1
|
Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, Kaba SA, Vantaux A, Bakowski MA, Thomson-Luque R, Adapa SR, Singh N, Barnes SJ, Cooper CA, Rouillier M, McNamara CW, Mikolajczak SA, Sather N, Witkowski B, Campo B, Kappe SHI, Lanar DE, Nosten F, Davidson S, Jiang RHY, Kyle DE, Adams JH. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun 2018; 9:1837. [PMID: 29743474 PMCID: PMC5943321 DOI: 10.1038/s41467-018-04221-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Malaria liver stages represent an ideal therapeutic target with a bottleneck in parasite load and reduced clinical symptoms; however, current in vitro pre-erythrocytic (PE) models for Plasmodium vivax and P. falciparum lack the efficiency necessary for rapid identification and effective evaluation of new vaccines and drugs, especially targeting late liver-stage development and hypnozoites. Herein we report the development of a 384-well plate culture system using commercially available materials, including cryopreserved primary human hepatocytes. Hepatocyte physiology is maintained for at least 30 days and supports development of P. vivax hypnozoites and complete maturation of P. vivax and P. falciparum schizonts. Our multimodal analysis in antimalarial therapeutic research identifies important PE inhibition mechanisms: immune antibodies against sporozoite surface proteins functionally inhibit liver stage development and ion homeostasis is essential for schizont and hypnozoite viability. This model can be implemented in laboratories in disease-endemic areas to accelerate vaccine and drug discovery research.
Collapse
|
research-article |
7 |
101 |
2
|
Andolina C, Rek JC, Briggs J, Okoth J, Musiime A, Ramjith J, Teyssier N, Conrad M, Nankabirwa JI, Lanke K, Rodriguez-Barraquer I, Meerstein-Kessel L, Arinaitwe E, Olwoch P, Rosenthal PJ, Kamya MR, Dorsey G, Greenhouse B, Drakeley C, Staedke SG, Bousema T. Sources of persistent malaria transmission in a setting with effective malaria control in eastern Uganda: a longitudinal, observational cohort study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1568-1578. [PMID: 34146476 PMCID: PMC8554388 DOI: 10.1016/s1473-3099(21)00072-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 02/03/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Symptomatic malaria cases reflect only a small proportion of all Plasmodium spp infections. Many infected individuals are asymptomatic, and persistent asymptomatic Plasmodium falciparum infections are common in endemic settings. We aimed to quantify the contribution of symptomatic and asymptomatic infections to P falciparum transmission in Tororo, Uganda. METHODS We did a longitudinal, observational cohort study in Tororo district, Uganda. We recruited participants of all ages from randomly selected households within this district. Participants were eligible if the selected household had no more than nine permanent residents and at least two members younger than 10 years, and the household was their primary residence, and they agreed to come to the study clinic for any fever episode and avoid antimalarial medications outside the study. Participants were followed-up by continuous passive surveillance for the incidence of symptomatic infections; routine assessments (ie, standardised clinical evaluation and blood samples) were done at baseline and at routine visits every 4 weeks for 2 years. P falciparum parasite density, gametocyte density, and genetic composition were determined molecularly using quantitative PCR (qPCR), quantitative reverse transcriptase PCR (qRT-PCR), and amplicon deep sequencing, respectively. Membrane feeding assays were also done to assess infectivity to mosquitoes. The contribution of different populations to the infectious reservoir was estimated for symptomatic infections, asymptomatic but microscopically detected infections, and asymptomatic but qPCR-detected infections; and for age groups younger than 5 years, 5-15 years, and 16 years or older. FINDINGS Between Oct 4, 2017, and Oct 31, 2019, 531 individuals were enrolled from 80 randomly selected households and were followed-up for 2 years. At baseline, P falciparum was detected in 28 (5·3%) of 531 participants by microscopy and an additional 64 (12·1%) by qPCR and declined thereafter. In 538 mosquito feeding experiments on 107 individuals, 446 (1·2%) of 37 404 mosquitoes became infected, with mosquito infection rates being strongly associated with gametocyte densities (β=2·11, 95% CI 1·62-2·67; p<0·0001). Considering both transmissibility of infections and their relative frequency, the estimated human infectious reservoir consisted primarily of asymptomatic microscopy-detected infections (83·8%), followed by asymptomatic submicroscopic infections (15·6%), and symptomatic infections (0·6%). Children aged 5-15 years accounted for more than half of the infectious reservoir (58·7%); individuals younger than 5 years (25·8%) and those 16 years or older (15·6%) contributed less. Samples from four children contribued to 279 (62·6%) of 446 infected mosquitoes after multiple mosquito-feeding assays. INTERPRETATION Individuals with asymptomatic infections were important drivers of malaria transmission. School-aged children contributed to more than half of all mosquito infections, with a small minority of asymptomatic children being highly infectious. Demographically targeted interventions, aimed at school-aged children, could further reduce transmission in areas under effective vector control. FUNDING US National Institutes of Health, Bill & Melinda Gates Foundation, and the European Research Council.
