1
|
Salje H, Cummings DAT, Rodriguez-Barraquer I, Katzelnick LC, Lessler J, Klungthong C, Thaisomboonsuk B, Nisalak A, Weg A, Ellison D, Macareo L, Yoon IK, Jarman R, Thomas S, Rothman AL, Endy T, Cauchemez S. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 2018; 557:719-723. [PMID: 29795354 PMCID: PMC6064976 DOI: 10.1038/s41586-018-0157-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
Abstract
As with many pathogens, most dengue infections are subclinical and therefore unobserved1. Coupled with limited understanding of the dynamical behavior of potential serological markers of infection, this observational problem has wide-ranging implications, including hampering our understanding of individual- and population-level correlates of infection and disease risk and how they change over time, assay interpretation and cohort design. We develop a framework that simultaneously characterizes antibody dynamics and identifies subclinical infections via Bayesian augmentation from detailed cohort data (3,451 individuals with blood draws every 91 days, 143,548 hemagglutination inhibition assay titer measurements)2,3. We identify 1,149 infections (95% CI: 1,135–1,163) that were not detected by active surveillance and estimate that 65% of infections are subclinical. Post infection, individuals develop a stable setpoint antibody load after 1y that places them within or outside a risk window. Individuals with pre-existing titers of ≤1:40 develop hemorrhagic fever 7.4 (95% CI: 2.5–8.2) times as often as naïve individuals compared to 0.0 times for individuals with titers >1:40 (95% CI: 0.0–1.3). PRNT titers ≤1:100 were similarly associated with severe disease. Across the population, variability in the force of infection results in large-scale temporal changes in infection and disease risk that correlate poorly with age.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
204 |
2
|
Buathong R, Hermann L, Thaisomboonsuk B, Rutvisuttinunt W, Klungthong C, Chinnawirotpisan P, Manasatienkij W, Nisalak A, Fernandez S, Yoon IK, Akrasewi P, Plipat T. Detection of Zika Virus Infection in Thailand, 2012-2014. Am J Trop Med Hyg 2015; 93:380-383. [PMID: 26101272 PMCID: PMC4530765 DOI: 10.4269/ajtmh.15-0022] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne pathogen with reported cases in Africa, Asia, and large outbreaks in the Pacific. No autochthonous ZIKV infections have been confirmed in Thailand. However, there have been several cases reported in travelers returning from Thailand. Here we report seven cases of acute ZIKV infection in Thai residents across the country confirmed by molecular or serological testing including sequence data. These endemic cases, combined with previous reports in travelers, provide evidence that ZIKV is widespread throughout Thailand.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
171 |
3
|
Zhang C, Mammen MP, Chinnawirotpisan P, Klungthong C, Rodpradit P, Monkongdee P, Nimmannitya S, Kalayanarooj S, Holmes EC. Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J Virol 2006; 79:15123-30. [PMID: 16306584 PMCID: PMC1316048 DOI: 10.1128/jvi.79.24.15123-15130.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of dengue virus (DENV) is characterized by phylogenetic trees that have a strong temporal structure punctuated by dramatic changes in clade frequency. To determine the cause of these large-scale phylogenetic patterns, we examined the evolutionary history of DENV serotype 1 (DENV-1) and DENV-3 in Thailand, where gene sequence and epidemiological data are relatively abundant over a 30-year period. We found evidence for the turnover of viral clades in both serotypes, most notably in DENV-1, where a major clade replacement event took place in genotype I during the mid-1990s. Further, when this clade replacement event was placed in the context of changes in serotype prevalence in Thailand, a striking pattern emerged; an increase in DENV-1 clade diversity was associated with an increase in the abundance of this serotype and a concomitant decrease in DENV-4 prevalence, while clade replacement was associated with a decline in DENV-1 prevalence and a rise of DENV-4. We postulate that intraserotypic genetic diversification proceeds at times of relative serotype abundance and that replacement events can result from differential susceptibility to cross-reactive immune responses.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
154 |
4
|
Yoon IK, Alera MT, Lago CB, Tac-An IA, Villa D, Fernandez S, Thaisomboonsuk B, Klungthong C, Levy JW, Velasco JM, Roque VG, Salje H, Macareo LR, Hermann LL, Nisalak A, Srikiatkhachorn A. High rate of subclinical chikungunya virus infection and association of neutralizing antibody with protection in a prospective cohort in the Philippines. PLoS Negl Trop Dis 2015; 9:e0003764. [PMID: 25951202 PMCID: PMC4423927 DOI: 10.1371/journal.pntd.0003764] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/15/2015] [Indexed: 01/04/2023] Open
Abstract
Background Chikungunya virus (CHIKV) is a globally re-emerging arbovirus for which previous studies have indicated the majority of infections result in symptomatic febrile illness. We sought to characterize the proportion of subclinical and symptomatic CHIKV infections in a prospective cohort study in a country with known CHIKV circulation. Methods/Findings A prospective longitudinal cohort of subjects ≥6 months old underwent community-based active surveillance for acute febrile illness in Cebu City, Philippines from 2012-13. Subjects with fever history were clinically evaluated at acute, 2, 5, and 8 day visits, and at a 3-week convalescent visit. Blood was collected at the acute and 3-week convalescent visits. Symptomatic CHIKV infections were identified by positive CHIKV PCR in acute blood samples and/or CHIKV IgM/IgG ELISA seroconversion in paired acute/convalescent samples. Enrollment and 12-month blood samples underwent plaque reduction neutralization test (PRNT) using CHIKV attenuated strain 181/clone25. Subclinical CHIKV infections were identified by ≥8-fold rise from