1
|
Liao ZH, Kuo TC, Kao CH, Chou TM, Kao YH, Huang RN. Identification of the chitinase genes from the diamondback moth, Plutella xylostella. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:769-780. [PMID: 27417424 DOI: 10.1017/s0007485316000511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitinases have an indispensable function in chitin metabolism and are well characterized in numerous insect species. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitinases of the moth is presently limited. In the present study, using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies, four chitinase genes of P. xylostella were cloned, and an exhaustive search was conducted for chitinase-like sequences from the P. xylostella genome and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, we identified 15 chitinase genes from P. xylostella. Two of the gut-specific chitinases did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. Moreover, in our study, group VIII chitinase was not identified. The structures, classifications and expression patterns of the chitinases of P. xylostella were further delineated, and with this information, further investigations on the functions of chitinase genes in DBM could be facilitated.
Collapse
|
2
|
Wu TM, Lin WR, Kao CH, Hong CY. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. PLANT MOLECULAR BIOLOGY 2015; 87:555-564. [PMID: 25636203 DOI: 10.1007/s11103-015-0290-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Glutathione reductase (GR) is one of important antioxidant enzymes in plants. This enzyme catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) with the accompanying oxidation of NADPH. Previously, we showed that salt-stress-responsive GR3 is a functional protein localized in chloroplasts and mitochondria in rice. To learn more about the role of GR3 in salt-stress tolerance, we investigated the response to 100 mM NaCl treatment in wild-type rice (WT); GR3 knockout mutant of rice (gr3); and the functional gr3-complementation line (C1). Rice GR3 was primarily expressed in roots at the seedling stage and ubiquitously expressed in all tissues except the sheath at heading stage. GR3 promoter-GUS was expressed in the vascular cylinder and cortex of root tissues in rice seedlings, vascular tissue of nodes, embryo and aleurone layer of seeds, and young flowers. Under both normal and salt-stress conditions, total GR activity was decreased by 20 % in gr3. Oxidative stress, indicated by malondialdehyde content, was greater in gr3 than the WT under salt stress. As compared with the WT, gr3 was sensitive to salt and methyl viologen; it showed inhibited growth, decreased maximal efficiency of photosystem II, decreased GSH and GSSG contents, and the ratio of GSH to GSSG. Conversely, the gr3-complementation line C1 rescued the tolerance to methyl viologen and salinity and recovered the growth and physiological damage caused by salinity. These results reveal that GR3 plays an important role in salt stress tolerance by regulating the GSH redox state in rice.
Collapse
|
3
|
Liu CH, Chao YY, Kao CH. Effect of potassium deficiency on antioxidant status and cadmium toxicity in rice seedlings. BOTANICAL STUDIES 2013; 54:2. [PMID: 28510845 PMCID: PMC5383923 DOI: 10.1186/1999-3110-54-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cadmium (Cd) is one of the most toxic heavy metals and inhibits physiological processes of plants. Potassium (K) is an essential macronutrient in plants. K deficiency and Cd stress represent two different abiotic stress conditions that occur in the field simultaneously. In this study, effects of K deficiency on antioxidant status and Cd toxicity in rice seedlings were investigated. RESULTS K deficiency significantly decreased K concentration in shoots and roots. However, fresh weight and dry weight of rice seedlings were not affected by K deficiency. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase) in K-deficient leaves were higher than respective control leaves. However, K deficiency had no effect on the content of antioxidants (ascorbate and glutathione). Cd toxicity was judged by the decrease in biomass production, chlorosis, and induction of oxidative stress. Based on these criteria, we demonstrated that K deficiency protected rice seedling from Cd stress. Moreover, chlorophyll concentration was higher in K-deficient shoots and roots than their respective control shoots and roots. CONCLUSIONS Our results indicated that K deficiency protects rice seedlings from Cd toxicity. This protective effect of K deficiency is mainly due to enhanced antioxidant enzyme activities but not inhibition of Cd uptake.
