1
|
Werner HM, Cabalteja CC, Horne WS. Peptide Backbone Composition and Protease Susceptibility: Impact of Modification Type, Position, and Tandem Substitution. Chembiochem 2015. [PMID: 26205791 DOI: 10.1002/cbic.201500312] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical utility of peptides is limited by their rapid degradation by endogenous proteases. Modification of the peptide backbone can generate functional analogues with enhanced proteolytic stability. Existing principles for the design of such oligomers have focused primarily on effective structural mimicry. A more robust strategy would incorporate a rational approach for engineering maximal proteolytic stability with minimal unnatural residue content. We report here the systematic comparison of the proteolytic resistance imparted by four backbone modifications commonly employed in the design of protease-stable analogues of peptides with complex folding patterns. The degree of protection was quantified as a function of modification type, position, and tandem substitution in the context of a long, unstructured host sequence and a canonical serine protease. These results promise to inform ongoing work to develop biostable mimics of increasingly complex peptides and proteins.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
98 |
2
|
Thapa P, Espiritu MJ, Cabalteja C, Bingham JP. The Emergence of Cyclic Peptides: The Potential of Bioengineered Peptide Drugs. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9421-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
|
11 |
28 |
3
|
Kapono CA, Thapa P, Cabalteja CC, Guendisch D, Collier AC, Bingham JP. Conotoxin truncation as a post-translational modification to increase the pharmacological diversity within the milked venom of Conus magus. Toxicon 2013; 70:170-8. [DOI: 10.1016/j.toxicon.2013.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/15/2013] [Accepted: 04/23/2013] [Indexed: 01/07/2023]
|
|
12 |
20 |
4
|
Cabalteja CC, Sachdev S, Cheloha RW. Characterization of a Nanobody-Epitope Tag Interaction and Its Application for Receptor Engineering. ACS Chem Biol 2022; 17:2296-2303. [PMID: 35930411 PMCID: PMC10200313 DOI: 10.1021/acschembio.2c00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Peptide epitope tags offer a valuable means for detection and manipulation of protein targets for which high quality detection reagents are not available. Most commonly used epitope tags are bound by conventional, full-size antibodies (Abs). The complex architecture of Abs complicates their application in protein engineering and intracellular applications. To address these shortcomings, single domain antibodies (nanobodies, Nbs) that recognize short peptide epitopes have become increasingly prized. Here, we characterize the interaction between a Nb (Nb6E) and a 14-mer peptide epitope. We identify residues in the peptide epitope essential for high affinity binding. Using this information in combination with computational modeling we propose a mode of interaction between Nb6E and this epitope. We apply this nanobody-epitope pair to augment the potency of a ligand at an engineered adenosine A2A receptor. This characterization of the nanobody-epitope pair opens the door to diverse applications including mechanistic studies of the G protein-coupled receptor function.
Collapse
|
research-article |
3 |
15 |
5
|
Bogetti AT, Piston HE, Leung JMG, Cabalteja CC, Yang DT, DeGrave AJ, Debiec KT, Cerutti DS, Case DA, Horne WS, Chong LT. A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics. J Chem Phys 2020; 153:064101. [PMID: 35287464 PMCID: PMC7419161 DOI: 10.1063/5.0019054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
We present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the Cα-methylated α-residue Aib, homologated β-residues (β3) bearing proteinogenic side chains, and two cyclic β residues (βcyc; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms. Consistent with the AMBER IPolQ lineage of force fields, the charges were derived using the Implicitly Polarized Charge (IPolQ) scheme in the presence of explicit solvent. To our knowledge, no general force field reported to date models the combination of artificial building blocks examined here. In addition, we have derived Karplus coefficients for the calculation of backbone amide J-coupling constants for β3Ala and ACPC β residues. The AMBER ff15ipq-m force field reproduces experimentally observed J-coupling constants in simple tetrapeptides and maintains the expected conformational propensities in reported structures of proteins/peptides containing the artificial building blocks of interest-all on the μs timescale. These encouraging results demonstrate the power and robustness of the IPolQ lineage of force fields in modeling the structure and dynamics of natural proteins as well as mimetics with protein-inspired artificial backbones in atomic detail.
