1
|
Tam JP, Lu YA, Liu CF, Shao J. Peptide synthesis using unprotected peptides through orthogonal coupling methods. Proc Natl Acad Sci U S A 1995; 92:12485-9. [PMID: 8618926 PMCID: PMC40382 DOI: 10.1073/pnas.92.26.12485] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We describe an approach to the synthesis of peptides from segments bearing no protecting groups through an orthogonal coupling method to capture the acyl segment as a thioester that then undergoes an intramolecular acyl transfer to the amine component with formation of a peptide bond. Two orthogonal coupling methods to give the covalent ester intermediate were achieved by either a thiol-thioester exchange mediated by a trialkylphosphine and an alkylthiol or a thioesterification by C alpha-thiocarboxylic acid reacting with a beta-bromo amino acid. With this approach, unprotected segments ranging from 4 to 37 residues were coupled to aqueous solution to give free peptides up to 54 residues long with high efficiency.
Collapse
|
research-article |
30 |
209 |
2
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
192 |
3
|
Liu CF, Tam JP. Peptide segment ligation strategy without use of protecting groups. Proc Natl Acad Sci U S A 1994; 91:6584-8. [PMID: 8022823 PMCID: PMC44247 DOI: 10.1073/pnas.91.14.6584] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We describe the concept and the verification of a chemical ligation approach to the synthesis of proteins using peptide segments with no protecting groups and no activation of the C-terminal alpha-carboxyl group. This approach consists of three steps: (i) aldehyde introduction, in which a masked glycolaldehyde ester is linked to the carboxyl terminus of an unprotected peptide by reverse proteolysis; (ii) ring formation, in which the unmasked aldehyde reacts with the N-terminal alpha-amino group of the second unprotected peptide containing either a cysteine or a threonine residue to form a thiazolidine or oxazolidine ring at an acidic pH; and (iii) rearrangement in which O-acyl ester linkage is transferred to N-acyl amide linkage to form a peptide bond with a pseudoproline structure at higher pH. The feasibility of this scheme was verified by a model study on small compounds and its potential was demonstrated by the synthesis of a 50-residue epidermal growth factor-like peptide containing a preformed disulfide bond.
Collapse
|
research-article |
31 |
151 |
4
|
Liu CF, Xu F, Sun JX, Ren JL, Curling S, Sun RC, Fowler P, Baird MS. Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydr Res 2006; 341:2677-87. [PMID: 16934239 DOI: 10.1016/j.carres.2006.07.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/03/2006] [Accepted: 07/13/2006] [Indexed: 11/24/2022]
Abstract
In this study, we investigated the physicochemical properties of the cellulosic preparations obtained from both untreated perennial ryegrass leaves and de-juiced leaves. It was found that treatment at 22 degrees C with 18% NaOH and 18% KOH for 2h, and 10% NaOH and 10% KOH for 16 h yielded 28.2%, 28.8%, 22.7%, 23.4%, respectively, of 'cellulose' residue from untreated ryegrass leaves and 35.7%, 36.8%, 32.8% and 34.6%, respectively, from the de-juiced leaves. For each cellulosic fraction, the glucose content was 71.6%, 69.6%, 67.8%, 66.7%, 69.7%, 68.6%, 63.9% and 61.7%, respectively. The structure of the cellulose samples was examined using FTIR and CP/MAS (13)C NMR spectroscopy and X-ray diffraction. The cellulosic preparations were free of bound lignin except for noticeable amounts of residual hemicelluloses (28.4-38.3%), and had intrinsic viscosities between 275.1 and 361.0 mL/g, along with molecular weights from 144,130 to 194,930 g/mol. This study found that the cellulose samples isolated from both de-juiced ryegrass leaves and the untreated leaves had a much lower percent crystallinity (33.0-38.6%) than that from wood-based fibres (60-70%) and had much shorter fibres (0.35-0.49 mm) than those of either cereal straws, bagasse or wood. In addition, a partial disruption of the hydrogen bonds and microfibrils may occur during the de-juicing process by mechanical activity, which results in a decreased cellulose crystallinity and fibre length. These findings are significant in relation to hydrolysing ryegrass cellulose for bio-ethanol production.