a baseline enrollment PRNT titer <10 without symptomatic infection detected during the intervening surveillance period. Selected CHIKV PCR-positive samples underwent viral isolation and envelope protein-1 gene sequencing. Of 853 subjects who completed all study procedures at 12 months, 19 symptomatic infections (2.19 per 100 person-years) and 87 subclinical infections (10.03 per 100 person-years) occurred. The ratio of subclinical-to-symptomatic infections was 4.6:1 varying with age from 2:1 in 6 month-5 year olds to 12:1 in those >50 years old. Baseline CHIKV PRNT titer ≥10 was associated with 100% (95%CI: 46.1, 100.0) protection from symptomatic CHIKV infection. Phylogenetic analysis demonstrated Asian genotype closely related to strains from Asia and the Caribbean. Conclusions Subclinical infections accounted for a majority of total CHIKV infections. A positive baseline CHIKV PRNT titer was associated with protection from symptomatic CHIKV infection. These findings have implications for assessing disease burden, understanding virus transmission, and supporting vaccine development. Chikungunya virus (CHIKV) is a re-emerging mosquito-borne pathogen for which the majority of infections have been considered to result in febrile illness. We sought to characterize the proportion of subclinical and symptomatic CHIKV infections in a prospective cohort of subjects ≥6 months old who underwent active surveillance for acute febrile illness from 2012–13 in Cebu City, Philippines. Symptomatic CHIKV infections were detected by PCR and/or ELISA in acute/convalescent blood samples. Subclinical infections were identified by neutralizing antibody seroconversion between enrollment and 12-month visits without symptomatic infection. Among 853 subjects who completed all study activities at 12 months, 19 symptomatic and 87 subclinical infections occurred (2.19 and 10.03 per 100 person-years, respectively). A positive baseline CHIKV PRNT titer was associated with 100% (95%CI: 46.1, 100.0) protection from symptomatic infection. Phylogenetic analysis showed Asian genotype closely related to strains from the recent Caribbean epidemic. These findings can help to assess disease burden, understand virus transmission, and support vaccine development.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
113 |
5
|
Salje H, Lessler J, Maljkovic Berry I, Melendrez MC, Endy T, Kalayanarooj S, A-Nuegoonpipat A, Chanama S, Sangkijporn S, Klungthong C, Thaisomboonsuk B, Nisalak A, Gibbons RV, Iamsirithaworn S, Macareo LR, Yoon IK, Sangarsang A, Jarman RG, Cummings DAT. Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size. Science 2017; 355:1302-1306. [PMID: 28336667 DOI: 10.1126/science.aaj9384] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/15/2016] [Accepted: 02/16/2017] [Indexed: 12/30/2022]
Abstract
A fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the mechanisms by which strains interact and compete across spatial scales. Phylogeographic methods have been used to characterize pathogen dispersal at global and regional scales but have yielded few insights into the local spatiotemporal structure of endemic transmission. Using geolocated genotype (800 cases) and serotype (17,291 cases) data, we show that in Bangkok, Thailand, 60% of dengue cases living <200 meters apart come from the same transmission chain, as opposed to 3% of cases separated by 1 to 5 kilometers. At distances <200 meters from a case (encompassing an average of 1300 people in Bangkok), the effective number of chains is 1.7. This number rises by a factor of 7 for each 10-fold increase in the population of the "enclosed" region. This trend is observed regardless of whether population density or area increases, though increases in density over 7000 people per square kilometer do not lead to additional chains. Within Thailand these chains quickly mix, and by the next dengue season viral lineages are no longer highly spatially structured within the country. In contrast, viral flow to neighboring countries is limited. These findings are consistent with local, density-dependent transmission and implicate densely populated communities as key sources of viral diversity, with home location the focal point of transmission. These findings have important implications for targeted vector control and active surveillance.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
98 |
6
|
Klungthong C, Zhang C, Mammen MP, Ubol S, Holmes EC. The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology 2004; 329:168-79. [PMID: 15476884 DOI: 10.1016/j.virol.2004.08.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/08/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Dengue represents a major public health problem in Thailand, with all four viral serotypes co-circulating. Dengue virus serotype 4 (DENV-4) is the least frequently sampled serotype, although one that is often associated with hemorrhagic fever during secondary infection. To determine the evolutionary forces shaping the genetic diversity of DENV-4, and particularly whether its changing prevalence could be attributed to instances of adaptive evolution in the viral genome, we undertook a large-scale molecular epidemiological analysis of DENV-4 in Bangkok, Thailand, using both E gene and complete coding region sequences. This analysis revealed extensive genetic diversity within a single locality at a single time, including the discovery of a new and divergent genotype of DENV-4, as well as a pattern of continual lineage turnover. We also recorded the highest average rate of evolutionary change for this serotype, at 1.072 x 10(-3) nucleotide substitutions per site, per year. However, despite this abundant genetic variation, there was no evidence for adaptive evolution in any gene, codon, or lineage of DENV-4, with the highest rate of nonsynonymous substitution observed in NS2A. Consequently, the rapid turnover of DENV-4 lineages through time is most likely the consequence of a high rate of deleterious mutation in the viral genome coupled to seasonal fluctuations in the size of the vector population.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