Collapse
|
4
|
Wu TM, Lin WR, Kao YT, Hsu YT, Yeh CH, Hong CY, Kao CH. Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. PLANT MOLECULAR BIOLOGY 2013; 83:379-390. [PMID: 23783412 DOI: 10.1007/s11103-013-0095-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Glutathione reductases (GRs) are important components of the antioxidant machinery that plants use to respond against abiotic stresses. In rice, one cytosolic and two chloroplastic GR isoforms have been identified. In this work, we describe the cloning and characterization of the full-length cDNA encoding OsGR3, a chloroplast-localized GR that up to now was considered as a non-functional enzyme because of assumed lack of N-terminal conserved domains. The expression of OsGR3 in E. coli validated that it can be translated as a protein with GR activity. OsGR3 shows 76 and 53 % identity with OsGR1 (chloroplastic) and OsGR2 (cytosolic), respectively. Phylogenetic analysis revealed 2 chloroplastic GRs in Poaceae species, including rice, sorghum and brachypodium, but only one chloroplastic GR in dicots. A plastid transit peptide is located at the N terminus of OsGR3, and genetic transformation of rice with a GR3-GFP fusion construct further confirmed its localization in chloroplasts. Furthermore, OsGR1 and OsGR3 are also targeted to mitochondria, which suggest a combined antioxidant mechanism in both chloroplasts and mitochondria. However, both isoforms showed a distinct response to salinity: the expression of OsGR3 but not OsGR1 was induced by salt stress. In addition, the transcript level of OsGR3 was greatly increased with salicylic acid treatment but was not significantly affected by methyl jasmonate, dehydration or heat shock stress. Our results provide new clues about the possible roles of functional OsGR3 in salt stress and biotic stress tolerance.
Collapse
|
5
|
Huei Kao C. Role of rice heme oxygenase in lateral root formation. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25766. [PMID: 23887491 PMCID: PMC4091076 DOI: 10.4161/psb.25766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 05/31/2023]
Abstract
Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. In rice, exposure to auxin, methyl jasmonate (MJ), apocynin, and CoCl2 has been shown to increase LR formation. This review provides evidence showing a close link between rice heme oxygenase (HO) and LR formation. The effect of auxin and MJ is nitric oxide (NO) dependent, whereas that of apocynin requires H2O2. The effect of CoCl2 on the LR formation could be by some other pathway unrelated to NO and H2O2. This review also highlights future lines of research that should increase our knowledge of HO-involved LR formation in rice.
Collapse
|
6
|
Hsu YY, Chao YY, Kao CH. Cobalt chloride-induced lateral root formation in rice: the role of heme oxygenase. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1075-81. [PMID: 23566873 DOI: 10.1016/j.jplph.2013.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 05/04/2023]
Abstract
Lateral roots (LRs) perform the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. Recent findings suggest that heme oxygenase (HO) plays an important role in LR development. In this study, we examined the effect of cobalt chloride (CoCl2) on LR formation and HO expression in rice. Treatment with CoCl2 induced LR formation and HO activity. We further observed that CoCl2 could induce the expression of OsHO1 but not OsHO2. CoCl2-increased HO activity occurred before LR formation. Zinc protoporphyrin IX (ZnPPIX, the specific inhibitor of HO) and hemoglobin (the carbon monoxide/nitric oxide scavenger) reduced LR formation, HO activity, and OsHO1 expression. Application of biliverdin, a product of HO-catalyzed reaction, to CoCl2-treated rice seedlings reversed the ZnPPIX-inhibited LR formation and ZnPPIX-decreased HO activity. CoCl2 had no effect on H2O2 content and nitric oxide production. Moreover, application of ascorbate, a H2O2 scavenger, failed to affect CoCl2-promoted LR formation and HO activity. It is concluded that HO is required for CoCl2-promoted LR formation in rice.
Collapse
|
7
|
Lin MC, Lee CF, Lin CL, Wu YC, Wang HE, Chen CL, Sung FC, Kao CH. Dental diagnostic X-ray exposure and risk of benign and malignant brain tumors. Ann Oncol 2013; 24:1675-9. [PMID: 23406732 DOI: 10.1093/annonc/mdt016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study evaluates the risk of benign brain tumors (BBTs) and malignant brain tumors (MBTs) associated with dental diagnostic X-ray, using a large population-based case-control study. MATERIALS AND METHODS We identified 4123 BBT cases and 16 492 controls without BBT (study 1) and 197 MBT cases and 788 controls without MBT (study 2) from Taiwan National Health Insurance claim data. The risks of both types of tumor were estimated in association with the frequency of received dental diagnostic X-ray. RESULTS The mean ages were ~44.2 years in study 1 and 40.6 years in study 2. Multivariable unconditional logistic regression analysis showed that the risk of BBT increases as the frequency of received dental diagnostic X-ray increases. The BBT odds ratio increased from 1.33 [95% confidence interval (CI) 1.22-1.44] for those with annual mean X-ray examination of less than one to 1.65 (95% CI 1.37-1.98) for those with three or more X-ray examinations, after controlling for comorbidities. No significant association was found between MBTs and dental diagnostic X-ray exposure. CONCLUSIONS Exposure to dental diagnostic X-rays in oral and maxillofacial care increases the risk of BBTs, but not MBTs.