Collapse
|
|
19 |
136 |
5
|
Liu CF, Bingham N, Parker K, Yao HHC. Sex-specific roles of beta-catenin in mouse gonadal development. Hum Mol Genet 2008; 18:405-17. [PMID: 18981061 DOI: 10.1093/hmg/ddn362] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexually dimorphic development of the gonads is controlled by positive and negative regulators produced by somatic cells. Many Wnt ligands, including ones that signal via the canonical beta-catenin pathway, are expressed in fetal gonads. beta-catenin, a key transcriptional regulator of the canonical Wnt pathway and an element of the cell adhesion complex, is essential for various aspects of embryogenesis. To study the involvement of beta-catenin in sex determination, we ablated beta-catenin specifically in the SF1-positive population of somatic cells. Although beta-catenin was present in gonads of both sexes, it was necessary only for ovarian differentiation but dispensable for testis development. Loss of beta-catenin in fetal testes did not affect Sertoli cell differentiation, testis morphogenesis or masculinization of the embryos. However, we observed molecular and morphological defects in ovaries lacking beta-catenin, including formation of testis-specific coelomic vessel, appearance of androgen-producing adrenal-like cells and loss of female germ cells. These phenotypes were strikingly similar to those found in the R-spondin1 (Rspo1) and Wnt4 knockout ovaries. In the absence of beta-catenin, expression of Wnt4 was down-regulated while that of Rspo1 was not affected, placing beta-catenin as a component in between Rspo1 and Wnt4. Our results demonstrate that beta-catenin is responsible for transducing sex-specific signals in the SF1-positive somatic cell population during mouse gonadal development.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
117 |
6
|
Dieckmann T, Withers-Ward ES, Jarosinski MA, Liu CF, Chen IS, Feigon J. Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. NATURE STRUCTURAL BIOLOGY 1998; 5:1042-7. [PMID: 9846873 DOI: 10.1038/4220] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The HIV-1 protein Vpr is critical for a number of viral functions including a unique ability to arrest T-cells at a G2/M checkpoint and induce subsequent apoptosis. It has been shown to interact specifically with the second UBA (ubiquitin associated) domain found in the DNA repair protein HHR23A, a highly evolutionarily conserved protein. This domain is a commonly occurring sequence motif in some members of the ubiquitination pathway, UV excision repair proteins, and certain protein kinases. The three dimensional structure of the UBA domain, determined by NMR spectroscopy, is presented. The protein domain forms a compact three-helix bundle. One side of the protein has a hydrophobic surface that is the most likely Vpr target site.
Collapse
|
|
27 |
112 |
7
|
Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:165-76. [PMID: 21314435 DOI: 10.1089/ten.teb.2010.0662] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries.
Collapse
|
Review |
14 |
110 |
8
|
Liu CF, Samsa WE, Zhou G, Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin Cell Dev Biol 2016; 62:34-49. [PMID: 27771362 DOI: 10.1016/j.semcdb.2016.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage. Chondrocyte fate decisions and differentiated activities are controlled by numerous extrinsic and intrinsic cues, and they are implemented at the gene expression level by transcription factors. The latter are the focus of this review. Meritorious efforts from many research groups have led over the last two decades to the identification of dozens of key chondrogenic transcription factors. These regulators belong to all types of transcription factor families. Some have master roles at one or several differentiation steps. They include SOX9 and RUNX2/3. Others decisively assist or antagonize the activities of these masters. They include TWIST1, SOX5/6, and MEF2C/D. Many more have tissue-patterning roles and regulate cell survival, proliferation and the pace of cell differentiation. They include, but are not limited to, homeodomain-containing proteins and growth factor signaling mediators. We here review current knowledge of all these factors, one superclass, class, and family at a time. We then compile all knowledge into transcriptional networks. We also identify remaining gaps in knowledge and directions for future research to fill these gaps and thereby provide novel insights into cartilage disease mechanisms and treatment options.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
103 |
9
|
Dyment NA, Liu CF, Kazemi N, Aschbacher-Smith LE, Kenter K, Breidenbach AP, Shearn JT, Wylie C, Rowe DW, Butler DL. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing. PLoS One 2013; 8:e59944. [PMID: 23555841 PMCID: PMC3608582 DOI: 10.1371/journal.pone.0059944] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/19/2013] [Indexed: 01/27/2023] Open
