1
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
|
Review |
4 |
88 |
2
|
Eleftherianos I, Zhang W, Heryanto C, Mohamed A, Contreras G, Tettamanti G, Wink M, Bassal T. Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. Int J Biol Macromol 2021; 191:277-287. [PMID: 34543628 DOI: 10.1016/j.ijbiomac.2021.09.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates. Previous research has identified and characterized the nature of antimicrobial peptides that are directed against various targets during the different stages of infection. Here we review this information focusing mostly on the diversity and mode of action of these host defense components, and their critical contribution to maintaining host homeostasis. Extending this knowledge is paramount for understanding the evolution of innate immune function and the physiological balance required to provide sufficient protection to the host against external enemies while avoiding overactivation signaling events that would severely undermine physiological stability.
Collapse
|
Review |
4 |
41 |
3
|
Harsh S, Heryanto C, Eleftherianos I. Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila. Biol Open 2019; 8:bio.039040. [PMID: 31278163 PMCID: PMC6679391 DOI: 10.1242/bio.039040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipid droplets (LDs) are lipid-carrying multifunctional organelles, which might also interact with pathogens and influence the host immune response. However, the exact nature of these interactions remains currently unexplored. Here we show that systemic infection of Drosophila adult flies with non-pathogenic Escherichia coli, the extracellular bacterial pathogen Photorhabdus luminescens or the facultative intracellular pathogen Photorhabdus asymbiotica results in intestinal steatosis marked by lipid accumulation in the midgut. Accumulation of LDs in the midgut also correlates with increased whole-body lipid levels characterized by increased expression of genes regulating lipogenesis. The lipid-enriched midgut further displays reduced expression of the enteroendocrine-secreted hormone, Tachykinin. The observed lipid accumulation requires the Gram-negative cell wall pattern recognition molecule, PGRP-LC, but not PGRP-LE, for the humoral immune response. Altogether, our findings indicate that Drosophila LDs are inducible organelles, which can serve as markers for inflammation and, depending on the nature of the challenge, they can dictate the outcome of the infection. Summary: Lipid droplets are inducible organelles, act as inflammatory markers and, depending on the nature of challenge, can dictate the outcome of the infection.
Collapse
|
Journal Article |
6 |
11 |
4
|
Patrnogic J, Heryanto C, Eleftherianos I. Transcriptional up-regulation of the TGF-β intracellular signaling transducer Mad of Drosophila larvae in response to parasitic nematode infection. Innate Immun 2018; 24:349-356. [PMID: 30049242 PMCID: PMC6830907 DOI: 10.1177/1753425918790663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The common fruit fly Drosophila melanogaster is an exceptional
model for dissecting innate immunity. However, our knowledge on responses to
parasitic nematode infections still lags behind. Recent studies have
demonstrated that the well-conserved TGF-β signaling pathway participates in
immune processes of the fly, including the anti-nematode response. To elucidate
the molecular basis of TGF-β anti-nematode activity, we performed a transcript
level analysis of different TGF-β signaling components following infection of
D. melanogaster larvae with the nematode parasite
Heterorhabditis gerrardi. We found no significant changes
in the transcript level of most extracellular ligands in both bone morphogenic
protein (BMP) and activin branches of the TGF-β signaling pathway between
nematode-infected larvae and uninfected controls. However, extracellular ligand,
Scw, and Type I receptor, Sax, in the BMP pathway as well as the Type I
receptor, Babo, in the activin pathway were substantially up-regulated following
H. gerrardi infection. Our results suggest that receptor
up-regulation leads to transcriptional up-regulation of the intracellular
component Mad in response to H. gerrardi following changes in
gene expression of intracellular receptors of both TGF-β signaling branches.