Collapse
|
research-article |
5 |
14 |
6
|
Bingham JP, Andrews EA, Kiyabu SM, Cabalteja CC. Drugs from slugs. Part II--conopeptide bioengineering. Chem Biol Interact 2012; 200:92-113. [PMID: 23063744 DOI: 10.1016/j.cbi.2012.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
The biological transformation of toxins as research probes, or as pharmaceutical drug leads, is an onerous and drawn out process. Issues regarding changes to pharmacological specificity, desired potency, and bioavailability are compounded naturally by their inherent toxicity. These often scuttle their progress as they move up the narrowing drug development pipeline. Yet one class of peptide toxins, from the genus Conus, has in many ways spearheaded the expansion of new peptide bioengineering techniques to aid peptide toxin pharmaceutical development. What has now emerged is the sequential bioengineering of new research probes and drug leads that owe their lineage to these highly potent and isoform specific peptides. Here we discuss the progressive bioengineering steps that many conopeptides have transitioned through, and specifically illustrate some of the biochemical approaches that have been established to maximize their biological research potential and pharmaceutical worth.
Collapse
|
Review |
13 |
12 |
7
|
Cabalteja CC, Mihalko DS, Seth Horne W. Heterogeneous-Backbone Foldamer Mimics of a Computationally Designed, Disulfide-Rich Miniprotein. Chembiochem 2019; 20:103-110. [PMID: 30326175 PMCID: PMC6314896 DOI: 10.1002/cbic.201800558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/29/2022]
Abstract
Disulfide-rich peptides have found widespread use in the development of bioactive agents; however, low proteolytic stability and the difficulty of exerting synthetic control over chain topology present barriers to their application in some systems. Herein, we report a method that enables the creation of artificial backbone ("foldamer") mimics of compact, disulfide-rich tertiary folds. Systematic replacement of a subset of natural α-residues with various artificial building blocks in the context of a computationally designed prototype sequence leads to "heterogeneous-backbone" variants that undergo clean oxidative folding, adopt tertiary structures indistinguishable from that of the prototype, and enjoy proteolytic protection beyond that inherent to the topologically constrained scaffold. Collectively, these results demonstrate systematic backbone substitution to be a viable method to engineer the properties of disulfide-rich sequences and expands the repertoire of protein mimicry by foldamers to an exciting new structural class.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
10 |
8
|
Cabalteja CC, Sachdev S, Cheloha RW. Rapid Covalent Labeling of Membrane Proteins on Living Cells Using a Nanobody-Epitope Tag Pair. Bioconjug Chem 2022; 33:1867-1875. [PMID: 36107739 PMCID: PMC10200341 DOI: 10.1021/acs.bioconjchem.2c00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic molecules that form a covalent bond upon binding to a targeted biomolecule (proximity-induced reactivity) are the subject of intense biomedical interest for the unique pharmacological properties imparted by irreversible binding. However, off-target covalent labeling and the lack of molecules with sufficient specificity limit more widespread applications. We describe the first example of a cross-linking platform that uses a synthetic peptide epitope and a single domain antibody (or nanobody) pair to form a covalent linkage rapidly and specifically. The rate of the cross-linking reaction between peptide and nanobody is faster than most other biocompatible cross-linking reactions, and it can be used to label live cells expressing receptor-nanobody fusions. The rapid kinetics of this system allowed us to probe the consequences on signaling for ligand cross-linking to the A2A-adenosine receptor. Our method may be generally useful to site-specifically link synthetic molecules to receptors on mammalian cell surfaces.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
10 |
9
|
Thapa P, Espiritu MJ, Cabalteja CC, Bingham JP. Conotoxins and their regulatory considerations. Regul Toxicol Pharmacol 2014; 70:197-202. [PMID: 25013992 DOI: 10.1016/j.yrtph.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023]
Abstract
Venom derived peptides from marine cone snails, conotoxins, have demonstrated unique pharmacological targeting properties that have been pivotal in advancing medical research. The awareness of their true toxic origins and potent pharmacological nature is emphasized by their 'select agent' classification by the US Centers for Disease Control and Prevention. We briefly introduce the biochemical and pharmacological aspects of conotoxins, highlighting current advancements into their biological engineering, and provide details to the present regulations that govern their use in research.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
7 |
10
|
Cabalteja CC, Mihalko DS, Horne WS. Front Cover: Heterogeneous‐Backbone Foldamer Mimics of a Computationally Designed, Disulfide‐Rich Miniprotein (ChemBioChem 1/2019). Chembiochem 2018. [DOI: 10.1002/cbic.201800745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
7 |
6 |
11
|
Sachdev S, Cabalteja CC, Cheloha RW. Strategies for targeting cell surface proteins using multivalent conjugates and chemical biology. Methods Cell Biol 2021; 166:205-222. [PMID: 34752333 PMCID: PMC8895325 DOI: 10.1016/bs.mcb.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Proper function of receptors on the cell surface is essential for homeostasis. Compounds that target cell surface receptors to address dysregulation have proven exceptionally successful as therapeutic agents; however, the development of compounds with the desired specificity for receptors, cells, and tissues of choice has proven difficult in some cases. The use of compounds that can engage more than one binding site at the cell surface offers a path toward improving biological specificity or pharmacological properties. In this chapter we summarize historical context for the development of such bivalent compounds. We focus on developments in chemical methods and biological engineering to provide bivalent compounds in which the high affinity and specificity of antibodies are leveraged to create multifunctional conjugates with new and useful properties. The development of methods to meld biological macromolecules with synthetic compounds will facilitate modulation of receptor biology in ways not previously possible.