Abstract
The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
100 |
10
|
Xu F, Sun JX, Liu CF, Sun RC. Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr Res 2005; 341:253-61. [PMID: 16313892 DOI: 10.1016/j.carres.2005.10.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 10/21/2005] [Indexed: 11/27/2022]
Abstract
Two-stage treatments of sugarcane bagasse with mild alkali and acidic 1,4-dioxane were performed. Pretreatment with 1M NaOH aqueous solution at 20, 25, 30, 35, and 40 degrees C for 18 h released 55.5%, 57.3%, 59.1%, 60.9%, and 62.1% of the original hemicelluloses, respectively. Post-treatment of the corresponding alkali-treated residue with 1,4-dioxane-2M HCl (9:1, v/v) at 87 degrees C for 2h, respectively, degraded 11.6%, 11.9%, 11.4%, 10.9%, and 10.6% of hemicelluloses (% dry starting material). It was found that the five alkali-soluble hemicellulosic preparations contained a much higher amounts of xylose (78.0-82.2%) and slightly higher uronic acids (4.8-5.8%), mainly 4-O-methyl-alpha-d-glucopyranosyluronic acid, but were lower in arabinose (9.3-11.7%) and glucose (2.2-4.1%) than those of the corresponding five acidic dioxane-degraded hemicellulosic fractions in which xylose (44.9-46.8%), arabinose (35.9-38.1%), and glucose (13.0-13.7%) were the major sugar constituents. The studies revealed that the five alkali-soluble hemicellulosic preparations were more linear and acidic, and had a large molecular weight (35,200-37,430 g mol(-1)) than those of the hemicellulosic fractions (12,080-13,320 g mol(-1)) degraded during the acidic dioxane post-treatment. This demonstrated that the post-treatment with acidic dioxane under the condition used resulted in substantial degradation of the hemicellulosic polymers. The 10 hemicellulosic samples were further characterized by FT-IR and 1H and 13C NMR spectroscopy, GPC and thermal analysis, and the results are reported.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
100 |
11
|
Liu CF, Tang WW. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic Transl Sci 2019; 4:976-993. [PMID: 31909304 PMCID: PMC6938823 DOI: 10.1016/j.jacbts.2019.05.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a complex syndrome affecting millions of people around the world. Over the past decade, the therapeutic potential of targeting epigenetic regulators in HF has been discussed extensively. Recent advances in next-generation sequencing techniques have contributed substantial progress in our understanding of the role of DNA methylation, post-translational modifications of histones, adenosine triphosphate (ATP)-dependent chromatin conformation and remodeling, and non-coding RNAs in HF pathophysiology. In this review, we summarize epigenomic studies on human and animal models in HF.
Collapse
Key Words
- BET, bromodomain
- EZH2, Enhancer of zeste homolog 2
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDM, histone demethylase
- HF, heart failure
- HMT, histone methyltransferase
- PRC2, polycomb repressor complex 2
- PTMs, post-translational modifications
- TAD, topologically associating domains
- TMAO, trimethylamine N-oxide
- cardiac hypertrophy
- epigenetics
- heart failure
- lnc-RNAs, long ncRNAs
Collapse
|
Review |
6 |
83 |
12
|
Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W. Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res 2007; 342:919-26. [PMID: 17324384 DOI: 10.1016/j.carres.2007.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
The homogeneous chemical modification of sugarcane bagasse cellulose with succinic anhydride using 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid as a reaction medium was studied. Parameters investigated included the molar ratio of succinic anhydride/anhydroglucose units in cellulose in a range from 2:1 to 14:1, reaction time (from 30 to 160min), and reaction temperature (between 60 and 110 degrees C). The succinylated cellulosic derivatives were prepared with a low degree of substitution (DS) ranging from 0.071 to 0.22. The results showed that the increase of reaction temperature, molar ratio of SA/AGU in cellulose, and reaction time led to an increase in DS of cellulose samples. The products were characterized by FT-IR and solid-state CP/MAS (13)C NMR spectroscopy, and thermal analysis. It was found that the crystallinity of the cellulose was completely disrupted in the ionic liquid system under the conditions given. The data also demonstrated that homogeneous modification of cellulose with succinic anhydride in AmimCl resulted in the production of cellulosic monoester. The thermal stability of the succinylated cellulose decreased upon chemical modification.