Collapse
|
8
|
Chen YH, Chao YY, Hsu YY, Kao CH. Heme oxygenase is involved in H(2)O (2)-induced lateral root formation in apocynin-treated rice. PLANT CELL REPORTS 2013; 32:219-26. [PMID: 23076168 DOI: 10.1007/s00299-012-1356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/24/2012] [Accepted: 10/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Apocynin is a natural organic compound structurally related to vanillin. We demonstrated that hydrogen peroxide and heme oxygenase participated in apocynin-induced lateral root formation in rice. Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Information concerning the effect of apocynin on plants is limited. In this study, we examined the effect of apocynin on lateral root (LR) formation in rice. Treatment with apocynin induced LR formation and increased H(2)O(2) production, but had no effect on nitric oxide production. Diphenyleneiodonium chloride, an inhibitor of H(2)O(2) generating NADPH oxidase, was effective in reducing apocynin-induced H(2)O(2) production and LR formation. Apocynin treatment also increased superoxide dismutase activity and decreased catalase activity. H(2)O(2) application was able to increase the number of LRs. Moreover, H(2)O(2) production caused by H(2)O(2) and apocynin was localized in the root area corresponding to the LR emergence. Treatment with H(2)O(2) and apocynin also increased heme oxygenase (HO) activity and induced OsHO1 mRNA expression. Lateral root formation and HO activity induced by H(2)O(2) and apocynin were reduced by Zn protoporphyrin IX (the specific inhibitor of HO). Our data suggest that both H(2)O(2) and HO are required for apocynin-induced LR formation in rice.
Collapse
|
9
|
Hsu YY, Chao YY, Kao CH. Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:63-9. [PMID: 22989945 DOI: 10.1016/j.jplph.2012.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 05/18/2023]
Abstract
Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of methyl jasmonate (MJ) on LR formation in rice. Treatment with MJ induced LR formation and heme oxygenase (HO) activity. As well, MJ could induce OsHO1 mRNA expression. Zinc protoporphyrin IX (the specific inhibitor of HO) and hemoglobin [the carbon monoxide/nitric oxide (NO) scavenger] reduced LR formation, HO activity and OsHO1 expression. LR formation and HO activity induced by MJ was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-oxide. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin (CaM) antagonists on LR formation induced by MJ were also examined. All these inhibitors were effective in reducing the action of MJ. However, Ca(2+) chelators and Ca(2+) channel inhibitors induced HO activity when combining with MJ further. It is concluded that Ca(2+) may regulate MJ action mainly through CaM-dependent mechanism.
Collapse
|
10
|
Yen Hsu Y, Chao YY, Huei Kao C. Biliverdin-promoted lateral root formation is mediated through heme oxygenase in rice. PLANT SIGNALING & BEHAVIOR 2012; 7:885-7. [PMID: 22751314 PMCID: PMC3583981 DOI: 10.4161/psb.20458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this study, we examined the effect of biliverdin (BV), a product of heme oxygenase (HO) catalyzed reaction, on lateral root (LR) formation in rice. Treatment with BV induced LR formation and HO activity. As well, BV, could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) reduced LR number, HO activity and OsHO1 mRNA level induced by BV. Our data suggest that HO is required for BV-induced LR formation in rice.
Collapse
|
11
|
Cho SC, Chao YY, Kao CH. Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:892-898. [PMID: 22420996 DOI: 10.1016/j.jplph.2012.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
While growing in the field, plants may encounter several different forms of abiotic stress simultaneously, rather than a single stress. In this study, we investigated the effects of calcium (Ca) deficiency on cadmium (Cd) toxicity in rice seedlings. Calcium deficiency alone decreased the length, fresh and dry weight, and the Ca concentration in shoots and roots. Also, the content of glutathione (GSH), the ratio of GSH/oxidized glutathione, and the activity of catalase were lower in Ca-deficient leaves compared to control leaves. Exogenous Cd caused a decrease in the contents of chlorophyll and protein, and induced oxidative stress. Based on these stress indicators, we found that Ca deficiency enhanced Cd toxicity in rice seedlings. Under exogenous Cd application, internal Cd concentrations were higher in Ca-deficient shoots and roots than in the respective controls. Moreover, we observed that Ca deficiency decreased heat-shock (HS) induced expression of HS protein genes Oshsp17.3, Oshsp17.7, and Oshsp18.0 in leaves thereby weakening the protection system and increasing Cd stress. In conclusion, Ca deficiency enhances Cd toxicity, and Ca may be required for HS response in rice seedlings.