These findings identify the involvement of certain TGF-β signaling pathway
components in the immune signal transduction of D. melanogaster
larvae against parasitic nematodes.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
9 |
5
|
Patrnogic J, Castillo JC, Shokal U, Yadav S, Kenney E, Heryanto C, Ozakman Y, Eleftherianos I. Pre-exposure to non-pathogenic bacteria does not protect Drosophila against the entomopathogenic bacterium Photorhabdus. PLoS One 2018; 13:e0205256. [PMID: 30379824 PMCID: PMC6209181 DOI: 10.1371/journal.pone.0205256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/22/2018] [Indexed: 01/27/2023] Open
Abstract
Immune priming in insects involves an initial challenge with a non-pathogenic microbe or exposure to a low dose of pathogenic microorganisms, which provides a certain degree of protection against a subsequent pathogenic infection. The protective effect of insect immune priming has been linked to the activation of humoral or cellular features of the innate immune response during the preliminary challenge, and these effects might last long enough to promote the survival of the infected animal. The fruit fly Drosophila melanogaster is a superb model to dissect immune priming processes in insects due to the availability of molecular and genetic tools, and the comprehensive understanding of the innate immune response in this organism. Previous investigations have indicated that the D. melanogaster immune system can be primed efficiently. Here we have extended these studies by examining the result of immune priming against two potent entomopathogenic bacteria, Photorhabdus luminescens and P. asymbiotica. We have found that rearing D. melanogaster on diet containing a non-pathogenic strain of Escherichia coli alone or in combination with Micrococcus luteus upregulates the antibacterial peptide immune response in young adult flies, but it does not prolong fly life span. Also, subsequent intrathoracic injection with P. luminescens or P. asymbiotica triggers the Immune deficiency and Toll signaling pathways in flies previously exposed to a live or heat-killed mix of the non-pathogenic bacteria, but the immune activation fails to promote fly survival against the pathogens. These findings suggest that immune priming in D. melanogaster, and probably in other insects, is determined by the type of microbes involved as well as the mode of microbial exposure, and possibly requires a comprehensive and precise alteration of immune signaling and function to provide efficient protection against pathogenic infection.
Collapse
|
Journal Article |
7 |
8 |
6
|
Chevée V, Sachar U, Yadav S, Heryanto C, Eleftherianos I. The peptidoglycan recognition protein PGRP-LE regulates the Drosophila immune response against the pathogen Photorhabdus. Microb Pathog 2019; 136:103664. [PMID: 31404632 DOI: 10.1016/j.micpath.2019.103664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Photorhabdus bacteria are potent pathogens of insects and humans. To elucidate the infection strategies Photorhabdus employs to subvert the host innate immune response, it is critical to use model organisms that permit the genetic dissection of the dynamics involved in host-pathogen interactions. Here, we employed the fruit fly Drosophila melanogaster to interrogate the role of the immune deficiency (Imd) pathway receptor peptidoglycan recognition protein LE (PGRP-LE) in the regulation of the fly's response to the insect pathogen Photorhabdus luminescens and the insect/human pathogen P. asymbiotica. We show that PGRP-LE is upregulated in response to injection of Photorhabdus bacteria in background control flies, and that loss-of-function PGRP-LE mutant flies are more sensitive specifically to P. luminescens infection and harbor a higher bacterial burden of this species compared to background controls. Also, our results indicate that the absence of functional PGRP-LE alters the transcriptional pathway activity of Imd and Jnk signaling upon infection with P. asymbiotica, while infection with P. luminescens modifies the activity of Jak/Stat signaling. These findings denote the participation of the PGRP-LE receptor in the response of D. melanogaster to Photorhabdus challenge and contribute to a better understanding of pathogen detection and host immune regulation against virulent microbial invaders.
Collapse
|
Journal Article |
6 |
7 |
7
|
Eleftherianos I, Heryanto C. Transcriptomic Insights into the Insect Immune Response to Nematode Infection. Genes (Basel) 2021; 12:genes12020202. [PMID: 33573306 PMCID: PMC7911283 DOI: 10.3390/genes12020202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Insects in nature interact with a wide variety of microbial enemies including nematodes. These include entomopathogenic nematodes that contain mutualistic bacteria and together are able to infect a broad range of insects in order to complete their life cycle and multiply, filarial nematodes which are vectored by mosquitoes, and other parasitic nematodes. Entomopathogenic nematodes are commonly used in biological control practices and they form excellent research tools for understanding the genetic and functional bases of nematode pathogenicity and insect anti-nematode immunity. In addition, clarifying the mechanism of transmission of filarial nematodes by mosquitoes is critical for devising strategies to reduce disease transmission in humans. In all cases and in order to achieve these goals, it is vital to determine the number and type of insect host genes which are differentially regulated during infection and encode factors with anti-nematode properties. In this respect, the use of transcriptomic approaches has proven a key step for the identification of insect molecules with anti-nematode activity. Here, we review the progress in the field of transcriptomics that deals with the insect response to nematode infection. This information is important because it will expose conserved pathways of anti-nematode immunity in humans.