Collapse
|
|
18 |
81 |
13
|
Jin Y, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. ACTA ACUST UNITED AC 2018; 51:e7811. [PMID: 30403259 PMCID: PMC6233523 DOI: 10.1590/1414-431x20187811] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
Among the novel class of endogenous long non-coding RNAs, circular RNA (circRNA) is known as a key regulator in the development and progression of different cancers. Its function and mechanism in the tumorigenesis of colorectal cancer, however, has not been well studied. This study thus aimed to investigate potential regulation of colorectal cancer by circRNAs and the corresponding regulatory mechanism. We demonstrated that the expression of circRNA hsa_circ_0000523 (also known as circ_006229) was down-regulated in different colorectal cancer cell lines. It was also found that interference of hsa_circ_0000523 induced proliferation and suppressed apoptosis of colorectal cancer cells, the proliferation rate of which was reduced by the overexpression of hsa_circ_0000523. In addition, we found that miR-31 could recognize hsa_circ_0000523 sequence and that it acted as a "sponge" of miR-31, indirectly regulating Wnt/β-catenin signaling pathway, which was involved in the progression of colorectal cancer. The results suggested that the expression of hsa_circ_0000523 correlated to the tumorigenesis of colorectal cancer cells. In addition, as a sponge of miR-31, the low level of hsa_circ_0000523 led to activation of Wnt/β-catenin signaling pathway, inducing the subsequent progress of colorectal cancer.
Collapse
|
Journal Article |
7 |
79 |
14
|
Liao WB, Liu CF, Chiang CW, Kung CT, Lee CW. Cardiovascular manifestations of pheochromocytoma. Am J Emerg Med 2000; 18:622-5. [PMID: 10999582 DOI: 10.1053/ajem.2000.7341] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pheochromocytomas are rare tumors that originate in chromaffin tissue and produce their distant variant effects by secretion of catecholamines, tending to mislead the emergency physicians to a wrong diagnosis. Therefore, we analyze the clinical cardiovascular manifestations in patients with pheochromocytoma to improve the diagnostic ability of the emergency physicians. All patients presenting to the Chang Gung Memorial Hospital between January 1993 and December 1997 with a final diagnosis of pheochromocytoma had their charts reviewed. The data of 25 patients including age, sex, adrenergic stimulation presentations, electrocardiographic changes, location of the tumor, and complications were analyzed. Hypertension was the most important major manifestation and fluctuation of blood pressure drew our attention to the possibility of pheochromocytoma. Six patients had abnormal electrocardiographic ST-T segment changes. Five of them had chest pain which prompted them to undergo coronary angiography before surgery, because acute coronary syndrome (unstable angina and acute myocardial infarction) was suspected initially. However, all of them turned out to have normal coronary arteries. Right-sided pheochromocytoma was found in three of these five patients. We should maintain high index of suspicion for pheochromocytoma in patients presenting with chest pain, fluctuating blood pressure, and ischemic electrocardiogram (ECG) changes despite any typical isoenzyme changes. Pheochromocytoma should also be included in the differential diagnosis of acute coronary syndrome because acute catecholamine secretion may induce chest pain and abnormal ECG changes mimicking an ischemic episode. The right-sided pheochromocytoma may present more striking electrocardiographic abnormalities and clinical manifestations.
Collapse
|
|
25 |
76 |
15
|
Abstract
We isolated a 1,438 bp cDNA fragment that encoded Myf-5 myogenic factor of zebrafish. The deduced amino acid contained 237 residues, including the basic helix-loop-helix domain that is conserved in all known Myf-5. The zebrafish myf-5 transcripts were first detectable at 7.5 hpf, increased substantially until 16 hpf, and then declined gradually to an undetectable level by 26 hpf. During somitogenesis, zebrafish myf-5 transcripts were distributed mainly in the somites and segmental plates. Prominent signals occurred transiently in adaxial cells in two parallel rows but did not extend beyond the positive-signal somites. Various lengths of upstream region of zebrafish myf-5 fused with EGFP gene were used to carry out transgenic analysis. Results showed that a small, 82 bp (nucleotide positions from -82 to -1), regulatory cassette is sufficient to control the somite- and stage-specific expression of zebrafish myf-5 during early development.