Collapse
|
12
|
Chen YH, Chao YY, Hsu YY, Hong CY, Kao CH. Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice. PLANT CELL REPORTS 2012; 31:1085-91. [PMID: 22262313 DOI: 10.1007/s00299-012-1228-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/01/2012] [Accepted: 01/08/2012] [Indexed: 05/24/2023]
Abstract
Lateral root (LR) development performs the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of nitric oxide (NO), auxin, and hemin (Hm) on LR formation in rice. Treatment with Hm [a highly effective heme oxygenase (HO) inducer], sodium nitroprusside (SNP, an NO donor), or indole-3-butyric acid (IBA, a naturally occurring auxin) induced LR formation and HO activity. LR formation and HO activity induced by SNP and IBA but not Hm was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. As well, Hm, SNP, and IBA could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) and hemoglobin (the carbon monoxide/NO scavenger) reduced LR number and HO activity induced by Hm, SNP, and IBA. Our data suggest that HO is required for Hm-, auxin-, and NO-induced LR formation in rice.
Collapse
|
13
|
Chou TS, Chao YY, Kao CH. Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:478-86. [PMID: 22196946 DOI: 10.1016/j.jplph.2011.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 05/20/2023]
Abstract
Hydrogen peroxide (H2O2) is considered a signal molecule inducing cellular stress. Both heat shock (HS) and Cd can increase H2O2 content. We investigated the involvement of H2O2 in HS- and Cd-mediated changes in the expression of ascorbate peroxidase (APX) and glutathione reductase (GR) in leaves of rice seedlings. HS treatment increased the content of H2O2 before it increased activities of APX and GR in rice leaves. Moreover, HS-induced H2O2 production and APX and GR activities could be counteracted by the NADPH oxidase inhibitors dipehenylene iodonium (DPI) and imidazole (IMD). HS-induced OsAPX2 gene expression was associated with HS-induced APX activity but was not regulated by H2O2. Cd-increased H2O2 content and APX and GR activities were lower with than without HS. Cd did not increase the expression of OsAPX and OsGR without HS treatment. Cd increased H2O2 content by Cd before it increased APX and GR activities without HS. Treatment with DPI and IMD effectively inhibited Cd-induced H2O2 production and APX and GR activities. Moreover, the effects of DPI and IMD could be rescued with H2O2 treatment. H2O2 may be involved in the regulation of HS- and Cd-increased APX and GR activities in leaves of rice seedlings.
Collapse
|
14
|
Chen YH, Kao CH. Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. PROTOPLASMA 2012; 249:187-95. [PMID: 21491156 DOI: 10.1007/s00709-011-0277-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 04/03/2011] [Indexed: 05/18/2023]
Abstract
In the present study, the role of nitric oxide (NO) in the regulation of lateral root (LR) formation in rice was examined. Application of sodium nitroprusside (SNP; a NO donor) and indole-3-butyric acid (IBA; a naturally occurring auxin) to rice seedlings induced LR formation. The effect is specific for NO because the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide (cPTIO) blocked the action of SNP and IBA. Endogenous NO was detected by the specific fluorescence probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. SNP- and IBA-induced NO fluorescence was specifically suppressed by cPTIO. Nitrate reductase (NR) inhibitor sodium tungstate completely inhibited IBA-induced LR formation and NO fluorescence. However, nitric oxide synthase inhibitor N (G)-nitro-L: -arginine methyl ester hydrochloride slightly reduced IBA-induced LR formation and NO generation. It appears that NO generation that occurs in response to IBA might primarily involve NR activity. Moreover, NO production caused by SNP and IBA was localized in root area corresponding to LR emergence. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin antagonists on LR formation induced by SNP and IBA were also examined. All these inhibitors were effective in reducing the action of SNP and IBA. However, Ca(2+) chelators and Ca(2+)-channel inhibitors had no effect on SNP- and IBA-induced NO generation. It is concluded that cytosolic levels of Ca(2+) may regulate SNP and IBA action through calmodulin-dependent mechanism.