Collapse
|
Observational Study |
4 |
90 |
3
|
Bunnik EM, Cook KB, Varoquaux N, Batugedara G, Prudhomme J, Cort A, Shi L, Andolina C, Ross LS, Brady D, Fidock DA, Nosten F, Tewari R, Sinnis P, Ay F, Vert JP, Noble WS, Le Roch KG. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat Commun 2018; 9:1910. [PMID: 29765020 PMCID: PMC5954139 DOI: 10.1038/s41467-018-04295-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
The development of malaria parasites throughout their various life cycle stages is coordinated by changes in gene expression. We previously showed that the three-dimensional organization of the Plasmodium falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyze genome organization in the P. falciparum and P. vivax transmission stages. Major changes occur in the localization and interactions of genes involved in pathogenesis and immune evasion, host cell invasion, sexual differentiation, and master regulation of gene expression. Furthermore, we observe reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Our results suggest that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycle.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
70 |
4
|
Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D, Nosten F, Baumert TF, Silvie O. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. eLife 2017; 6:e25903. [PMID: 28506360 PMCID: PMC5470872 DOI: 10.7554/elife.25903] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.
Collapse
|
research-article |
8 |
63 |
5
|
White NJ, Ashley EA, Recht J, Delves MJ, Ruecker A, Smithuis FM, Eziefula AC, Bousema T, Drakeley C, Chotivanich K, Imwong M, Pukrittayakamee S, Prachumsri J, Chu C, Andolina C, Bancone G, Hien TT, Mayxay M, Taylor WRJ, von Seidlein L, Price RN, Barnes KI, Djimdé A, ter Kuile F, Gosling R, Chen I, Dhorda MJ, Stepniewska K, Guérin P, Woodrow CJ, Dondorp AM, Day NPJ, Nosten FH. Assessment of therapeutic responses to gametocytocidal drugs in Plasmodium falciparum malaria. Malar J 2014; 13:483. [PMID: 25486998 PMCID: PMC4295364 DOI: 10.1186/1475-2875-13-483] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/29/2014] [Indexed: 01/10/2023] Open
Abstract
Indirect clinical measures assessing anti-malarial drug transmission-blocking activity in falciparum malaria include measurement of the duration of gametocytaemia, the rate of gametocyte clearance or the area under the gametocytaemia-time curve (AUC). These may provide useful comparative information, but they underestimate dose-response relationships for transmission-blocking activity. Following 8-aminoquinoline administration P. falciparum gametocytes are sterilized within hours, whereas clearance from blood takes days. Gametocytaemia AUC and clearance times are determined predominantly by the more numerous female gametocytes, which are generally less drug sensitive than the minority male gametocytes, whereas transmission-blocking activity and thus infectivity is determined by the more sensitive male forms. In choosing doses of transmission-blocking drugs there is no substitute yet for mosquito-feeding studies.
Collapse
|
Review |
11 |
59 |
6
|
Chaumeau V, Kajeechiwa L, Fustec B, Landier J, Naw Nyo S, Nay Hsel S, Phatharakokordbun P, Kittiphanakun P, Nosten S, Thwin MM, Win Tun S, Wiladphaingern J, Cottrell G, Parker DM, Minh MC, Kwansomboon N, Metaane S, Montazeau C, Kunjanwong K, Sawasdichai S, Andolina C, Ling C, Haohankhunnatham W, Christiensen P, Wanyatip S, Konghahong K, Cerqueira D, Imwong M, Dondorp AM, Chareonviriyaphap T, White NJ, Nosten FH, Corbel V. Contribution of Asymptomatic Plasmodium Infections to the Transmission of Malaria in Kayin State, Myanmar. J Infect Dis 2019; 219:1499-1509. [PMID: 30500927 PMCID: PMC6467188 DOI: 10.1093/infdis/jiy686] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The objective of mass antimalarial drug administration (MDA) is to eliminate malaria rapidly by eliminating the asymptomatic malaria parasite reservoirs and interrupting transmission. In the Greater Mekong Subregion, where artemisinin-resistant Plasmodium falciparum is now widespread, MDA has been proposed as an elimination accelerator, but the contribution of asymptomatic infections to malaria transmission has been questioned. The impact of MDA on entomological indices has not been characterized previously. METHODS MDA was conducted in 4 villages in Kayin State (Myanmar). Malaria mosquito vectors were captured 3 months before, during, and 3 months after MDA, and their Plasmodium infections were detected by polymerase chain reaction (PCR) analysis. The relationship between the entomological inoculation rate, the malaria prevalence in humans determined by ultrasensitive PCR, and MDA was characterized by generalized estimating equation regression. RESULTS Asymptomatic P. falciparum and Plasmodium vivax infections were cleared by MDA. The P. vivax entomological inoculation rate was reduced by 12.5-fold (95% confidence interval [CI], 1.6-100-fold), but the reservoir of asymptomatic P. vivax infections was reconstituted within 3 months, presumably because of relapses. This was coincident with a 5.3-fold (95% CI, 4.8-6.0-fold) increase in the vector infection rate. CONCLUSION Asymptomatic infections are a major source of malaria transmission in Southeast Asia.