Collapse
|
|
24 |
72 |
16
|
Kuboki Y, Tsuzaki M, Sasaki S, Liu CF, Mechanic GL. Location of the intermolecular cross-links in bovine dentin collagen, solubilization with trypsin and isolation of cross-link peptides containing dihydroxylysinonorleucine and pyridinoline. Biochem Biophys Res Commun 1981; 102:119-26. [PMID: 7306142 DOI: 10.1016/0006-291x(81)91497-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
|
44 |
59 |
17
|
Abstract
Despite its significant role in oocyte generation and hormone production in adulthood, the ovary, with regard to its formation, has received little attention compared to its male counterpart, the testis. With the exception of germ cells, which undergo a female-specific pattern of meiosis, morphological changes in the fetal ovary are subtle. Over the past 40 years, a number of hypotheses have been proposed for the organogenesis of the mammalian ovary. It was not until the turn of the millennium, thanks to the advancement of genetic and genomic approaches, that pathways for ovary organogenesis that consist of positive and negative regulators have started to emerge. Through the action of secreted factors (R-spondin1, WNT4, and follistatin) and transcription regulators (beta-catenin and FOXL2), the developmental fate of the somatic cells is directed toward ovarian, while testicular components are suppressed. In this chapter, we review the history of studying ovary organogenesis in mammals and present the most recent discoveries using the mouse as the model organism.
Collapse
|
Review |
15 |
56 |
18
|
Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon. Tissue Eng Part A 2011; 18:598-608. [PMID: 21939397 DOI: 10.1089/ten.tea.2011.0338] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tendon injuries are common clinical problems and are difficult to treat. In particular, the tendon-to-bone insertion site, once damaged, does not regenerate its complex zonal arrangement. A potential treatment for tendon injuries is to replace injured tendons with bioengineered tendons. However, the bioengineering of tendon will require a detailed understanding of the normal development of tendon, which is currently lacking. Here, we use the mouse patellar tendon as a model to describe the spatial and temporal pattern of expression of molecular markers for tendon differentiation from late fetal life to 2 weeks after birth. We found that collagen I, fibromodulin, and tenomodulin were expressed throughout the tendon, whereas tenascin-C, biglycan, and cartilage oligomeric protein were concentrated in the insertion site during this period. We also identified signaling pathways that are activated both throughout the developing tendon, for example, transforming growth factor beta and bone morphogenetic protein, and specifically in the insertion site, for example, hedgehog pathway. Using a mouse line expressing green fluorescent protein in all tenocytes, we also found that tenocyte cell proliferation occurs at highest levels during late fetal life, and declines to very low levels by 2 weeks after birth. These data will allow both the functional analysis of specific signaling pathways in tenocyte development and their application to tissue-engineering studies in vitro.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
54 |
19
|
Liu CF, Angelozzi M, Haseeb A, Lefebvre V. SOX9 is dispensable for the initiation of epigenetic remodeling and the activation of marker genes at the onset of chondrogenesis. Development 2018; 145:dev164459. [PMID: 30021842 PMCID: PMC6078338 DOI: 10.1242/dev.164459] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
SOX9 controls cell lineage fate and differentiation in major biological processes. It is known as a potent transcriptional activator of differentiation-specific genes, but its earliest targets and its contribution to priming chromatin for gene activation remain unknown. Here, we address this knowledge gap using chondrogenesis as a model system. By profiling the whole transcriptome and the whole epigenome of wild-type and Sox9-deficient mouse embryo limb buds, we uncover multiple structural and regulatory genes, including Fam101a, Myh14, Sema3c and Sema3d, as specific markers of precartilaginous condensation, and we provide evidence of their direct transactivation by SOX9. Intriguingly, we find that SOX9 helps remove epigenetic signatures of transcriptional repression and establish active-promoter and active-enhancer marks at precartilage- and cartilage-specific loci, but is not absolutely required to initiate these changes and activate transcription. Altogether, these findings widen our current knowledge of SOX9 targets in early chondrogenesis and call for new studies to identify the pioneer and transactivating factors that act upstream of or along with SOX9 to prompt chromatin remodeling and specific gene activation at the onset of chondrogenesis and other processes.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