95 |
7
|
Alera MT, Hermann L, Tac-An IA, Klungthong C, Rutvisuttinunt W, Manasatienkij W, Villa D, Thaisomboonsuk B, Velasco JM, Chinnawirotpisan P, Lago CB, Roque VG, Macareo LR, Srikiatkhachorn A, Fernandez S, Yoon IK. Zika virus infection, Philippines, 2012. Emerg Infect Dis 2015; 21:722-4. [PMID: 25811410 PMCID: PMC4378478 DOI: 10.3201/eid2104.141707] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
Research Support, Non-U.S. Gov't |
10 |
86 |
8
|
Klungthong C, Gibbons RV, Thaisomboonsuk B, Nisalak A, Kalayanarooj S, Thirawuth V, Nutkumhang N, Mammen MP, Jarman RG. Dengue virus detection using whole blood for reverse transcriptase PCR and virus isolation. J Clin Microbiol 2007; 45:2480-5. [PMID: 17522268 PMCID: PMC1951229 DOI: 10.1128/jcm.00305-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue is one of the most important diseases in the tropical and subtropical regions of the world, with an estimated 2.5 billion people being at risk. Detection of dengue virus infections has great importance for the clinical management of patients, surveillance, and clinical trial assessments. Traditionally, blood samples are collected in serum separator tubes, processed for serum, and then taken to the laboratory for analysis. The use of whole blood has the potential advantages of requiring less blood, providing quicker results, and perhaps providing better sensitivity during the acute phase of the disease. We compared the results obtained by reverse transcriptase PCR (RT-PCR) with blood drawn into tubes containing EDTA and those obtained by RT-PCR with blood samples in serum separator tubes from 108 individuals clinically suspected of being infected with dengue virus. We determined that the extraction of RNA from whole blood followed by RT-PCR resulted in a higher detection rate than the use of serum or plasma. Using a selection of these samples, we also found that our ability to detect virus by direct C6/36 cell culture and mosquito inoculation was enhanced by using whole blood but not to the same extent as that seen by the use of RT-PCR.
Collapse
|
Journal Article |
18 |
76 |
9
|
Buddhari D, Aldstadt J, Endy TP, Srikiatkhachorn A, Thaisomboonsuk B, Klungthong C, Nisalak A, Khuntirat B, Jarman RG, Fernandez S, Thomas SJ, Scott TW, Rothman AL, Yoon IK. Dengue virus neutralizing antibody levels associated with protection from infection in thai cluster studies. PLoS Negl Trop Dis 2014; 8:e3230. [PMID: 25329173 PMCID: PMC4199527 DOI: 10.1371/journal.pntd.0003230] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Long-term homologous and temporary heterologous protection from dengue virus (DENV) infection may be mediated by neutralizing antibodies. However, neutralizing antibody titers (NTs) have not been clearly associated with protection from infection. Methodology/Principal Findings Data from two geographic cluster studies conducted in Kamphaeng Phet, Thailand were used for this analysis. In the first study (2004–2007), cluster investigations of 100-meter radius were triggered by DENV-infected index cases from a concurrent prospective cohort. Subjects between 6 months and 15 years old were evaluated for DENV infection at days 0 and 15 by DENV PCR and IgM ELISA. In the second study (2009–2012), clusters of 200-meter radius were triggered by DENV-infected index cases admitted to the provincial hospital. Subjects of any age ≥6 months were evaluated for DENV infection at days 0 and 14. In both studies, subjects who were DENV PCR positive at day 14/15 were considered to have been “susceptible” on day 0. Comparison subjects from houses in which someone had documented DENV infection, but the subject remained DENV negative at days 0 and 14/15, were considered “non-susceptible.” Day 0 samples were presumed to be from just before virus exposure, and underwent plaque reduction neutralization testing (PRNT). Seventeen “susceptible” (six DENV-1, five DENV-2, and six DENV-4), and 32 “non-susceptible” (13 exposed to DENV-1, 10 DENV-2, and 9 DENV-4) subjects were evaluated. Comparing subjects exposed to the same serotype, receiver operating characteristic (ROC) curves identified homotypic PRNT titers of 11, 323 and 16 for DENV-1, -2 and -4, respectively, to differentiate “susceptible” from “non-susceptible” subjects. Conclusions/Significance PRNT titers were associated with protection from infection by DENV-1, -2 and -4. Protective NTs appeared to be serotype-dependent and may be higher for DENV-2 than other serotypes. These findings are relevant for both dengue epidemiology studies and vaccine development efforts. Dengue is caused by four different dengue virus serotypes (DENV-1, -2, -3, -4). Infection induces long-term protection against the same serotype, but only short-term protection, and possible enhancement, from different serotypes. DENV neutralizing antibody titers (NTs) are thought to mediate protection or modify disease. Association of NTs with protection from infection has not, however, been clearly demonstrated. We analyzed data from two geographic clusters studies conducted in Kamphaeng Phet, Thailand, in which DENV NTs just before virus exposure were compared between DENV-infected “susceptible” and non-infected “non-susceptible” subjects. NTs appeared to be associated with protection against DENV-1, -2, and -4, but at different NT cutoff levels, with the cutoff for DENV-2 appearing to be the highest. These findings are relevant for ongoing efforts to investigate dengue epidemiology and develop dengue vaccine candidates.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
69 |
10
|
Salje H, Cauchemez S, Alera MT, Rodriguez-Barraquer I, Thaisomboonsuk B, Srikiatkhachorn A, Lago CB, Villa D, Klungthong C, Tac-An IA, Fernandez S, Velasco JM, Roque VG, Nisalak A, Macareo LR, Levy JW, Cummings D, Yoon IK. Reconstruction of 60 Years of Chikungunya Epidemiology in the Philippines Demonstrates Episodic and Focal Transmission. J Infect Dis 2015; 213:604-10. [PMID: 26410592 PMCID: PMC4721913 DOI: 10.1093/infdis/jiv470] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022] Open