Collapse
|
15
|
Chou TS, Chao YY, Huang WD, Hong CY, Kao CH. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1021-30. [PMID: 21216027 DOI: 10.1016/j.jplph.2010.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals and inhibits physiological processes of plants. Magnesium (Mg) is known as one of the essential nutrients for plants. Mg deficiency in plants affects metabolic processes. Plants grown in the field may encounter several abiotic stresses, rather than a single stress. Thus, the relationship between Mg nutrition and Cd toxicity is of ecological importance. In this study, effects of Mg deficiency on antioxidant systems and Cd toxicity in rice seedlings were investigated. Mg deficiency significantly decreased Mg concentrations in shoot and roots of rice seedlings. However, fresh weight and dry weight of rice seedlings were not affected by Mg deficiency. The contents of ascorbate and glutathione (GSH), the ratio of GSH/oxidized glutathione, and the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in Mg-deficient leaves were higher than respective control leaves. Cd toxicity was judged by the decrease in biomass production, decrease in chlorophyll, and induction of oxidative stress. Based on these criteria, we demonstrated that Mg deficiency protected rice seedlings from Cd stress. Moreover, chlorophyll destruction by paraquat was higher in detached leaves from Mg-sufficient than Mg-deficient seedlings. Cd concentration was higher in Mg-deficient shoot and roots than their respective control shoot and roots, suggesting that the protective effect of Mg deficiency against Cd toxicity is not due to reduction of Cd uptake. Moreover, we observed that Cd-decreased Fe and Zn contents in Mg-deficient seedlings were more pronounced than that in Mg-sufficient seedlings. Of particular interest is the finding that the increase in OsIRT1, OsZIP1, and OsZIP3 transcripts caused by Cd in Mg-deficient roots was greater than that in control roots.
Collapse
|
16
|
Lin YL, Chao YY, Kao CH. Exposure of rice seedlings to heat shock protects against subsequent Cd-induced decrease in glutamine synthetase activity and increase in specific protease activity in leaves. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1061-1065. [PMID: 20399533 DOI: 10.1016/j.jplph.2010.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
In the present study, we investigated the effect of heat shock (HS) on the subsequent Cd-induced decrease in the activity of glutamine synthetase (GS) and increase in the specific activity of protease in rice leaves. HS exposure of rice seedlings for 3h in the dark was effective in reducing subsequent Cd-induced decrease in the activity of glutamine synthetase and increase in the specific activity of protease. The effect of HS can be mimicked by pretreatment of rice seedlings with exogenous H(2)O(2) or reduced glutathione (GSH) under non-HS conditions. We also found that HS protected against subsequent Cd-induced decrease in the activity of GS and increase in the specific activity of protease can be counteracted by imidazole, a NADPH oxidase inhibitor. Pretreatment with buthione sulfoximine (a GSH synthesis inhibitor) under HS conditions enhanced subsequent Cd effects on the activity of GS and the specific activity of protease. Moreover, the effect of BSO can be reversed by the addition of GSH. The mechanisms of the protective effect of HS effect against subsequent Cd effects are discussed.
Collapse
|
17
|
Chao YY, Hong CY, Kao CH. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:374-81. [PMID: 20144872 DOI: 10.1016/j.plaphy.2010.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) toxicity of rice (Oryza sativa L. cv. Taichung Native 1) seedlings was evaluated by the decrease in chlorophyll content and the increase in malondialdehyde (MDA) in the second leaves of rice seedlings. CdCl2 (5 microM) treatment was accompanied by a decrease in the contents of ascorbic acid (AsA) and AsA + dehydroascorbate (DHA) and in the ratios of AsA/DHA in leaves. However, CdCl2 treatment resulted in an increase in DHA content in leaves. Moreover, the decrease in AsA content was prior to the occurrence of chlorosis and associated with the increase in MDA content in the leaves of seedlings treated with Cd. Pretreatment with 0.5 mM AsA or L-galactono-1,4-lactone (GalL), the biosynthetic precursor of AsA, for 6 h resulted in an increase in the contents of AsA and reduced glutathione (GSH), the ratios of AsA/DHA and GSH/oxidized glutathione, and the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in the leaves of rice seedlings. Quantitative RT-PCR was applied to quantify the mRNA levels for OsAPX and OsGR genes from rice leaves to examine the effect of AsA or GalL pretreatment on the expression of OsAPX and OsGR genes in rice leaves. The expression of OsAPX2, OsAPX3, OsAPX4, OsAPX5, OsAPX6, OsAPX7, and OsGR1 was increased by AsA or GalL pretreatment. Rice seedlings pretreated with AsA or GalL were observed to reduce the subsequent Cd-induced toxicity. Our results suggest that AsA content may play a role in regulating Cd toxicity of rice seedlings.