52 |
20
|
Yao B, Wang Q, Liu CF, Bhattaram P, Li W, Mead TJ, Crish JF, Lefebvre V. The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers. Nucleic Acids Res 2015; 43:5394-408. [PMID: 25940622 PMCID: PMC4477657 DOI: 10.1093/nar/gkv426] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/17/2015] [Indexed: 01/18/2023] Open
Abstract
Two decades after the discovery that heterozygous mutations within and around SOX9 cause campomelic dysplasia, a generalized skeleton malformation syndrome, it is well established that SOX9 is a master transcription factor in chondrocytes. In contrast, the mechanisms whereby translocations in the –350/–50-kb region 5′ of SOX9 cause severe disease and whereby SOX9 expression is specified in chondrocytes remain scarcely known. We here screen this upstream region and uncover multiple enhancers that activate Sox9-promoter transgenes in the SOX9 expression domain. Three of them are primarily active in chondrocytes. E250 (located at –250 kb) confines its activity to condensed prechondrocytes, E195 mainly targets proliferating chondrocytes, and E84 is potent in all differentiated chondrocytes. E84 and E195 synergize with E70, previously shown to be active in most Sox9-expressing somatic tissues, including cartilage. While SOX9 protein powerfully activates E70, it does not control E250. It requires its SOX5/SOX6 chondrogenic partners to robustly activate E195 and additional factors to activate E84. Altogether, these results indicate that SOX9 expression in chondrocytes relies on widely spread transcriptional modules whose synergistic and overlapping activities are driven by SOX9, SOX5/SOX6 and other factors. They help elucidate mechanisms underlying campomelic dysplasia and will likely help uncover other disease mechanisms.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
48 |
21
|
Liu CF, Parker K, Yao HHC. WNT4/beta-catenin pathway maintains female germ cell survival by inhibiting activin betaB in the mouse fetal ovary. PLoS One 2010; 5:e10382. [PMID: 20454446 PMCID: PMC2861588 DOI: 10.1371/journal.pone.0010382] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/07/2010] [Indexed: 11/21/2022] Open
Abstract
Female germ cells are essential for organogenesis of the ovary; without them, ovarian follicles do not form and functional and structural characteristics of the ovary are lost. We and others showed previously that when either Wnt4 or β-catenin was inactivated in the fetal ovary, female germ cells underwent degeneration. In this study, we set out to understand whether these two factors belong to the same pathway and how they maintain female germ cell survival. We found that activation of β-catenin in somatic cells in the Wnt4 knockout ovary restored germ cell numbers, placing β-catenin downstream of WNT4. In the absence of Wnt4 or β-catenin, female germ cells entered meiosis properly; however, they underwent apoptosis afterwards. Activin βB (Inhbb), a subunit of activins, was upregulated in the Wnt4 and β-catenin knockout ovaries, suggesting that Inhbb could be the cause for the loss of female germ cells, which are positive for activin receptors. Indeed, removal of Inhbb in the Wnt4 knockout ovaries prevented female germ cells from undergoing degeneration. We conclude that WNT4 maintains female germ cell survival by inhibiting Inhbb expression via β-catenin in the somatic cells. Maintenance of female germ cells hinge upon a delicate balance between positive (WNT4 and β-catenin) and negative (activin βB) regulators derived from the somatic cells in the fetal ovary.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
48 |
22
|
Liu CF, Breidenbach A, Aschbacher-Smith L, Butler D, Wylie C. A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse. PLoS One 2013; 8:e65411. [PMID: 23762363 PMCID: PMC3677907 DOI: 10.1371/journal.pone.0065411] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/25/2013] [Indexed: 12/02/2022] Open
Abstract