Abstract
Proper understanding of the long-term epidemiology of chikungunya has been hampered by poor surveillance. Outbreak years are unpredictable and cases often misdiagnosed. Here we analyzed age-specific data from 2 serological studies (from 1973 and 2012) in Cebu, Philippines, to reconstruct both the annual probability of infection and population-level immunity over a 60-year period (1952–2012). We also explored whether seroconversions during 2012–2013 were spatially clustered. Our models identified 4 discrete outbreaks separated by an average delay of 17 years. On average, 23% (95% confidence interval [CI], 16%–37%) of the susceptible population was infected per outbreak, with >50% of the entire population remaining susceptible at any point. Participants who seroconverted during 2012–2013 were clustered at distances of <230 m, suggesting focal transmission. Large-scale outbreaks of chikungunya did not result in sustained multiyear transmission. Nevertheless, we estimate that >350 000 infections were missed by surveillance systems. Serological studies could supplement surveillance to provide important insights on pathogen circulation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
61 |
11
|
Chusri S, Siripaitoon P, Silpapojakul K, Hortiwakul T, Charernmak B, Chinnawirotpisan P, Nisalak A, Thaisomboonsuk B, Klungthong C, Gibbons RV, Jarman RG. Kinetics of chikungunya infections during an outbreak in Southern Thailand, 2008-2009. Am J Trop Med Hyg 2014; 90:410-417. [PMID: 24493674 PMCID: PMC3945684 DOI: 10.4269/ajtmh.12-0681] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Indian Ocean chikungunya epidemic re-emerged in Thailand in August 2008. Forty-five adults with laboratory-confirmed chikungunya in Songkhla province, Thailand were clinically assessed and serially bled throughout the acute and convalescent phase of the disease. Patient symptoms, antibody responses, and viral kinetics were evaluated using observational assessments, polymerase chain reaction (PCR), and serological assays. All subjects experienced joint pain with 42 (93%) involving multiple joints; the interphalangeal most commonly affected in 91% of the subjects. The mean duration of joint pain was 5.8 days, 11 (25%) experiencing discomfort through the duration of the study. Rash was observed in 37 (82%) subjects a mean 3.5 days post onset of symptoms. Patents were positive by PCR for a mean of 5.9 days with sustained peak viral load through Day 5. The IgM antibodies appeared on Day 4 and peaked at Day 7 and IgG antibodies first appeared at Day 5 and rose steadily through Day 24.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
53 |
12
|
Zhang C, Mammen MP, Chinnawirotpisan P, Klungthong C, Rodpradit P, Nisalak A, Vaughn DW, Nimmannitya S, Kalayanarooj S, Holmes EC. Structure and age of genetic diversity of dengue virus type 2 in Thailand. J Gen Virol 2006; 87:873-883. [PMID: 16528037 DOI: 10.1099/vir.0.81486-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus type 2 (DENV-2) is a common viral infection and an important health concern in South-East Asia. To determine the molecular evolution of DENV-2 in Thailand, 105 isolates of the E (envelope) gene and 10 complete genomes sampled over a 27 year period were sequenced. Phylogenetic analysis of these data revealed that three genotypes of DENV-2 have circulated in Thailand, although, since 1991, only viruses assigned to Asian genotype I have been sampled from the population. A broader analysis of 35 complete genomes of DENV-2 revealed that most amino acids are subject to strong selective constraints, indicative of widespread purifying selection against deleterious mutations. This was further supported by an analysis of genome-wide substitution rates, which indicated that DENV-2 fixes approximately 10 mutations per genome per year, far lower than expected from its mutational dynamics. Finally, estimates of the age of DENV-2 were remarkably consistent among genes, indicating that the current genetic diversity in this virus probably arose within the last 120 years, concordant with the first determination of the aetiology of dengue disease.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
52 |
13
|
Klungthong C, Chinnawirotpisan P, Hussem K, Phonpakobsin T, Manasatienkij W, Ajariyakhajorn C, Rungrojcharoenkit K, Gibbons RV, Jarman RG. The impact of primer and probe-template mismatches on the sensitivity of pandemic influenza A/H1N1/2009 virus detection by real-time RT-PCR. J Clin Virol 2010; 48:91-5. [PMID: 20413345 DOI: 10.1016/j.jcv.2010.03.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND In response to the 2009 H1N1 pandemic the US CDC and WHO rapidly developed and distributed a real-time RT-PCR kit to detect this strain in clinical samples. The results from the WHO swH1 primer and probe set exhibited diverse sensitivities for the 2009 influenza A/H1N1 strains in Southeast Asia (SEA). OBJECTIVE Investigate the primer and probe-template mismatches among the 2009 influenza A/H1N1 strains in SEA that reduced the real-time RT-PCR sensitivity. STUDY DESIGN Thirty-seven swH1 positive samples categorized into sensitive and insensitive groups based on real-time RT-PCR results were selected for hemagglutinin (HA) gene sequencing. The sequence in swH1 primer and probe binding regions of the viruses was examined for mismatches. Phylogenetic analysis was performed to investigate the diversity among these viruses. Primers and probe were redesigned to match each of our sequences and tested to determine the impact on sensitivity. RESULTS HA sequencing of the viruses isolated from patients with high and low sensitivities revealed that a single mismatch at the 3rd base of the probe reduced sensitivity in 23/37 viruses. Homologous primers and probes increased the sensitivity (mean difference 4.66Ct P<0.0001). Phylogenetic tree revealed that the viruses in this study clustered into two groups, coinciding with RT-PCR sensitivity. CONCLUSION Results obtained indicate that at least two variants of the novel H1N1 transmitting in SEA and the mutations in HA gene have a direct effect on the detection by using WHO swH1 primer and probe set.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