Collapse
|
18
|
Hong CY, Chao YY, Yang MY, Cho SC, Huei Kao C. Na(+) but not Cl(-) or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1598-1606. [PMID: 19423186 DOI: 10.1016/j.jplph.2009.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 05/27/2023]
Abstract
Glutathione reductase (GR, EC 1,6.4.2) is an important reactive oxygen species-scavenging enzyme. The present study examined the relative importance of Na(+), Cl(-), and the osmotic component in NaCl-induced expression of Oryza sativa glutathione reductase (OsGR) genes in rice roots. Semi-quantitative RT-PCR was used to quantify the mRNA levels for one cytosolic (OsGR2) and two chloroplastic (OsGR1 and OsGR3) isoforms of GR identified in the rice genome. The expression of OsGR2 and OsGR3 but not OsGR1 was increased in rice roots treated with NaCl. Treatment with 150 mM NaCl and 150 mM NaNO(3) affected OsGR2 and OsGR3 induction similarly, which suggests that Na(+) but not Cl(-) is required for the NaCl-induced expression of OsGR2 and OsGR3. We also show that Na(+) but not Cl(-) is required for NaCl-enhanced GR activity and hydrogen peroxide (H(2)O(2)) production in rice roots. In addition to its component of ion toxicity, salt concentration in soil results in an osmotic effect. Here, we show that OsGR2 and OsGR3 expression, GR activity, and H(2)O(2) content were not affected at a concentration of mannitol iso-osmotic with 150 mM NaCl. NaCl-induced OsGR2 and OsGR3 in rice roots could be associated with Na(+) but not an osmotic component.
Collapse
|
19
|
Hung KT, Cheng DG, Hsu YT, Kao CH. Abscisic acid-induced hydrogen peroxide is required for anthocyanin accumulation in leaves of rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1280-1287. [PMID: 18160127 DOI: 10.1016/j.jplph.2007.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 05/25/2023]
Abstract
The role of hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced anthocyanin accumulation in detached and intact leaves of rice seedlings was investigated. Treatment with ABA resulted in an accumulation of anthocyanins in detached rice leaves. Dimethylthiourea, a chemical trap for H(2)O(2), was observed to be effective in inhibiting ABA-induced accumulation of anthocyanins. Inhibitors of NADPH oxidase (diphenyleneiodonium chloride and imidazole), phosphatidylinositol 3-kinase (wortmannin and LY 294002), and a donor of nitric oxide (N-tert-butyl-alpha-phenylnitrone), which have previously been shown to prevent ABA-induced H(2)O(2) accumulation in detached rice leaves, inhibited ABA-induced anthocyanin increase. Exogenous application of H(2)O(2), however, was found to increase the anthocyanin content of detached rice leaves. In terms of H(2)O(2) accumulation, intact (attached) leaves of rice seedlings of cultivar Taichung Native 1 (TN1) are ABA sensitive and those of cultivar Tainung 67 (TNG67) are ABA insensitive. Upon treatment with ABA, H(2)O(2) and anthocyanins accumulated in leaves of TN1 seedlings but not in leaves of TNG67. Our results, obtained from detached and intact leaves of rice seedlings, suggest that H(2)O(2) is involved in ABA-induced anthocyanin accumulation in this species.
Collapse
|
20
|
Hong CY, Kao CH. NaCl-induced expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings is not associated with osmotic component. PLANT SIGNALING & BEHAVIOR 2008; 3:199-201. [PMID: 19704658 PMCID: PMC2634116 DOI: 10.4161/psb.3.3.5541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/08/2008] [Indexed: 05/16/2023]
Abstract
Ascorbate peroxidase (APx; EC 1.11.1.11) plays an important role in scavenging the toxic effects of H(2)O(2) in higher plants. Eight types of APx have been described for Oryza sativa: two cytosolic (OsAPx1 and OsAPx2), two putative peroxisomal (OsAPx3 and OsAPx4), and four chloroplastic isoforms (OsAPx5, OsAPx6, OsAPx7 and OsAPx8). We have recently demonstrated that Na(+) but not Cl(-) is required for the NaCl-induced expression of OsAPx8 in rice roots. Evidence is also provided to show that Na(+)-induced expression of OsAPx8 is mediated through an accumulation of ABA. In addition to its known component of ion toxicity, there is an osmotic effect resulting from salt concentration in the soil. Here we show that ABA level but not OsAPx8 expression was enhanced at a concentration of mannitol iso-osmotic with 150 mM NaCl suggests that NaCl-enhanced OsAPx8 expression is not associated with osmotic component.