Collapse
|
Research Support, N.I.H., Intramural |
4 |
4 |
12
|
Thapa P, Cabalteja CC, Philips EE, Espiritu MJ, Peigneur S, Mille BG, Tytgat J, Cummins TR, Bingham JP. t-boc synthesis of huwentoxin-i through native chemical ligation incorporating a trifluoromethanesulfonic acid cleavage strategy. Biopolymers 2017; 106:737-45. [PMID: 27271997 DOI: 10.1002/bip.22887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 11/10/2022]
Abstract
Tert-butyloxycarbonyl (t-Boc)-based native chemical ligation (NCL) techniques commonly employ hydrogen fluoride (HF) to create the thioester fragment required for the ligation process. Our research aimed to assess the replacement of HF with Trifluoromethanesulfonic acid (TFMSA). Here we examined a 33 amino acid test peptide, Huwentoxin-I (HwTx-I) as a novel candidate for our TFMSA cleavage protocol. Structurally HwTx-I has an X-Cys(16) -Cys(17) -X sequence mid-region, which makes it an ideal candidate for NCL. Experiments determined that the best yields (16.8%) obtained for 50 mg of a thioester support resin were achieved with a TFMSA volume of 100 μL with a 0.5-h incubation on ice, followed by 2.0 h at room temperature. RP-HPLC/UV and mass spectra indicated the appropriate parent mass and retention of the cleaved HwTx-I N-terminal thioester fragment (Ala(1) -Cys(16) ), which was used in preparation for NCL. The resulting chemically ligated HwTx-I was oxidized/folded, purified, and then assessed for pharmacological target selectivity. Native-like HwTx-I produced by this method yielded an EC50 value of 340.5 ± 26.8 nM for Nav 1.2 and an EC50 value of 504.1 ± 81.3 nM for Nav 1.3, this being similar to previous literature results using native material. This article represents the first NCL based synthesis of this potent sodium channel blocker. Our illustrated approach removes potential restrictions in the advancement of NCL as a common peptide laboratory technique with minimal investment, and removes the hazards associated with HF usage. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 737-745, 2016.
Collapse
|
Journal Article |
8 |
3 |
13
|
Cabalteja CC, Lin Q, Harmon TW, Rao SR, Di YP, Horne WS. Heterogeneous-Backbone Proteomimetic Analogues of Lasiocepsin, a Disulfide-Rich Antimicrobial Peptide with a Compact Tertiary Fold. ACS Chem Biol 2022; 17:987-997. [PMID: 35290019 PMCID: PMC9039985 DOI: 10.1021/acschembio.2c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The emergence of resistance to clinically used antibiotics by bacteria presents a significant problem in public health. Natural antimicrobial peptides (AMPs) are a valuable source of antibiotics that act by a mechanism less prone to the evolutionary development of resistance. In an effort to realize the promise of AMPs while overcoming limitations such as poor biostability, researchers have sought sequence-defined oligomers with artificial amide-based backbones that show membrane-disrupting functions similar to natural agents. Most of this precedent has focused on short peptidomimetic analogues of unstructured chains or secondary folds; however, the natural antimicrobial arsenal includes a number of small- and medium-sized proteins that act via an ordered tertiary structure. Generating proteomimetic analogues of these scaffolds poses a challenge due to the increased complexity of the target for mimicry. Here, we report the development of heterogeneous-backbone variants of lasiocepsin, a 27-residue disulfide-rich AMP found in bee venom that adopts a compact tertiary fold. Iterative cycles of design, synthesis, and biological evaluation yielded analogues of the natural domain with ∼30 to 40% artificial backbone content, comparable antibacterial activity, reduced host cell toxicity, and improved stability to proteolytic degradation. High-resolution structures determined for several variants by NMR provide insights into the interplay among backbone composition, tertiary fold, and biological properties. Collectively, the results reported here broaden the scope of protein functional mimicry by artificial backbone analogues of tertiary folding patterns and suggest protein backbone engineering as a means to tune protein function by exerting site-specific control over protein folded structure.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
|
14
|