49 |
14
|
Klungthong C, Putnak R, Mammen MP, Li T, Zhang C. Molecular genotyping of dengue viruses by phylogenetic analysis of the sequences of individual genes. J Virol Methods 2008; 154:175-81. [PMID: 18778736 DOI: 10.1016/j.jviromet.2008.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/19/2022]
Abstract
The prevalence of four serotypes of dengue virus (DENV) has risen dramatically in recent years accompanied by an increase in viral genetic diversity. The evolution of DENV has had a major impact on their virulence for humans and on the epidemiology of dengue disease around the world. In order to perform disease surveillance and understand DENV evolution and its effects on virus transmission and disease, an efficient and accurate method for genotype identification is required. Phylogenetic analysis of viral gene sequences is the method used most commonly, with envelope (E) gene the most frequently selected target. To determine which gene might be suitable targets for genotyping DENV, phylogenetic analysis was performed on 10 individual coding genes plus the 3'-non-translated region (3'NTR) for 56 geographically divergent DENV strains representing all identified genotypes. These were reflected in eleven maximum likelihood phylogenetic trees. Based on the bootstrap values (over 90%) supporting the major nodes, the best target genes were identified for each serotype: for DENV-1, the sequences of all coding genes except non-structural gene 4A (NS4A), for DENV-2, PrM/M, E, NS1, NS3, NS4A and NS5, for DENV-3, all coding genes and the 3'NTR, and for DENV-4, C, PrM/M, E, NS1, NS2A, NS2B, NS4A and NS5.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
48 |
15
|
Alera MT, Srikiatkhachorn A, Velasco JM, Tac-An IA, Lago CB, Clapham HE, Fernandez S, Levy JW, Thaisomboonsuk B, Klungthong C, Macareo LR, Nisalak A, Hermann L, Villa D, Yoon IK. Incidence of Dengue Virus Infection in Adults and Children in a Prospective Longitudinal Cohort in the Philippines. PLoS Negl Trop Dis 2016; 10:e0004337. [PMID: 26845762 PMCID: PMC4742283 DOI: 10.1371/journal.pntd.0004337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Background The mean age of dengue has been increasing in some but not all countries. We sought to determine the incidence of dengue virus (DENV) infection in adults and children in a prospective cohort study in the Philippines where dengue is hyperendemic. Methodology/Principal Findings A prospective cohort of subjects ≥6 months old in Cebu City, Philippines, underwent active community-based surveillance for acute febrile illnesses by weekly contact. Fever history within the prior seven days was evaluated with an acute illness visit followed by 2, 5, and 8-day, and 3-week convalescent visits. Blood was collected at the acute and 3-week visits. Scheduled visits took place at enrolment and 12 months that included blood collections. Acute samples were tested by DENV PCR and acute/convalescent samples by DENV IgM/IgG ELISA to identify symptomatic infections. Enrolment and 12-month samples were tested by DENV hemagglutination inhibition (HAI) assay to identify subclinical infections. Of 1,008 enrolled subjects, 854 completed all study activities at 12 months per-protocol undergoing 868 person-years of surveillance. The incidence of symptomatic and subclinical infections was 1.62 and 7.03 per 100 person-years, respectively. However, in subjects >15 years old, only one symptomatic infection occurred whereas 27 subclinical infections were identified. DENV HAI seroprevalence increased sharply with age with baseline multitypic HAIs associated with fewer symptomatic infections. Using a catalytic model, the historical infection rate among dengue naïve individuals was estimated to be high at 11–22%/year. Conclusions/Significance In this hyperendemic area with high seroprevalence of multitypic DENV HAIs in adults, symptomatic dengue rarely occurred in individuals older than 15 years. Our findings demonstrate that dengue is primarily a pediatric disease in areas with high force of infection. However, the average age of dengue could increase if force of infection decreases over time, as is occurring in some hyperendemic countries such as Thailand. The average age of dengue has been increasing in some but not all dengue endemic countries. To investigate the age pattern of dengue in people of all ages ≥6 months old, a prospective community-based cohort study was undertaken in Cebu City, Philippines where dengue virus has been circulating for many decades. Active surveillance for acute fevers was performed, and acute/convalescent blood samples were tested for evidence of symptomatic dengue. Blood was also collected at enrolment and one year later, and tested serologically to identify subclinical infections. Overall, 1.62 symptomatic and 7.03 subclinical infections per 100 person-years of surveillance were detected. Among people older than 15 years, only one symptomatic dengue case occurred while 27 subclinical infections were identified. By analyzing age-specific dengue serology data, the historical infection rate among people with no prior dengue virus infection was found to be high at around 11–22% per year. Our results show that dengue is primarily a childhood disease in endemic settings where the historical infection rate has been high. However, the average age of dengue could increase if the infection rate decreases over time as is happening in some endemic countries like Thailand.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
45 |
16
|