Collapse
|
21
|
Hung KT, Kao CH. The participation of hydrogen peroxide in methyl jasmonate-induced NH(4)(+) accumulation in rice leaves. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1469-79. [PMID: 17215059 DOI: 10.1016/j.jplph.2006.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/14/2006] [Accepted: 10/17/2006] [Indexed: 05/13/2023]
Abstract
Ammonium is a central intermediate in the nitrogen metabolism of plants. We have previously shown that methyl jasmonate (MJ) not only increases the content of H(2)O(2), but also causes NH(4)(+) accumulation in rice leaves. More recently, H(2)O(2) is thought to constitute a general signal molecule participating in the recognition of and the response to stress factors. In this study, we examined the role of H(2)O(2) as a link between MJ and subsequent NH(4)(+) accumulation in detached rice leaves. MJ treatment resulted in an accumulation of NH(4)(+) in detached rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease appear to be the enzymes responsible for the accumulation of NH(4)(+) in MJ-treated detached rice leaves. Dimethylthiourea (DMTU), a chemical trap for H(2)O(2), was observed to be effective in inhibiting MJ-induced NH(4)(+) accumulation in detached rice leaves. Scavengers of free radicals (sodium benzoate, SB, and glutathione, GSH), nitric oxide donor (N-tert-butyl-alpha-phenylnitrone, PBN), the inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI, and imidazole, IMD), and inhibitors of phosphatidylinositol 3-kinase (wortmannin, WM, and LY 294002, LY), which have previously been shown to prevent MJ-induced H(2)O(2) production in detached rice leaves, inhibited MJ-induced NH(4)(+) accumulation. Similarly, changes in enzymes responsible for NH(4)(+) accumulation induced by MJ were observed to be inhibited by DMTU, SB, GSH, PBN DPI, IMD, WM, or LY. Seedlings of rice cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)-sensitive and those of cultivar Tainung 67 (TNG67) are JA-insensitive. On treatment with JA, H(2)O(2) accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ- and abscisic acid-induced accumulation of NH(4)(+) and changes in enzymes responsible for NH(4)(+) accumulation in detached rice leaves, suggesting that the action of MJ and ABA is ethylene dependent.
Collapse
|
22
|
Chen JJH, Wang JY, Chang YM, Su SY, Chang CT, Sun SS, Kao CH, Lee CC. Regional cerebral blood flow between primary and concomitant fibromyalgia patients: a possible way to differentiate concomitant fibromyalgia from the primary disease. Scand J Rheumatol 2007; 36:226-32. [PMID: 17657679 DOI: 10.1080/03009740601153790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Technetium-99m ethyl cysteinate dimer (Tc-99m ECD) brain single photon emission computed tomography (SPECT) has been used to detect abnormal regional cerebral blood flow (rCBF) in women with primary fibromyalgia (FM). The main aim of this study was to investigate the rCBF deficit in concomitant FM patients and compare it with primary FM. METHODS An observational study was designed to analyse the SPECT findings in 92 female patients recruited from January 2002 to January 2004. Differences in the rCBF hypoperfusive areas between 49 primary and 29 concomitant FM patients were assessed in different areas of the brain using the chi(2)-test for statistical significance. RESULTS Tc-99m ECD brain SPECT in 71 FM patients revealed heterogeneous rCBF in comparison to the homogeneous scan in 14 control patients. The most prominent rCBF hypoperfusive region in both primary and concomitant FM groups was the left temporoparietal area, followed by the thalamus, right temporoparietal, frontal, and basal ganglia areas. Differences in rCBF hypoperfusion in these areas for both FM groups were not significant (all p>0.5). CONCLUSIONS Reduced rCBF at cortical regions, in addition to previously reported areas at the thalamus and the subcortical nucleus, in FM patients was demonstrated in this study. The perfusion deficit areas were similar between primary and concomitant FM when the underlying disease activity was quiescent. The feasibility of using this neuroimaging study to differentiate FM from the primary disease, such as rheumatoid arthritis (RA)-associated depression and neuropsychiatric lupus, should be considered.