Collapse
|
Review |
4 |
5 |
8
|
Tendolkar A, Pomerantz AF, Heryanto C, Shirk PD, Patel NH, Martin A. Ultrabithorax Is a Micromanager of Hindwing Identity in Butterflies and Moths. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.643661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The forewings and hindwings of butterflies and moths (Lepidoptera) are differentiated from each other, with segment-specific morphologies and color patterns that mediate a wide range of functions in flight, signaling, and protection. The Hox geneUltrabithorax(Ubx) is a master selector gene that differentiates metathoracic from mesothoracic identities across winged insects, and previous work has shown this role extends to at least some of the color patterns from the butterfly hindwing. Here we used CRISPR targeted mutagenesis to generateUbxloss-of-function somatic mutations in two nymphalid butterflies (Junonia coenia,Vanessa cardui) and a pyralid moth (Plodia interpunctella). The resulting mosaic clones yielded hindwing-to-forewing transformations, showingUbxis necessary for specifying many aspects of hindwing-specific identities, including scale morphologies, color patterns, and wing venation and structure. These homeotic phenotypes showed cell-autonomous, sharp transitions between mutant and non-mutant scales, except for clones that encroached into the border ocelli (eyespots) and resulted in composite and non-autonomous effects on eyespot ring determination. In the pyralid moth, homeotic clones converted the folding and depigmented hindwing into rigid and pigmented composites, affected the wing-coupling frenulum, and induced ectopic scent-scales in male androconia. These data confirmUbxis a master selector of lepidopteran hindwing identity and suggest it acts on many gene regulatory networks involved in wing development and patterning.
Collapse
|
|
4 |
5 |
9
|
Patrnogic J, Heryanto C, Ozakman Y, Eleftherianos I. Transcript analysis reveals the involvement of NF-κB transcription factors for the activation of TGF-β signaling in nematode-infected Drosophila. Immunogenetics 2019; 71:501-510. [PMID: 31147740 DOI: 10.1007/s00251-019-01119-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/11/2019] [Indexed: 11/27/2022]
Abstract
The common fruit fly Drosophila melanogaster is a powerful model for studying signaling pathway regulation. Conserved signaling pathways underlying physiological processes signify evolutionary relationship between organisms and the nature of the mechanisms they control. This study explores the cross-talk between the well-characterized nuclear factor kappa B (NF-κB) innate immune signaling pathways and transforming growth factor beta (TGF-β) signaling pathway in response to parasitic nematode infection in Drosophila. To understand the link between signaling pathways, we followed on our previous studies by performing a transcript-level analysis of different TGF-β signaling components following infection of immune-compromised Drosophila adult flies with the nematode parasites Heterorhabditis gerrardi and H. bacteriophora. Our findings demonstrate the requirement of NF-κB transcription factors for activation of TGF-β signaling pathway in Drosophila in the context of parasitic nematode infection. We observe significant decrease in transcript level of glass bottom boat (gbb) and screw (scw), components of the bone morphogenic protein (BMP) branch, as well as Activinβ (actβ) which is a component of the Activin branch of the TGF-β signaling pathway. These results are observed only in H. gerrardi nematode-infected flies compared to uninfected control. Also, this significant decrease in transcript level is found only for extracellular ligands. Future research examining the mechanisms regulating the interaction of these signaling pathways could provide further insight into Drosophila anti-nematode immune function against infection with potent parasitic nematodes.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
4 |
10
|
Heryanto C, Eleftherianos I. Nematode endosymbiont competition: Fortune favors the fittest. Mol Biochem Parasitol 2020; 238:111298. [PMID: 32621939 DOI: 10.1016/j.molbiopara.2020.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Endosymbiotic bacteria that obligately associate with entomopathogenic nematodes as a complex are a unique model system to study competition. These nematodes seek an insect host and provide entry for their endosymbionts. Through their natural products, the endosymbionts nurture their nematodes by eliminating secondary infection, providing nutrients through bioconversion of the insect cadaver, and facilitating reproduction. On one hand, they cooperatively colonize the insect host and neutralize other opportunistic biotic threats. On the other hand, inside the insect cadaver as a fighting pit, they fiercely compete for the fittest partnership that will grant them the reproductive dominance. Here, we review the protective and nurturing nature of endosymbiotic bacteria for their nematodes and how their selective preference shapes the superior nematode-endosymbiont pairs as we know today.