Collapse
|
research-article |
6 |
48 |
7
|
Vizzini S, Martínez-Crego B, Andolina C, Massa-Gallucci A, Connell SD, Gambi MC. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Sci Rep 2017. [PMID: 28642608 PMCID: PMC5481442 DOI: 10.1038/s41598-017-03802-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Increasing oceanic uptake of CO2 is predicted to drive ecological change as both a resource (i.e. CO2 enrichment on primary producers) and stressor (i.e. lower pH on consumers). We use the natural ecological complexity of a CO2 vent (i.e. a seagrass system) to assess the potential validity of conceptual models developed from laboratory and mesocosm research. Our observations suggest that the stressor-effect of CO2 enrichment combined with its resource-effect drives simplified food web structure of lower trophic diversity and shorter length. The transfer of CO2 enrichment from plants to herbivores through consumption (apparent resource-effect) was not compensated by predation, because carnivores failed to contain herbivore outbreaks. Instead, these higher-order consumers collapsed (apparent stressor-effect on carnivores) suggesting limited trophic propagation to predator populations. The dominance of primary producers and their lower-order consumers along with the loss of carnivores reflects the duality of intensifying ocean acidification acting both as resource-effect (i.e. bottom-up control) and stressor-effect (i.e. top-down control) to simplify community and trophic structure and function. This shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides new insights into how the trophic dynamics might stabilize against or propagate future environmental change.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
46 |
8
|
Chua ACY, Ananthanarayanan A, Ong JJY, Wong JY, Yip A, Singh NH, Qu Y, Dembele L, McMillian M, Ubalee R, Davidson S, Tungtaeng A, Imerbsin R, Gupta K, Andolina C, Lee F, S-W Tan K, Nosten F, Russell B, Lange A, Diagana TT, Rénia L, Yeung BKS, Yu H, Bifani P. Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials 2019; 216:119221. [PMID: 31195301 DOI: 10.1016/j.biomaterials.2019.05.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/19/2019] [Indexed: 12/27/2022]
Abstract
Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi. Our understanding of hypnozoite biology remains limited due to the technical challenge of requiring the use of primary hepatocytes and the lack of robust and predictive in vitro models. In this study, we developed a malaria liver stage model using 3D spheroid-cultured primary hepatocytes. The infection of primary hepatocytes in suspension led to increased infectivity of both P. cynomolgi and P. vivax infections. We demonstrated that this hepatic spheroid model was capable of maintaining long term viability, hepatocyte specific functions and cell polarity which enhanced permissiveness and thus, permitting for the complete development of both P. cynomolgi and P. vivax liver stage parasites in the infected spheroids. The model described here was able to capture the full liver stage cycle starting with sporozoites and ending in the release of hepatic merozoites capable of invading simian erythrocytes in vitro. Finally, we showed that this system can be used for compound screening to discriminate between causal prophylactic and cidal antimalarials activity in vitro for relapsing malaria.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
44 |
9
|
Meerstein-Kessel L, Andolina C, Carrio E, Mahamar A, Sawa P, Diawara H, van de Vegte-Bolmer M, Stone W, Collins KA, Schneider P, Dicko A, Drakeley C, Felger I, Voss T, Lanke K, Bousema T. A multiplex assay for the sensitive detection and quantification of male and female Plasmodium falciparum gametocytes. Malar J 2018; 17:441. [PMID: 30497508 PMCID: PMC6267050 DOI: 10.1186/s12936-018-2584-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022] Open
Abstract
Background The transmission of malaria to mosquitoes depends on the presence of gametocytes that circulate in the peripheral blood of infected human hosts. Sensitive estimates of the densities of female gametocytes (FG) and male gametocytes (MG) may allow the prediction of infectivity to mosquitoes and thus a molecular estimate of the human infectious reservoir for transmission. Methods A novel multiplex qRT-PCR assay with intron-spanning primers was developed for the parallel quantification of FG and MG. CCp4 (PF3D7_0903800) transcripts specific for FG and PfMGET (PF3D7_1469900) transcripts specific for MG were quantified in total nucleic acids. The assay was validated on sex-sorted gametocytes from culture material and on samples from clinical trials with gametocytocidal drugs. Synthetic RNA standards were generated for the two targets genes and calibrated against known gametocyte quantities. Results The limit of detection was determined at 0.1 male and 0.1 female gametocyte/µL, which was equal to the limit of quantification (LOQ) for MG, while the LOQ for FG was 1 FG/µL. Results from previously reported clinical trials that used separate gametocyte qRT-PCR assays for FG (targeting Pfs25) and MG (targeting PfMGET) were reproduced with the multiplex assay. High levels of agreement between separate assays and the multiplex approach were observed (R2 = 0.9473, 95% CI 0.9314–0.9632, for FG measured by transcript levels of Pfs25 in qRT-PCR or CCp4 in multiplex; R2 = 0.8869, 95% CI 0.8541–0.9197, for MG measured by PfMGET in either single or multiplex qRT-PCR). FG and MG transcripts were detected in pure ring stage parasites at 10,000- and 100,000-fold reduced frequency for CCp4 and PfMGET, respectively. The CCp4 and PfMGET transcripts were equally stable under suboptimal storage conditions. Conclusions Gametocyte densities and their sex ratios can be determined in the presented one-step multiplex assay with higher throughput than single assays. The interpretation of low gametocyte densities at asexual parasite densities above 1000 parasites/µL requires caution to avoid false positive gametocyte signals from spurious transcript levels in ring stage parasites. Electronic supplementary material The online version of this article (10.1186/s12936-018-2584-y) contains supplementary material, which is available to authorized users.