Collapse
|
23
|
Hong CY, Hsu YT, Tsai YC, Kao CH. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3273-83. [PMID: 17916638 DOI: 10.1093/jxb/erm174] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species are thought to play an important role in NaCl stress. Therefore, the expression patterns of the gene family encoding the H(2)O(2)-scavenging enzyme ascorbate peroxidase (APx; EC1.11.1.11) were analysed in roots of etiolated rice (Oryza sativa L.) seedlings in response to NaCl stress. Applying semi-quantitative RT-PCR, the mRNA levels were quantified for two cytosolic (OsAPx1 and OsAPx2), two peroxisomal (OsAPx3 and OsAPx4), and four chloroplastic (OsAPx5, OsAPx6, OsAPx7, and OsAPx8) isoforms identified in the rice genome. NaCl at 150 mM and 200 mM increased the expression of OsAPx8 and the activities of APx, but had no effect on the expression of OsAPx1, OsAPx2, OsAPx3, OsAPx4, OsAPx5, OsAPx6, and OsAPx7 in rice roots. However, NaCl at 300 mM up-regulated OsAPx8 expression, increased APx activity, and down-regulated OsAPx7 expression, but had no effect on the expression of OsAPx1, OsAPx2, OsAPx3, OsAPx4, OsAPx5, and OsAPx6. The accumulation of abscisic acid (ABA) in response to NaCl was observed in rice roots. Exogenously applied ABA also specifically enhanced the expression of OsAPx8 in rice roots. The accumulation of ABA in rice roots in response to NaCl was inhibited by fluridone (Flu), an inhibitor of carotenoid biosynthesis. Flu treatment also suppressed NaCl-enhanced OsAPx8 expression and APx activity. The effect of Flu on the expression of OsAPx8 and increase in APx activity was reversed by the application of ABA. It appears that NaCl-enhanced expression of OsAPx8 in rice roots is mediated through an accumulation of ABA. Evidence is provided to show that Na(+) but not Cl(-) is required for enhancing OsAPx8 expression, APx activity, and ABA accumulation in rice roots treated with NaCl. H(2)O(2) treatment resulted in an enhancement of OsAPx8 induction but no accumulation of ABA. Diphenylene iodonium treatment, which is known to inhibit NaCl-induced accumulation of H(2)O(2) in rice roots, did not suppress OsAPx8 induction and ABA accumulation by NaCl. It appears that H(2)O(2) is not involved in the regulation of NaCl-induced OsAPx8 expression in rice roots.
Collapse
|
24
|
Chin C, Chen YS, Lee SSJ, Wann SR, Lin HH, Lin WR, Huang CK, Tsai HC, Kao CH, Yen MY, Liu YC. Fever of Unknown Origin in Taiwan. Infection 2006; 34:75-80. [PMID: 16703296 DOI: 10.1007/s15010-006-5010-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 09/29/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fever of unknown origin (FUO) is a challenging problem worldwide. There was no prospective study of FUO in the past two decades in Taiwan. A prospective study was conducted. MATERIALS AND METHODS The prospective study was undertaken from March 2001 to May 2002. All patients fulfilling the modified criteria for FUO, either admitted, referred or consulted in a medical center in southern Taiwan, were enrolled for analysis. RESULTS A total of 94 cases met the criteria of FUO. The final diagnoses of FUO consisted of 54 infectious diseases (57.4%), 8 hematologic/neoplastic (8.5%), 7 noninfectious inflammatory (7.4%), 8 miscellaneous (8.5%) and 17 undiagnosed (18.1%) cases. The single most common cause of FUO was tuberculosis. Some infectious diseases, such as rickettsiosis and melioidosis, were rarely reported in western countries. Three patients with hemophagocytotic syndrome without ascertainable etiologies were present with FUO in this study. Between the patients with and those without a final diagnosis, the short-term survival (3 months) was compared by the Kaplan-Meier analysis, which revealed no difference. CONCLUSIONS Mycobacteriosis is still the leading cause of FUO in Taiwan and it is important to identify this treatable disease from all causes of FUO. This study has showed geographical variation among the studies of FUO.
Collapse
|
25
|
Yu CC, Hung KT, Kao CH. Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1319-30. [PMID: 16425450 DOI: 10.1016/j.jplph.2005.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important antioxidant. Here we investigated the protective effect of NO against the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4 (10mmol L(-1)). It was found that free radical scavengers (sodium benzoate, thiourea, and reduced glutathione) reduced the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4. NO donor sodium nitroprusside (SNP) was also effective in reducing CuSO4-induced toxicity and NH4+ accumulation in rice leaves. The protective effect of SNP on the toxicity and NH4+ accumulation can be reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that the protective effect of SNP is attributable to NO released. Results obtained in the present study suggest that reduction of CuSO4-induced toxicity and NH4+ accumulation by SNP is most likely mediated through its ability to scavenge active oxygen species.
Collapse
|