Rutvisuttinunt W, Chinnawirotpisan P, Simasathien S, Shrestha SK, Yoon IK, Klungthong C, Fernandez S. Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq Platform. J Virol Methods 2013; 193:394-404. [PMID: 23856301 DOI: 10.1016/j.jviromet.2013.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Active global surveillance and characterization of influenza viruses are essential for better preparation against possible pandemic events. Obtaining comprehensive information about the influenza genome can improve our understanding of the evolution of influenza viruses and emergence of new strains, and improve the accuracy when designing preventive vaccines. This study investigated the use of deep sequencing by the next-generation sequencing (NGS) Illumina MiSeq Platform to obtain complete genome sequence information from influenza virus isolates. The influenza virus isolates were cultured from 6 respiratory acute clinical specimens collected in Thailand and Nepal. DNA libraries obtained from each viral isolate were mixed and all were sequenced simultaneously. Total information of 2.6 Gbases was obtained from a 455±14 K/mm2 density with 95.76% (8,571,655/8,950,724 clusters) of the clusters passing quality control (QC) filters. Approximately 93.7% of all sequences from Read1 and 83.5% from Read2 contained high quality sequences that were ≥Q30, a base calling QC score standard. Alignments analysis identified three seasonal influenza A H3N2 strains, one 2009 pandemic influenza A H1N1 strain and two influenza B strains. The nearly entire genomes of all six virus isolates yielded equal or greater than 600-fold sequence coverage depth. MiSeq Platform identified seasonal influenza A H3N2, 2009 pandemic influenza A H1N1and influenza B in the DNA library mixtures efficiently.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
38 |
17
|
Jarman RG, Nisalak A, Anderson KB, Klungthong C, Thaisomboonsuk B, Kaneechit W, Kalayanarooj S, Gibbons RV. Factors influencing dengue virus isolation by C6/36 cell culture and mosquito inoculation of nested PCR-positive clinical samples. Am J Trop Med Hyg 2011; 84:218-23. [PMID: 21292887 DOI: 10.4269/ajtmh.2011.09-0798] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue viral isolation is necessary for definitive diagnosis, pathogenesis and evolutionary research, vaccine candidates, and diagnostic materials. Using standardized techniques, we analyzed isolation rates of 1,544 randomly selected polymerase chain reaction (PCR)-positive samples, representing all four dengue serotypes, from patients with serologically confirmed dengue infections and evaluated whether clinical and laboratory results could be predictive of isolation using standard and mosquito isolation techniques. Viruses were isolated from 62.5% of the samples by direct application to C6/36 cells and increased to 79.4% when amplifying C6/36 negative samples by intrathorasic inoculation in Toxyrhynchites splendens mosquitoes. High viremia, measured by reverse transcriptase (RT)-PCR, was a strong predictor for viral isolation by either method. Isolation was most successful in samples collected early in the disease, had low antibody levels, temperatures greater than 38°C, and had a final clinical diagnosis of dengue fever. Dengue serotypes also played a role in the success of viral isolation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
37 |
18
|
Sadon N, Delers A, Jarman RG, Klungthong C, Nisalak A, Gibbons RV, Vassilev V. A new quantitative RT-PCR method for sensitive detection of dengue virus in serum samples. J Virol Methods 2008; 153:1-6. [PMID: 18652847 DOI: 10.1016/j.jviromet.2008.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 11/17/2022]
Abstract
In order to detect and identify dengue serotypes in serum samples, we developed a single-step quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) assay (referred to as Q-PCR). Sets of primers were selected from the capsid region of the viral genome. Dengue serotypes 1/3 and 2/4 were detected in two separate duplex amplification reactions using specific primers and fluorogenic TaqMan probes. Results obtained with this Q-PCR and the classical nested RT-PCR (N-PCR) assays were compared using a panel of 97 representative human sera collected from patients in Bangkok, Thailand. It is shown that the Q-PCR is a rapid, sensitive and reproducible tool for the detection and quantitation of the four dengue serotypes in clinical samples, and therefore of great interest for diagnostic use or for large cohort studies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
17 |
35 |
19
|
Nisalak A, Clapham HE, Kalayanarooj S, Klungthong C, Thaisomboonsuk B, Fernandez S, Reiser J, Srikiatkhachorn A, Macareo LR, Lessler JT, Cummings DAT, Yoon IK. Forty Years of Dengue Surveillance at a Tertiary Pediatric Hospital in Bangkok, Thailand, 1973-2012. Am J Trop Med Hyg 2016; 94:1342-7. [PMID: 27022151 DOI: 10.4269/ajtmh.15-0337] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/09/2015] [Indexed: 11/07/2022] Open
Abstract
Long-term observational studies can provide valuable insights into overall dengue epidemiology. Here, we present analysis of dengue cases at a pediatric hospital in Bangkok, Thailand, during a 40-year period from 1973 to 2012. Data were analyzed from 25,715 hospitalized patients with laboratory-confirmed dengue virus (DENV) infection. Several long-term trends in dengue disease were identified including an increase in mean age of hospitalized cases from an average of 7-8 years, an increase after 1990 in the proportion of post-primary cases for DENV-1 and DENV-3, and a decrease in the proportion of dengue hemorrhagic fever and dengue shock syndrome cases in primary and post-primary cases over time. Exploratory mechanistic analysis of these observed trends considered changes in diagnostic methods, demography, force of infection, and Japanese encephalitis vaccination as possible explanations. Thailand is an important setting for studying DENV transmission as it has a "mature" dengue epidemiology with a strong surveillance system in place since the early 1970s. We characterized changes in dengue epidemiology over four decades, and possible impact of demographic and other changes in the human population. These results may inform other countries where similar changes in transmission and population demographics may now or may soon be occurring.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