Collapse
|
Validation Study |
7 |
36 |
10
|
Chaumeau V, Cerqueira D, Zadrozny J, Kittiphanakun P, Andolina C, Chareonviriyaphap T, Nosten F, Corbel V. Insecticide resistance in malaria vectors along the Thailand-Myanmar border. Parasit Vectors 2017; 10:165. [PMID: 28359289 PMCID: PMC5374572 DOI: 10.1186/s13071-017-2102-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a paucity of data about the susceptibility status of malaria vectors to Public Health insecticides along the Thailand-Myanmar border. This lack of data is a limitation to guide malaria vector-control in this region. The aim of this study was to assess the susceptibility status of malaria vectors to deltamethrin, permethrin and DDT and to validate a simple molecular assay for the detection of knock-down resistance (kdr) mutations in the study area. METHODS Anopheles mosquitoes were collected in four sentinel villages during August and November 2014 and July 2015 using human landing catch and cow bait collection methods. WHO susceptibility tests were carried out to measure the mortality and knock-down rates of female mosquitoes to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%). DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to identify knock-down resistance (kdr) mutations at position 1014 in mosquitoes surviving exposure to insecticides. RESULTS A total of 6295 Anopheles belonging to ten different species were bioassayed. Resistance or suspected resistance to pyrethroids was detected in An. barbirostris (s.l.) (72 and 84% mortality to deltamethrin (n = 504) and permethrin (n = 493) respectively), An. hyrcanus (s.l.) (33 and 48% mortality to deltamethrin (n = 172) and permethrin (n = 154), respectively), An. jamesii (87% mortality to deltamethrin, n = 111), An. maculatus (s.l.) (85 and 97% mortality to deltamethrin (n = 280) and permethrin (n = 264), respectively), An. minimus (s.l.) (92% mortality, n = 370) and An. vagus (75 and 95% mortality to deltamethrin (n =148) and permethrin (n = 178), respectively). Resistance or suspected resistance to DDT was detected in An. barbirostris (s.l.) (74% mortality, n = 435), An. hyrcanus (s.l.) (57% mortality, n = 91) and An. vagus (97% mortality, n = 133). The L1014S kdr mutation at both heterozygous and homozygous state was detected only in An. peditaeniatus (Hyrcanus Group). CONCLUSION Resistance to pyrethroids is present along the Thailand-Myanmar border, and it represents a threat for malaria vector control. Further investigations are needed to better understand the molecular basis of insecticide resistance in malaria vectors in this area.
Collapse
|
Journal Article |
8 |
31 |
11
|
Chaumeau V, Andolina C, Fustec B, Tuikue Ndam N, Brengues C, Herder S, Cerqueira D, Chareonviriyaphap T, Nosten F, Corbel V. Comparison of the Performances of Five Primer Sets for the Detection and Quantification of Plasmodium in Anopheline Vectors by Real-Time PCR. PLoS One 2016; 11:e0159160. [PMID: 27441839 PMCID: PMC4956213 DOI: 10.1371/journal.pone.0159160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (qrtPCR) has made a significant improvement for the detection of Plasmodium in anopheline vectors. A wide variety of primers has been used in different assays, mostly adapted from molecular diagnosis of malaria in human. However, such an adaptation can impact the sensitivity of the PCR. Therefore we compared the sensitivity of five primer sets with different molecular targets on blood stages, sporozoites and oocysts standards of Plasmodium falciparum (Pf) and P. vivax (Pv). Dilution series of standard DNA were used to discriminate between methods at low concentrations of parasite and to generate standard curves suitable for the absolute quantification of Plasmodium sporozoites. Our results showed that the best primers to detect blood stages were not necessarily the best ones to detect sporozoites. Absolute detection threshold of our qrtPCR assay varied between 3.6 and 360 Pv sporozoites and between 6 and 600 Pf sporozoites per mosquito according to the primer set used in the reaction mix. In this paper, we discuss the general performance of each primer set and highlight the need to use efficient detection methods for transmission studies.
Collapse
|
Journal Article |
9 |
25 |
12
|
Guidi A, Andolina C, Makame Ame S, Albonico M, Cioli D, Juma Haji H. Praziquantel efficacy and long-term appraisal of schistosomiasis control in Pemba Island. Trop Med Int Health 2010; 15:614-8. [PMID: 20214757 DOI: 10.1111/j.1365-3156.2010.02488.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether praziquantel (PZQ) has retained its efficacy against Schistosoma haematobium on Pemba Island after 20 years of mass administration--albeit discontinuous--and to analyse retrospectively the performance of schistosomiasis control programmes. METHODS A sample of Pemba schoolchildren was examined before and after PZQ treatment by urine filtration, macro- and micro-haematuria and viability of excreted eggs. RESULTS Although 5% of treated children continued to pass some eggs in the urine up to the seventh week after PZQ administration, none of these eggs was viable, indicating an effective schistosomicidal activity followed by a slow release of dead eggs from host tissues. CONCLUSION No signs of PZQ resistance could be detected in the population under study. An overall retrospective analysis of schistosomiasis control activities in Pemba Island revealed that mass drug administration is clearly effective in reducing infection prevalence, but soon after interruption of drug distribution prevalence returns rapidly to pre-intervention levels.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
22 |
13
|
Gimenez AM, Lima LC, Françoso KS, Denapoli PMA, Panatieri R, Bargieri DY, Thiberge JM, Andolina C, Nosten F, Renia L, Nussenzweig RS, Nussenzweig V, Amino R, Rodrigues MM, Soares IS. Vaccine Containing the Three Allelic Variants of the Plasmodium vivax Circumsporozoite Antigen Induces Protection in Mice after Challenge with a Transgenic Rodent Malaria Parasite. Front Immunol 2017; 8:1275. [PMID: 29075260 PMCID: PMC5642139 DOI: 10.3389/fimmu.2017.01275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP), we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP). In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like), as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C). Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210). Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.
