blood mononuclear cells (PBMC) and the recruitment of myeloid cells into the lungs. In vitro, HL217 significantly reduced cell-associated plasmin activation and cytokines secretion from primary human PBMC and endothelial cells. In primary human lung fibroblasts, HL217 also reduced cell migration and collagen secretion. CONCLUSIONS These findings suggest multi-faceted roles of cell surface ENO1 and a potential therapeutic approach for pulmonary fibrosis.
Collapse
|
research-article |
2 |
|
14
|
Chuang CF, Lin CW, Yeh CK. Ultrasound-triggered drug release and cytotoxicity of microbubbles with diverse drug attributes. ULTRASONICS SONOCHEMISTRY 2025; 112:107182. [PMID: 39631357 PMCID: PMC11655813 DOI: 10.1016/j.ultsonch.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Ultrasound (US)-triggered cavitation of drug-loaded microbubbles (MBs) represents a promising approach for targeted drug delivery, with substantial benefits attainable through precise control over drug release dosage and form. This study investigates Camptothecin-loaded MBs (CPT-MBs) and Doxorubicin-loaded MBs (DOX-MBs), focusing on how properties such as hydrophilicity, hydrophobicity, and charged functional groups affect their interaction with the lipid surfaces of MBs, thereby influencing the fundamental characteristics and acoustic properties of the drug-loaded MBs. In comparison to DOX-MBs, CPT-MBs showed larger MB size (2.2 ± 0.3 and 1.4 ± 0.1 μm, respectively), a 2-fold increase in drug loading, and an 18 % reduction in leakage after 2 h at 37℃. Under 1 MHz US with a 100 ms pulse repetition interval (PRI), 1000 cycles, 5-minute duration, and 550 kPa acoustic pressure, CPT-MBs undergo inertial cavitation, while DOX-MBs undergo stable cavitation. Drug particles released from these MBs under US-induced cavitation were analyzed using dynamic light scattering, NanoSight, cryo-electron microscopy, and density gradient ultracentrifugation. Results showed that CPT-MBs mainly release free CPT, while DOX-MBs release multilayered DOX-lipid aggregates. The cytotoxicity to C6 cells induced by US-triggered cavitation of these two types of MBs also differed. DOX-lipid aggregates delayed initial uptake, leading to less pronounced short-term (2 h) effects compared to the rapid release of free CPT from CPT-MBs. These findings underscore the need to optimize drug delivery strategies by fine-tuning MB composition and US parameters to control drug release kinetics and achieve the best tumoricidal outcomes.
Collapse
|
research-article |
1 |
|
15
|
Liu SH, Lee HH, Chen JJ, Chuang CF, Ng SY. Serum response element-regulated transcription in the cell cycle: possible correlation with microtubule reorganization. CELL GROWTH & DIFFERENTIATION : THE MOLECULAR BIOLOGY JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH 1994; 5:447-55. [PMID: 8043519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The transcriptional response to growth factors and other mitogenic signals is mediated by the serum response elements (SREs) located in the promoters of many immediate early genes, including the c-fos and beta-actin genes. We investigated SRE-regulated transcription in cell cycle-synchronized nuclei and found that a SRE-regulated reporter gene was transcribed actively during G1 and, surprisingly, during G2-M as well. One possible mechanism involved in the latter event is microtubule reorganization. Microtubule disassembly is mimicked by microtubule-disrupting drugs, and we found that these drugs, including colchicine, nocodazole, and vinblastine, could activate SRE-dependent reporter genes, as well as the c-fos protooncogene, in asynchronously growing cells. Taken together, our results suggested a possible relationship between cytoplasmic microtubule dynamics and cell cycle gene expression. Although the detailed molecular mechanisms of drug action are not known, protein phosphorylations may be involved, since drug-induced stimulation could be abrogated by several protein kinase inhibitors. Furthermore, the overexpression of mitogen-activated protein kinase ERK1 could superinduce the stimulation of SRE-dependent reporter gene expression by colchicine and suggests that the microtubule disassembly signal may be transduced by microtubule-associated kinases.
Collapse
|
Comparative Study |
31 |
|
16
|
Chuang CF, Phan TN, Fan CH, Vo Le TT, Yeh CK. Advancements in ultrasound-mediated drug delivery for central nervous system disorders. Expert Opin Drug Deliv 2025; 22:15-30. [PMID: 39625732 DOI: 10.1080/17425247.2024.2438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS. AREAS COVERED This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed. EXPERT OPINION FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.
Collapse
|
Review |
1 |
|