Kuwik J, Hinkelman K, Waldman M, Stepler KE, Wagner S, Arora S, Chernenkoff S, Cabalteja C, Sidoli S, Robinson RAS, Islam K. Activity Guided Azide-methyllysine Photo-trapping for Substrate Profiling of Lysine Demethylases. J Am Chem Soc 2023; 145:21066-21076. [PMID: 37703462 PMCID: PMC10540216 DOI: 10.1021/jacs.3c07299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 09/15/2023]
Abstract
Reversible post-translational modifications (PTMs) are key to establishing protein-protein and protein-nucleic acid interactions that govern a majority of the signaling pathways in cells. Sequence-specific PTMs are catalyzed by transferases, and their removal is carried out by a class of reverse-acting enzymes termed "detransferases". Currently available chemoproteomic approaches have been valuable in characterizing substrates of transferases. However, proteome-wide cataloging of the substrates of detransferases is challenging, mostly due to the loss of the epitope, rendering immunoprecipitation and activity-based methods ineffective. Herein, we develop a general chemoproteomic strategy called crosslinking-assisted substrate identification (CASI) for systematic characterization of cellular targets of detransferases and successfully apply it to lysine demethylases (KDMs) which catalyze the removal of methyl groups from lysine sidechain in histones to modulate gene transcription. By setting up a targeted azido-methylamino photo-reaction deep inside the active site of KDM4, engineered to carry p-azido phenylalanine, we reveal a novel "demethylome" that has escaped the traditional methods. The proteomic survey led to the identification of a battery of nonhistone substrates of KDM4, extending the biological footprint of KDM4 beyond its canonical functions in gene transcription. A notable finding of KDM4A-mediated demethylation of an evolutionarily conserved lysine residue in eukaryotic translational initiation factor argues for a much broader role of KDM4A in ribosomal processes. CASI, representing a substantive departure from earlier approaches by shifting focus from simple peptide-based probes to employing full-length photo-activatable demethylases, is poised to be applied to >400 human detransferases, many of which have remained poorly understood due to the lack of knowledge about their cellular targets.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
15
|
Fayn S, Roy S, Cabalteja CC, Lee W, Makala H, Baidoo K, Nambiar D, Sheehan‐Klenk J, Chung J, Buffington J, Ho M, Escorcia FE, Cheloha RW. Generation of Site-Specifically Labeled Affinity Reagents via Use of a Self-Labeling Single Domain Antibody. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417160. [PMID: 39965119 PMCID: PMC11984916 DOI: 10.1002/advs.202417160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Several chemical and enzymatic methods have been used to link antibodies to moieties that facilitate visualization of cognate targets. Emerging evidence suggests that the extent of labeling, dictated by the type of chemistry used, has a substantial impact on performance, especially in the context of antibodies used for the visualization of tumors in vivo. These effects are particularly pronounced in studies using small antibody fragments, such as single-domain antibodies, or nanobodies. Here, we leverage a new variety of conjugation chemistry, based on a nanobody that forms a crosslink with a specialized high-affinity epitope analogue, to label target-specific nanobody constructs with functionalities of choice, including fluorophores, chelators, and click chemistry handles. Using heterodimeric nanobody conjugates, comprised of an antigen recognition module and a self-labeling module, enables us to attach the desired functional group at a location distal to the site of antigen recognition. Constructs generated using this approach bound to antigens expressed on xenograft murine models of liver cancer and allowed for non-invasive diagnostic imaging. The modularity of our approach using a self-labeling nanobody offers a novel method for site-specific functionalization of biomolecules and can be extended to other applications for which covalent labeling is required.
Collapse
|
research-article |
1 |
|
16
|
Werner HM, Cabalteja CC, Horne WS. Inside Cover: Peptide Backbone Composition and Protease Susceptibility: Impact of Modification Type, Position, and Tandem Substitution (ChemBioChem 8/2016). Chembiochem 2016. [DOI: 10.1002/cbic.201600145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
9 |
|