Collapse
|
research-article |
8 |
20 |
14
|
Andolina C, Landier J, Carrara V, Chu CS, Franetich JF, Roth A, Rénia L, Roucher C, White NJ, Snounou G, Nosten F. The suitability of laboratory-bred Anopheles cracens for the production of Plasmodium vivax sporozoites. Malar J 2015; 14:312. [PMID: 26259952 PMCID: PMC4531391 DOI: 10.1186/s12936-015-0830-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A stenogamous colony of Anopheles cracens (A. dirus B) established 20 years ago in a Thai insectary proved susceptible to Plasmodium vivax. However, routine sporozoite production by feeding on field-collected blood samples has not been described. The setting-up of an A. cracens colony in an insectary on the Thai-Myanmar border and the process of using P. vivax field samples for the production of infectious sporozoites are described. METHODS The colony was started in 2012 from egg batches that were sent from the Department of Parasitology, Faculty of Medicine, University of Chiang Mai, to the Shoklo Malaria Research Unit (SMRU), on wet filter paper in sealed Petri dishes. From May 2013 to December 2014, P. vivax-infected blood samples collected from patients seeking care at SMRU clinics were used for membrane feeding assays and sporozoite production. RESULTS Mosquitoes were fed on blood samples from 55 patients, and for 38 (69 %) this led to the production sporozoites. The average number of sporozoites obtained per mosquito was 26,112 (range 328-79,310). Gametocytaemia was not correlated with mosquito infectiousness (p = 0.82), or with the number of the sporozoites produced (Spearman's ρ = -0.016, p = 0.905). Infectiousness did not vary with the date of collection or the age of the patient. Mosquito survival was not correlated with sporozoite load (Spearman's ρ = 0.179, p = 0.282). CONCLUSION Consistent and routine P. vivax sporozoites production confirms that A. cracens is highly susceptible to P. vivax infection. Laboratory-bred colonies of this vector are suitable for experimental transmission protocols and thus constitute a valuable resource.
Collapse
|
research-article |
10 |
19 |
15
|
Rek J, Blanken SL, Okoth J, Ayo D, Onyige I, Musasizi E, Ramjith J, Andolina C, Lanke K, Arinaitwe E, Olwoch P, Collins KA, Kamya MR, Dorsey G, Drakeley C, Staedke SG, Bousema T, Conrad MD. Asymptomatic School-Aged Children Are Important Drivers of Malaria Transmission in a High Endemicity Setting in Uganda. J Infect Dis 2022; 226:708-713. [PMID: 35578987 PMCID: PMC9441202 DOI: 10.1093/infdis/jiac169] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Achieving malaria elimination requires a better understanding of the transmissibility of human infections in different transmission settings. This study aimed to characterize the human infectious reservoir in a high endemicity setting in eastern Uganda, using gametocyte quantification and mosquito feeding assays. In asymptomatic infections, gametocyte densities were positively associated with the proportion of infected mosquitoes (β = 1.60; 95% CI, 1.32-1.92; P < .0001). Combining transmissibility and abundance in the population, symptomatic and asymptomatic infections were estimated to contribute to 5.3% and 94.7% of the infectious reservoir, respectively. School-aged children (5-15 years old) contributed to 50.4% of transmission events and were important drivers of malaria transmission.