Collapse
|
Review |
5 |
3 |
11
|
Heryanto C, Hanly JJ, Mazo-Vargas A, Tendolkar A, Martin A. Mapping and CRISPR homology-directed repair of a recessive white eye mutation in Plodia moths. iScience 2022; 25:103885. [PMID: 35243245 PMCID: PMC8861637 DOI: 10.1016/j.isci.2022.103885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The pantry moth Plodia interpunctella is a worldwide pest of stored food products and a promising laboratory model system for lepidopteran functional genomics. Here we describe efficient methods for precise genome editing in this insect. A spontaneous recessive white-eyed phenotype maps to a frameshift deletion (c.737delC) in the white gene. CRISPR NHEJ mutagenesis of white replicates this phenotype with high rates of somatic biallelic knockout. G0 individuals with mutant clones on both eyes produced 100% mutant progeny, making white an ideal marker for co-conversion when targeting other genes. CRISPR HDR experiments corrected c.737delC and reverted white eyes to a pigmented state in 37% of G0 mosaic adults. These repaired alleles showed practical rates of germline transmission in backcrosses, demonstrating the potential of the technique for precise genome editing. Plodia offers a promising avenue for research in this taxon because of its lab-ready features, egg injectability, and editability.
Plodia pantry moths are an emerging model organism for functional genomics in Lepidoptera Spontaneous and CRISPR-induced white mutations yield recessive-white eye phenotypes CRISPR HDR repair with ssODN donor result in practical rates of base editing We provide optimized protocols for Plodia handling and genome editing
Collapse
|
|
3 |
1 |
12
|
Lian J, Steinert G, de Vree J, Meijer S, Heryanto C, Bosma R, Wijffels RH, Barbosa MJ, Smidt H, Sipkema D. Bacterial diversity in different outdoor pilot plant photobioreactor types during production of the microalga Nannochloropsis sp. CCAP211/78. Appl Microbiol Biotechnol 2022; 106:2235-2248. [PMID: 35166894 PMCID: PMC8930801 DOI: 10.1007/s00253-022-11815-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
As large-scale outdoor production cannot be done in complete containment, cultures are (more) open for bacteria, which may affect the productivity and stability of the algae production process. We investigated the bacterial diversity in two indoor reactors and four pilot-scale outdoor reactors for the production of Nannochloropsis sp. CCAP211/78 spanning four months of operation from July to October. Illumina sequencing of 16S rRNA gene amplicons demonstrated that a wide variety of bacteria were present in all reactor types, with predominance of Bacteroidetes and Alphaproteobacteria. Bacterial communities were significantly different between all reactor types (except between the horizontal tubular reactor and the vertical tubular reactor) and also between runs in each reactor. Bacteria common to the majority of samples included one member of the Saprospiraceae family and one of the NS11-12_marine group (both Bacteroidetes). Hierarchical clustering analysis revealed two phases during the cultivation period separated by a major shift in bacterial community composition in the horizontal tubular reactor, the vertical tubular reactor and the raceway pond with a strong decrease of the Saprospiraceae and NS11-12_marine group that initially dominated the bacterial communities. Furthermore, we observed a less consistent pattern of bacterial taxa appearing in different reactors and runs, most of which belonging to the classes Deltaproteobacteria and Flavobacteriia. In addition, canonical correspondence analysis showed that the bacterial community composition was significantly correlated with the nitrate concentration. This study contributes to our understanding of bacterial diversity and composition in different types of outdoor reactors exposed to a range of dynamic biotic and abiotic factors. Key points • Reactor types had significantly different bacterial communities except HT and VT • The inoculum source and physiochemical factors together affect bacterial community • The bacterial family Saprospiraceae is positively correlated to microalgal growth.
Collapse
|
|
3 |
1 |
13
|
Hanly JJ, Livraghi L, Heryanto C, McMillan WO, Jiggins CD, Gilbert LE, Martin A. A large deletion at the cortex locus eliminates butterfly wing patterning. G3 GENES|GENOMES|GENETICS 2022; 12:6517782. [PMID: 35099556 PMCID: PMC8982378 DOI: 10.1093/g3journal/jkac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
As the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H. melpomene and 10 divergent lepidopteran species. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5′ region of the cortex gene that includes a facultative 5′UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable while heterozygotes are the targets of artificial selection, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.