Tendons are typically composed of two histologically different regions: the midsubstance and insertion site. We previously showed that Gli1, a downstream effector of the hedgehog (Hh) signaling pathway, is expressed only in the insertion site of the mouse patellar tendon during its differentiation. To test for a functional role of Hh signaling, we targeted the Smoothened (Smo) gene in vivo using a Cre/Lox system. Constitutive activation of the Hh pathway in the mid-substance caused molecular markers of the insertion site, e.g. type II collagen, to be ectopically expressed or up-regulated in the midsubstance. This was confirmed using a novel organ culture method in vitro. Conversely, when Smo was excised in the scleraxis-positive cell population, the development of the fibrocartilaginous insertion site was affected. Whole transcriptome analysis revealed that the expression of genes involved in chondrogenesis and mineralization was down-regulated in the insertion site, and expression of insertion site markers was decreased. Biomechanical testing of murine adult patellar tendon, which developed in the absence of Hh signaling, showed impairment of tendon structural properties (lower linear stiffness and greater displacement) and material properties (greater strain), although the linear modulus of the mutant group was not significantly lower than controls. These studies provide new insights into the role of Hh signaling during tendon development.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
43 |
23
|
Shieh YH, Liu CF, Huang YK, Yang JY, Wu IL, Lin CH, Li SC. Evaluation of the hepatic and renal-protective effects of Ganoderma lucidum in mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2002; 29:501-7. [PMID: 11789593 DOI: 10.1142/s0192415x01000526] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antioxidative effect of hot water extract of the mushroom Ganoderma lucidum on ethanol-induced free radical generation had been studied. In order to further investigate the hepatic and renal protective mechanism of Ganoderma lucidum, rates of lipid peroxidation were determined. The hot water extract of Ganoderma lucidum dose-dependently exhibited antioxidative effect on mouse liver and kidney lipid peroxidation; our results indicated that hepatic and renal homogenates have a higher malonic dialdehyde level in an ethanol administered group than in the Ganoderma lucidum treated group. It was concluded that the hepatic and renal protective mechanism of Ganoderma lucidum, might be due at least in part to its prominent superoxide scavenging effect. Ganoderma extract could protect the liver and kidney from superoxide induced hepatic and renal damages.
Collapse
|
|
23 |
39 |
24
|
Liu H, Xu J, Liu CF, Lan Y, Wylie C, Jiang R. Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq. J Orthop Res 2015; 33:840-8. [PMID: 25729011 PMCID: PMC4616261 DOI: 10.1002/jor.22886] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/26/2015] [Indexed: 02/04/2023]
Abstract
Tendons are fibrous connective tissues that transmit force between muscle and bone. Whereas the molecular and cellular mechanisms of bone and muscle development have been well studied, that of tendon development is poorly understood. Using the Scx-GFP transgenic mice, we isolated GFP(+) cells from the developing mouse limbs at E11.5, E13.5, and E15.5, respectively, and carried out whole transcriptome RNA-seq analysis. Comparing the gene expression profiles of GFP(+) and GFP(-) cells in the E13.5 limb isolated over 1,500 genes that exhibited enrichment of mRNA expression by at least 1.5-fold in the GFP(+) cells. Of these, 778 genes showed expression up-regulated by more than 1.5-fold from E11.5 to E13.5 and 516 genes showed expression up-regulated by more than 1.5-fold from E13.5 to E15.5 in the GFP(+) cell population. Interestingly, over 30 genes encoding transcription factors are among the early-activated genes in the GFP(+) cells. Whole mount and section in situ hybridization analyses showed that many of these transcription factor genes have distinct patterns of expression during limb development and identified Foxf2 expression as a specific marker for differentiated dorsal limb tendon cells. Together, these data provide a valuable resource for further investigation of the molecular mechanisms regulating tendon development.
Collapse
|
research-article |
10 |
33 |
25
|
Kuboki Y, Fujisawa R, Tsuzaki M, Liu CF, Sasaki S. Presence of lysinoalanine and histidinoalanine in bovine dentin phosphoprotein. Calcif Tissue Int 1984; 36:126-8. [PMID: 6423229 DOI: 10.1007/bf02405305] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Trypsin digestion and successive calcium-induced precipitation of the insoluble bovine dentin matrix effectively separated the collagen and phosphoprotein fractions which were firmly associated together in this material. Amino acid analysis by four different systems revealed that the lysinoalanine and histidinoalanine, which had been previously reported to occur in the human dentin collagen, were concentrated in the phosphoprotein fraction but were not present in the collagen fraction. Furthermore, it was found that the free-type phosphoprotein which was isolated from EDTA extract of dentin powder also contained both "cross-linking" amino acids. The results indicated the both "cross-links" distributed within the dentin phosphoprotein and were not likely to contribute the unique stability of dentin collagen.
Collapse
|
|
41 |
28 |