Collapse
|
brief-report |
3 |
19 |
16
|
Musiime AK, Okoth J, Conrad M, Ayo D, Onyige I, Rek J, Nankabirwa JI, Arinaitwe E, Kamya MR, Dorsey G, van Gemert GJ, Staedke SG, Drakeley C, Bousema T, Andolina C. Is that a real oocyst? Insectary establishment and identification of Plasmodium falciparum oocysts in midguts of Anopheles mosquitoes fed on infected human blood in Tororo, Uganda. Malar J 2019; 18:287. [PMID: 31455343 PMCID: PMC6712792 DOI: 10.1186/s12936-019-2922-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/17/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The human infectious reservoir for malaria consists of individuals capable of infecting mosquitoes. Oocyst prevalence and density are typical indicators of human infectivity to mosquitoes. However, identification of oocysts is challenging, particularly in areas of low malaria transmission intensity where few individuals may infect mosquitoes, and infected mosquitoes tend to have few oocysts. Here, features that differentiate oocysts from other oocyst-like in mosquito midguts are explained and illustrated. In addition, the establishment and maintenance of infrastructure to perform malaria transmission experiments is described. This work may support other initiatives to set up membrane feeding infrastructure and guide oocyst detection in low transmission settings. METHODS In 2014, an insectary was developed and equipped in Tororo district, Uganda. A colony of Anopheles gambiae s.s. mosquitoes (Kisumu strain) was initiated to support infectivity experiments from participants enrolled in a large cohort study. Venous blood drawn from participants who were naturally infected with malaria parasites was used for membrane feeding assays, using 60-80 mosquitoes per experiment. Approximately 9-10 days after feeding, mosquitoes were dissected, and midguts were stained in mercurochrome and examined by light microscopy for Plasmodium falciparum oocysts and similar structures. In supportive experiments, different staining procedures were compared using in vitro cultured parasites. RESULTS A stable colony of the Kisumu strain of An. gambiae s.s. was achieved, producing 5000-10,000 adult mosquitoes on a weekly basis. Challenges due to temperature fluctuations, mosquito pathogens and pests were successfully overcome. Oocysts were characterized by: presence of malaria pigment, clearly defined edge, round shape within the mosquito midgut or on the peripheral tissue and always attached to the epithelium. The main distinguishing feature between artifacts and mature oocysts was the presence of defined pigment within the oocysts. CONCLUSIONS Oocysts may be mistaken for other structures in mosquito midguts. Distinguishing real oocysts from oocyst-like structures may be challenging for inexperienced microscopists due to overlapping features. The characteristics and guidelines outlined here support identification of oocysts and reliable detection at low oocyst densities. Practical advice on sustaining a healthy mosquito colony for feeding experiments is provided. Following the reported optimization, the established infrastructure in Tororo allows assessments of infectivity of naturally infected parasite carriers.
Collapse
|
research-article |
6 |
16 |
17
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [PMID: 31206035 PMCID: PMC6544137 DOI: 10.12688/wellcomeopenres.14761.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border.
Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors.
Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of
Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for
P. falciparum and
P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for
P. falciparum and
P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
Journal Article |
6 |
15 |
18
|
Maher SP, Vantaux A, Chaumeau V, Chua ACY, Cooper CA, Andolina C, Péneau J, Rouillier M, Rizopoulos Z, Phal S, Piv E, Vong C, Phen S, Chhin C, Tat B, Ouk S, Doeurk B, Kim S, Suriyakan S, Kittiphanakun P, Awuku NA, Conway AJ, Jiang RHY, Russell B, Bifani P, Campo B, Nosten F, Witkowski B, Kyle DE. Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Sci Rep 2021; 11:19905. [PMID: 34620901 PMCID: PMC8497498 DOI: 10.1038/s41598-021-99152-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.
Collapse
|
research-article |
4 |
15 |
19
|
Graumans W, Tadesse FG, Andolina C, van Gemert GJ, Teelen K, Lanke K, Gadisa E, Yewhalaw D, van de Vegte-Bolmer M, Siebelink-Stoter R, Reuling I, Sauerwein R, Bousema T. Semi-high-throughput detection of Plasmodium falciparum and Plasmodium vivax oocysts in mosquitoes using bead-beating followed by circumsporozoite ELISA and quantitative PCR. Malar J 2017; 16:356. [PMID: 28877707 PMCID: PMC5588624 DOI: 10.1186/s12936-017-2011-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/02/2017] [Indexed: 01/03/2023] Open
Abstract
Background The malaria infection status of mosquitoes is commonly determined by microscopic detection of oocysts on the dissected mosquito midgut. This method is labour-intensive, does not allow processing of large numbers of mosquitoes and can be challenging in terms of objective classification of oocysts. Here, a semi-high-throughput bead-beating ELISA method is proposed for detection of the circumsporozoite protein (CSP) followed by confirmation by quantitative PCR (qPCR). Methods Cultured Plasmodium falciparum gametocytes were offered to Anopheles stephensi mosquitoes and examined by microscopy. After bead-beating, mosquito homogenate was examined by CSP-ELISA and 18S qPCR. As negative controls, mosquitoes that were offered a heat-inactivated gametocyte blood meal were used. The CSP-ELISA/qPCR methodology was applied to high and low-intensity infections of cultured P. falciparum gametocytes. A similar methodology optimized for P. vivax was used on mosquitoes that were offered blood from Ethiopian donors who were naturally infected with P. vivax. Results There was considerable variation in CSP-ELISA signal and qPCR values in mosquitoes with low oocyst intensities. There was a strong agreement mosquito positivity by CSP-ELISA and by qPCR in mosquitoes that fed on cultured P. falciparum material (agreement 96.9%; kappa = 0.97) and naturally infected P. vivax parasite carriers [agreement 92.4% (kappa = 0.83)]. Conclusions The proposed bead-beating CSP-ELISA/qPCR methodology considerably increases throughput for the detection of mosquito infection. qPCR remains necessary to confirm infections in mosquitoes with low CSP-ELISA signal. This methodology may prove particularly useful for studies where very low mosquito infection prevalence is expected and study sites where experience with oocyst detection is limited. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2011-9) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