Collapse
|
|
3 |
1 |
14
|
Heryanto C, Mazo-Vargas A, Martin A. Efficient hyperactive piggyBac transgenesis in Plodia pantry moths. Front Genome Ed 2022; 4:1074888. [PMID: 36620082 PMCID: PMC9816379 DOI: 10.3389/fgeed.2022.1074888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
While piggyBac transposon-based transgenesis is widely used in various emerging model organisms, its relatively low transposition rate in butterflies and moths has hindered its use for routine genetic transformation in Lepidoptera. Here, we tested the suitability of a codon-optimized hyperactive piggyBac transposase (hyPBase) in mRNA form to deliver and integrate transgenic cassettes into the genome of the pantry moth Plodia interpunctella. Co-injection of hyPBase mRNA with donor plasmids successfully integrated 1.5-4.4 kb expression cassettes driving the fluorescent markers EGFP, DsRed, or EYFP in eyes and glia with the 3xP3 promoter. Somatic integration and expression of the transgene in the G0 injected generation was detectable from 72-h embryos and onward in larvae, pupae and adults carrying a recessive white-eyed mutation. Overall, 2.5% of injected eggs survived into transgene-bearing adults with mosaic fluorescence. Subsequent outcrossing of fluorescent G0 founders transmitted single-insertion copies of 3xP3::EGFP and 3xP3::EYFP and generated stable isogenic lines. Random in-crossing of a small cohort of G0 founders expressing 3xP3::DsRed yielded a stable transgenic line segregating for more than one transgene insertion site. We discuss how hyPBase can be used to generate stable transgenic resources in Plodia and other moths.
Collapse
|
research-article |
3 |
|
15
|
Heryanto C, Hanly JJ, Mazo-Vargas A, Tendolkar A, Martin A. Erratum: Mapping and CRISPR homology-directed repair of a recessive white eye mutation in Plodia moths. iScience 2022; 25:104749. [PMID: 35874096 PMCID: PMC9304614 DOI: 10.1016/j.isci.2022.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
[This corrects the article DOI: 10.1016/j.isci.2022.103885.].
Collapse
|
Published Erratum |
3 |
|
16
|
Loh LS, DeMarr KA, Tsimba M, Heryanto C, Berrio A, Patel NH, Martin A, McMillan WO, Wray GA, Hanly JJ. Lepidopteran scale cells derive from sensory organ precursors through a canonical lineage. Development 2025; 152:DEV204501. [PMID: 40052482 PMCID: PMC11925400 DOI: 10.1242/dev.204501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
The success of butterflies and moths is tightly linked to the origin of scales within the group. A long-standing hypothesis postulates that scales are homologous to the well-described mechanosensory bristles found in the fruit fly Drosophila melanogaster, as both derive from an epithelial precursor. Previous histological and candidate gene approaches identified parallels in genes involved in scale and bristle development. Here, we provide developmental and transcriptomic evidence that the differentiation of lepidopteran scales derives from the sensory organ precursor (SOP). Live imaging in lepidopteran pupae shows that SOP cells undergo two asymmetric divisions that first abrogate the neurogenic lineage, and then lead to a differentiated scale precursor and its associated socket cell. Single-nucleus RNA sequencing using early pupal wings revealed differential gene expression patterns that mirror SOP development, suggesting a shared developmental program. Additionally, we recovered a newly associated gene, the transcription factor pdm3, involved in the proper differentiation of butterfly wing scales. Altogether, these data open up avenues for understanding scale type specification and development, and illustrate how single-cell transcriptomics provide a powerful platform for understanding evolution of cell types.
Collapse
|
|
1 |
|
17
|
Kim I, Heryanto C, Eleftherianos I. HETERORHABDITIS BACTERIOPHORA NEMATODES ARE SENSITIVE TO THE BACTERIAL PATHOGEN PHOTORHABDUS ASYMBIOTICA. J Parasitol 2023; 109:11-14. [PMID: 36805240 DOI: 10.1645/22-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora infects a wide range of insect hosts with the aid of its mutualistic bacteria Photorhabdus luminescens. While the mutualistic relationship between H. bacteriophora and P. luminescens and the infectivity of the nematode-bacteria complex have been characterized, how nematode fitness is affected by entomopathogenic bacteria existing in association with other EPN species remains poorly understood. In this study, the survival of H. bacteriophora infective juveniles containing or lacking P. luminescens was tested against the entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus asymbiotica as well as the non-pathogenic Escherichia coli. While X. nematophila and E. coli did not significantly affect the survival of H. bacteriophora, P. asymbiotica exerted a significant effect on nematode survival, particularly on those lacking P. luminescens. These results imply that P. asymbiotica encodes factors that are pathogenic to EPNs. Future efforts will focus on the identification of the bacterial molecular components that induce these effects. This study makes an important contribution to a growing body of research aimed at exploiting the full potential of nematode-bacterial complexes for eliminating noxious insect pests and treating infectious diseases caused by parasitic nematodes.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
18
|
Heryanto C, Ratnappan R, O'Halloran DM, Hawdon JM, Eleftherianos I. Culturing and Genetically Manipulating Entomopathogenic Nematodes. J Vis Exp 2022. [DOI: 10.3791/63885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
|
3 |
|