33 |
20
|
Rabaa MA, Klungthong C, Yoon IK, Holmes EC, Chinnawirotpisan P, Thaisomboonsuk B, Srikiatkhachorn A, Rothman AL, Tannitisupawong D, Aldstadt J, Nisalak A, Mammen MP, Gibbons RV, Endy TP, Fansiri T, Scott TW, Jarman RG. Frequent in-migration and highly focal transmission of dengue viruses among children in Kamphaeng Phet, Thailand. PLoS Negl Trop Dis 2013; 7:e1990. [PMID: 23350000 PMCID: PMC3547850 DOI: 10.1371/journal.pntd.0001990] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/16/2012] [Indexed: 12/15/2022] Open
Abstract
Revealing the patterns and determinants of the spread of dengue virus (DENV) at local scales is central to understanding the epidemiology and evolution of this major human pathogen. We performed a phylogenetic analysis of the envelope (E) genes of DENV-1, -2, -3, and -4 isolates (involving 97, 23, 5, and 74 newly collected sequences, respectively) sampled from school-based cohort and village-based cluster studies in Kamphaeng Phet, Thailand, between 2004 and 2007. With these data, we sought to describe the spatial and temporal patterns of DENV spread within a rural population where a future vaccine efficacy trial is planned. Our analysis revealed considerable genetic diversity within the study population, with multiple lineages within each serotype circulating for various lengths of time during the study period. These results suggest that DENV is frequently introduced into both semi-urban and rural areas in Kamphaeng Phet from other populations. In contrast, the persistence of viral lineages across sampling years was observed less frequently. Analysis of phylogenetic clustering indicated that DENV transmission was highly spatially and temporally focal, and that it occurred in homes rather than at school. Overall, the strength of temporal clustering suggests that seasonal bottlenecks in local DENV populations facilitate the invasion and establishment of viruses from outside of the study area, in turn reducing the extent of lineage persistence.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
27 |
21
|
Clapham H, Cummings DAT, Nisalak A, Kalayanarooj S, Thaisomboonsuk B, Klungthong C, Fernandez S, Srikiatkhachorn A, Macareo LR, Lessler J, Reiser J, Yoon IK. Epidemiology of Infant Dengue Cases Illuminates Serotype-Specificity in the Interaction between Immunity and Disease, and Changes in Transmission Dynamics. PLoS Negl Trop Dis 2015; 9:e0004262. [PMID: 26658730 PMCID: PMC4684242 DOI: 10.1371/journal.pntd.0004262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background Infants born to dengue immune mothers acquire maternal antibodies to dengue. These antibodies, though initially protective, decline during the first year of life to levels thought to be disease enhancing, before reaching undetectable levels. Infants have long been studied to understand the interaction between infection and disease on an individual level. Methods/Findings Considering infants (cases <1 year old) as a unique group, we analyzed serotype specific dengue case data from patients admitted to a pediatric hospital in Bangkok, Thailand. We show differences in the propensity of serotypes to cause disease in individuals with dengue antibodies (infants and post-primary cases) and in individuals without dengue antibodies (primary cases). The mean age of infant cases differed among serotypes, consistent with previously observed differential waning of maternal antibody titers by serotype. We show that trends over time in epidemiology of infant cases are consistent with those observed in the whole population, and therefore with trends in the force of infection. Conclusions/Significance Infants with dengue are informative about the interaction between antibody and the dengue serotypes, confirming that in this population DENV-2 and DENV-4 almost exclusively cause disease in the presence of dengue antibody despite infections occurring in others. We also observe differences between the serotypes in the mean age in infant cases, informative about the interaction between waning immunity and disease for the different serotypes in infants. In addition, we show that the mean age of infant cases over time is informative about transmission in the whole population. Therefore, ongoing surveillance for dengue in infants could provide useful insights into dengue epidemiology, particularly after the introduction of a dengue vaccine targeting adults and older children. Infants born to dengue immune mothers acquire maternal dengue antibodies. These antibodies, though initially protective, decline during the first year of life to levels thought to be disease enhancing, before reaching undetectable levels. We show that in this population, DENV-2 and DENV-4 almost exclusively cause disease in the presence of dengue antibody, despite infections occurring in others. We also observe serotype-specificity in the mean age of infant cases, consistent with differential waning of antibody to each serotype. These results highlight serotype-specificity in the way the immune response interacts with infection to cause disease. In addition, we show that the mean age of infant cases over time is informative about transmission in the whole population. Therefore, ongoing surveillance for dengue in infants could provide useful insights into dengue epidemiology, particularly after the introduction of a dengue vaccine targeting adults and older children.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
24 |
22
|
Ubol S, Chareonsirisuthigul T, Kasisith J, Klungthong C. Clinical isolates of dengue virus with distinctive susceptibility to nitric oxide radical induce differential gene responses in THP-1 cells. Virology 2008; 376:290-6. [PMID: 18455750 DOI: 10.1016/j.virol.2008.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/20/2007] [Accepted: 03/26/2008] [Indexed: 11/18/2022]
Abstract