14 |
20
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2018; 3:109. [DOI: 10.12688/wellcomeopenres.14761.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: As part of a pilot study on Targeted Malaria Elimination, entomological investigations were conducted during 24 months in four villages located in Kayin state, Myanmar. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The biodiversity of Anopheles entomo-fauna was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.4 and 1.7 /1,000 mosquitoes for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). We estimated that 65% of the potential infective bites are not prevented by mosquito bed nets because of outdoor and early biters. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
|
7 |
12 |
21
|
Graumans W, Andolina C, Awandu SS, Grignard L, Lanke K, Bousema T. Plasmodium falciparum Gametocyte Enrichment in Peripheral Blood Samples by Magnetic Fractionation: Gametocyte Yields and Possibilities to Reuse Columns. Am J Trop Med Hyg 2020; 100:572-577. [PMID: 30608048 PMCID: PMC6402936 DOI: 10.4269/ajtmh.18-0773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gametocytes are sexual stage malaria parasites responsible for transmission to mosquitoes. Multiple gametocyte-producing clones may be present in natural infections, but the molecular characterization of gametocytes is challenging. Because of their magnetic properties, gametocyte enrichment can be achieved by magnetic fractionation. This increases detection sensitivity and allows specific genotyping of clones that contribute to malaria transmission. Here, we determined the percentage of Plasmodium falciparum gametocytes successfully bound to magnetic activated cell sorting (MACS) LS columns during magnetic fractionation and assessed whether columns can be reused without risking contamination or affecting column binding efficiency. Bound column fractions were quantified using multiplex quantitative reverse transcription polymerase chain reaction (qRT-PCR) for male (pfMGET) and female (CCp4) gametocytes and ring-stage asexual parasites (SBP1). To investigate cross contamination between columns, parasite strain identity was determined by merozoite surface protein 2 genotyping followed by capillary electrophoresis fragment sizing. A reproducible high percentage of gametocytes was bound to MACS LS columns with < 5% gametocytes appearing in the flow-through and < 0.6% asexual ring-stage parasites appearing in the gametocyte fraction. A high yield (> 94%) of gametocyte enrichment was achieved when columns were used up to five times with lower binding success after eight times (79%). We observed no evidence for cross contamination between columns.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
9 |
22
|
Maher SP, Conway AJ, Roth A, Adapa SR, Cualing P, Andolina C, Hsiao J, Turgeon J, Chaumeau V, Johnson M, Palmiotti C, Singh N, Barnes SJ, Patel R, Van Grod V, Carter R, Sun HCS, Sattabongkot J, Campo B, Nosten F, Saadi WM, Adams JH, Jiang RHY, Kyle DE. An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. LAB ON A CHIP 2020; 20:1124-1139. [PMID: 32055808 DOI: 10.1039/c9lc00921c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced cell culture methods for modeling organ-level structure have been demonstrated to replicate in vivo conditions more accurately than traditional in vitro cell culture. Given that the liver is particularly important to human health, several advanced culture methods have been developed to experiment with liver disease states, including infection with Plasmodium parasites, the causative agent of malaria. These models have demonstrated that intrahepatic parasites require functionally stable hepatocytes to thrive and robust characterization of the parasite populations' response to investigational therapies is dependent on high-content and high-resolution imaging (HC/RI). We previously reported abiotic confinement extends the functional longevity of primary hepatocytes in a microfluidic platform and set out to instill confinement in a microtiter plate platform while maintaining optical accessibility for HC/RI; with an end-goal of producing an improved P. vivax liver stage culture model. We developed a novel fabrication process in which a PDMS soft mold embosses hepatocyte-confining microfeatures into polystyrene, resulting in microfeature-based hepatocyte confinement (μHEP) slides and plates. Our process was optimized to form both microfeatures and culture wells in a single embossing step, resulting in a 100 μm-thick bottom ideal for HC/RI, and was found inexpensively amendable to microfeature design changes. Microfeatures improved intrahepatic parasite infection rates and μHEP systems were used to reconfirm the activity of reference antimalarials in phenotypic dose-response assays. RNAseq of hepatocytes in μHEP systems demonstrated microfeatures sustain hepatic differentiation and function, suggesting broader utility for preclinical hepatic assays; while our tailorable embossing process could be repurposed for developing additional organ models.