In the present study, 10 clinical isolates of dengue virus were selected according to their susceptibility to the inhibitory effect of nitric oxide radical, NO. Five of them are nitric oxide-susceptible viruses while the other five are nitric oxide-resistant viruses. These isolates were investigated to identify genetic factors that are responsible for the different phenotypes. Due to the evidence showing that NO suppresses DENV RNA polymerase activity, we, therefore, hypothesized that the RdRp domain of NS5 may responsible for NO inhibition. To answer this question, sequences of NS5 gene of NO-susceptible viruses and NO-resistant viruses were compared. We found that these two groups of viruses contain different amino acid sequence at position 621 to 646 in the active site of NS5. These data suggested that response to the inhibitory effect of nitric oxide radical may, at least in part, be regulated by NS5. The effect of these two different phenotypes of viruses on host cells was studied using cDNA array screening. The cDNA array analysis demonstrated that the nitric oxide-resistant group had a stronger influence on host cells since it induced changes in the expression of a greater number of genes than did the nitric oxide-susceptible group, 97 genes versus 71 genes, respectively. The NO-resistant virus also stimulated cytokines known to be virulent factors, such as IL 6, IL 8, RANTES, and the inflammatory factors. In conclusion, our data demonstrated that dengue viruses isolated from patients show genotypic and phenotypic differences which may correlate with virulence.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
22 |
23
|
Joonlasak K, Batty EM, Kochakarn T, Panthan B, Kümpornsin K, Jiaranai P, Wangwiwatsin A, Huang A, Kotanan N, Jaru-Ampornpan P, Manasatienkij W, Watthanachockchai T, Rakmanee K, Jones AR, Fernandez S, Sensorn I, Sungkanuparph S, Pasomsub E, Klungthong C, Chookajorn T, Chantratita W. Genomic surveillance of SARS-CoV-2 in Thailand reveals mixed imported populations, a local lineage expansion and a virus with truncated ORF7a. Virus Res 2020; 292:198233. [PMID: 33227343 PMCID: PMC7679658 DOI: 10.1016/j.virusres.2020.198233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
There were multiple introduction events of SARS-CoV-2 into Thailand. One lineage, designated A/Thai-1, has expanded and has become a predominant and unique lineage in Thailand. A major frame-shift mutation was found at the gene encoding ORF7a, a putative host antagonizing factor of the virus. Coronavirus Disease 2019 (COVID-19) is a global public health threat. Genomic surveillance of SARS-CoV-2 was implemented in March of 2020 at a major diagnostic hub in Bangkok, Thailand. Several virus lineages supposedly originated in many countries were found, and a Thai-specific lineage, designated A/Thai-1, has expanded to be predominant in Thailand. A virus sample in the SARS-CoV-2 A/Thai-1 lineage contains a frame-shift deletion at ORF7a, encoding a putative host antagonizing factor of the virus.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
22 |
24
|
Raengsakulrach B, Ong-aj-yooth L, Thaiprasert T, Nilwarangkur S, Ong-aj-yooth S, Narupiti S, Thirawuth V, Klungthong C, Snitbhan R, Vaughn DW. High prevalence of hepatitis G viremia among kidney transplant patients in Thailand. J Med Virol 1997; 53:162-6. [PMID: 9334928 DOI: 10.1002/(sici)1096-9071(199710)53:2<162::aid-jmv9>3.0.co;2-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Patients receiving kidney transplants (KT) are at high risk for blood borne viral infections. To determine the prevalence of a recently discovered hepatitis G virus (HGV) in this patient group, reverse transcription-polymerase chain reaction (RT-PCR) employing primers derived from the NS5 region of the viral genome was utilized. HGV RNA was detected in 40 of 94 KT patients (43%), as compared to 3 of 69 healthy subjects (4.3%). Cocirculation of HGV and hepatitis C virus (HCV) RNA was detected in 12 patients (13%). Comparison of patients with and without HGV revealed that the former had received hemodialysis before transplantation for a significantly longer duration than the latter (28 vs. 17 months, respectively; P < 0.05). The amount of blood transfused and mean levels of liver enzymes, including alkaline phosphatase, alanine transaminase, and aspartate transaminase, were the same in both groups. Sequence analysis of 275-base pair DNA clones obtained from 2 patients revealed approximately 92% sequence homology to the published HGV and GB virus C sequences. These results suggested that HGV infection among Thai KT patients was high and the role of HGV in causing liver disease remains to be determined.
Collapse
|
|
28 |
19 |
25
|
Zhou Y, Mammen MP, Klungthong C, Chinnawirotpisan P, Vaughn DW, Nimmannitya S, Kalayanarooj S, Holmes EC, Zhang C. Comparative analysis reveals no consistent association between the secondary structure of the 3'-untranslated region of dengue viruses and disease syndrome. J Gen Virol 2006; 87:2595-2603. [PMID: 16894198 DOI: 10.1099/vir.0.81994-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comparative analysis was performed of the 3'-untranslated region (UTR) of Dengue virus (DENV) sampled from Bangkok, Thailand, over a 30 year period and representing all four serotypes. Considerable genetic variation was observed both within and among serotypes. Notably, a full-length version of the critical 3'-long stable hairpin structure was absent from some isolates, suggesting the occurrence of complex structural interactions within the 3'-UTR, including the influence of upstream mutations. The Thai sequences were then combined with 61 globally sampled isolates of DENV taken from patients with either dengue fever or severe dengue disease. No consistent association was found between 3'-UTR secondary structure and the clinical outcome of DENV infection, although some evidence for a trend in this direction was observed in DENV-2. It was concluded that the 3'-UTR is not the sole determinant of DENV virulence in nature, although variation in secondary structure may greatly influence viral fitness.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
18 |