Collapse
|
|
5 |
8 |
23
|
Andolina C, Ramjith J, Rek J, Lanke K, Okoth J, Grignard L, Arinaitwe E, Briggs J, Bailey J, Aydemir O, Kamya MR, Greenhouse B, Dorsey G, Staedke SG, Drakeley C, Jonker M, Bousema T. Plasmodium falciparum gametocyte carriage in longitudinally monitored incident infections is associated with duration of infection and human host factors. Sci Rep 2023; 13:7072. [PMID: 37127688 PMCID: PMC10150352 DOI: 10.1038/s41598-023-33657-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Malaria transmission depends on the presence of Plasmodium gametocytes that are the only parasite life stage that can infect mosquitoes. Gametocyte production varies between infections and over the course of infections. Infection duration is highly important for gametocyte production but poorly quantified. Between 2017 and 2019 an all-age cohort of individuals from Tororo, eastern Uganda was followed by continuous passive and routine assessments. We longitudinally monitored 104 incident infections from 98 individuals who were sampled once every 28 days and on any day of symptoms. Among infections that lasted ≥ 3 months, gametocyte appearance was near-universal with 96% of infections having detectable gametocytes prior to clearance. However, most infections were of much shorter duration; 55.7% of asymptomatic infections were detected only once. When considering all asymptomatic infections, regardless of their duration, only 36.3% had detectable gametocytes on at least one time-point prior to parasite clearance. Infections in individuals with sickle-cell trait (HbAS) were more likely to have gametocytes detected (Hazard Rate (HR) = 2.68, 95% CI 1.12, 6.38; p = 0.0231) and had gametocytes detected at higher densities (Density Ratio (DR) = 9.19, 95% CI 2.79, 30.23; p = 0.0002) compared to infections in wildtype (HbAA) individuals. Our findings suggest that a large proportion of incident infections is too short in duration and of too low density to contribute to onward transmission.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
8 |
24
|
Pang SC, Andolina C, Malleret B, Christensen PR, Lam-Phua SG, Razak MABA, Chong CS, Li D, Chu CS, Russell B, Rénia L, Ng LC, Nosten F. Singapore's Anopheles sinensis Form A is susceptible to Plasmodium vivax isolates from the western Thailand-Myanmar border. Malar J 2017; 16:465. [PMID: 29145859 PMCID: PMC5689142 DOI: 10.1186/s12936-017-2114-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Singapore has been certified malaria-free by the World Health Organization since November 1982. However, sporadic autochthonous malaria outbreaks do occur. In one of the most recent outbreaks of vivax malaria, an entomological investigation identified Anopheles sinensis as the most probable vector. As metaphase karyotype studies divided An. sinensis into two forms, A and B, with different vector competence: the investigation of vector competence of An. sinensis found in Singapore was thus pursued using Plasmodium vivax field isolates from the Thailand-Myanmar border. METHODS Adults and larvae An. sinensis were collected from Singapore from 14 different locations, using various trapping and collection methods between September 2013 and January 2016. Molecular identification of An. sinensis species were conducted by amplifying the ITS2 and CO1 region using PCR. Experimental infections of An. sinensis using blood from seven patients infected with P. vivax from the Thailand-Myanmar border were conducted with Anopheles cracens (An. dirus B) as control. RESULTS Phylogenetic analysis showed that An. sinensis (F22, F2 and collected from outbreak areas) found in Singapore was entirely Form A, and closely related to An. sinensis Form A from Thailand. Artificial infection of these Singapore strain An. sinensis Form A resulted in the development of oocysts in four experiments, with the number of sporozoites produced by one An. sinensis ranging from 4301 to 14,538. CONCLUSIONS Infection experiments showed that An. sinensis Form A from Singapore was susceptible to Thai-Myanmar P. vivax strain, suggesting a potential role as a malaria vector in Singapore.
Collapse
|
research-article |
8 |
7 |
25
|
Soontarawirat I, Andolina C, Paul R, Day NPJ, Nosten F, Woodrow CJ, Imwong M. Plasmodium vivax genetic diversity and heterozygosity in blood samples and resulting oocysts at the Thai-Myanmar border. Malar J 2017; 16:355. [PMID: 28870214 PMCID: PMC5584506 DOI: 10.1186/s12936-017-2002-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
Background Polyclonal blood-stage infections of Plasmodium vivax are frequent even in low transmission settings, allowing meiotic recombination between heterologous parasites. Empirical data on meiotic products are however lacking. This study examined microsatellites in oocysts derived by membrane feeding of mosquitoes from blood-stage P. vivax infections at the Thai–Myanmar border. Methods Blood samples from patients presenting with vivax malaria were fed to Anopheles cracens by membrane feeding and individual oocysts from midguts were obtained by dissection after 7 days. DNA was extracted from oocysts and parental blood samples and tested by microsatellite analysis. Results A focused study of eight microsatellite markers was undertaken for nine blood stage infections from 2013, for which derived oocysts were studied in six cases. One or more alleles were successfully amplified for 131 oocysts, revealing high levels of allelic diversity in both blood and oocyst stages. Based on standard criteria for defining minor alleles, there was evidence of clear deviation from random mating (inbreeding) with relatively few heterozygous oocysts compared to variance across the entire oocyst population (FIT = 0.89). The main explanation appeared to be natural compartmentalisation at mosquito (FSC = 0.27) and human stages (FCT = 0.68). One single human case produced a total of 431 successfully amplified loci (across 70 oocysts) that were homozygous and identical to parental alleles at all markers, indicating clonal infection and transmission. Heterozygous oocyst alleles were found at 15/176 (8.5%) successfully amplified loci in the other five cases. There was apparently reduced oocyst heterozygosity in individual oocysts compared to diversity within individual mosquitoes (FIS = 0.55), but this may simply reflect the difficulty of detecting minor alleles in oocysts, given the high rate of amplification failure. Inclusion of minor allele peaks (irrespective of height) when matching peaks were found in related blood or oocyst samples, added 11 minor alleles for 9 oocysts, increasing the number of heterozygous loci to 26/176 (14.8%; p = 0.096). Conclusion There was an apparently low level of heterozygous oocysts but this can be explained by a combination of factors: relatively low complexity of parental infection, natural compartmentalisation in humans and mosquitoes, and the methodological challenge of detecting minor alleles. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2002-x) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
5 |