1
|
Cordsmeier A, Herrmann A, Gege C, Kohlhof H, Korn K, Ensser A. Molecular analysis of the 2022 mpox outbreak and antiviral activity of dihydroorotate dehydrogenase inhibitors against orthopoxviruses. Antiviral Res 2025; 233:106043. [PMID: 39608644 DOI: 10.1016/j.antiviral.2024.106043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Monkeypox virus (MPXV) has caused a large pandemic outbreak in 2022 with more than 90.000 confirmed cases and 181 deaths. Notably, signs of microevolution and host adaption have been observed. Here, we demonstrate that viral genomes from Franconia, Bavaria acquired different mutations. Three isolates obtained from diagnostic samples, submitted from suspected Mpox cases, show differences in their replication capacities. One MPXV isolate which shows the fastest replication kinetics and higher viral loads, possesses a unique non-synonymous mutation (D616L) in the A11L protein (gene OPG136), which encodes for a protein that is part of a major viral core structure. In regard to pandemic preparedness and future outbreaks, we analyzed the antiviral activity of dihydroorotate dehydrogenase (DHODH) inhibitors, and show that they are active against MPXV, vaccinia virus (VACV), and cowpox virus (CPXV) and therefore likely against orthopoxviruses in general. In agreement with that, we also demonstrated that chemical optimization leads to compounds with EC50 values in the sub-nanomolar range, associated with low cytotoxicity, which forms a good basis for future drug development from this chemical series.
Collapse
|
2
|
Herrmann A, Gege C, Wangen C, Wagner S, Kögler M, Cordsmeier A, Irrgang P, Ip WH, Weil T, Hunszinger V, Groß R, Heinen N, Pfaender S, Reuter S, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Grunwald T, Hietel B, Cynis H, Münch J, Sparrer KMJ, Ensser A, Tenbusch M, Dobner T, Vitt D, Kohlhof H, Hahn F. Orally bioavailable RORγ/DHODH dual host-targeting small molecules with broad-spectrum antiviral activity. Antiviral Res 2024; 231:106008. [PMID: 39306285 DOI: 10.1016/j.antiviral.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Host-directed antivirals (HDAs) represent an attractive treatment option and a strategy for pandemic preparedness, especially due to their potential broad-spectrum antiviral activity and high barrier to resistance development. Particularly, dual-targeting HDAs offer a promising approach for antiviral therapy by simultaneously disrupting multiple pathways essential for viral replication. Izumerogant (IMU-935) targets two host proteins, (i) the retinoic acid receptor-related orphan receptor γ isoform 1 (RORγ1), which modulates cellular cholesterol metabolism, and (ii) the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in de novo pyrimidine synthesis. Here, we synthesized optimized derivatives of izumerogant and characterized their antiviral activity in comparison to a recently described structurally distinct RORγ/DHODH dual inhibitor. Cell culture-based infection models for enveloped and non-enveloped DNA and RNA viruses, as well as a retrovirus, demonstrated high potency and broad-spectrum activity against human viral pathogens for RORγ/DHODH dual inhibitors at nanomolar concentrations. Comparative analyses with equipotent single-target inhibitors in metabolite supplementation approaches revealed that the dual-targeting mode represents the mechanistic basis for the potent antiviral activity. For SARS-CoV-2, an optimized dual inhibitor completely blocked viral replication in human airway epithelial cells at 5 nM and displayed a synergistic drug interaction with the nucleoside analog molnupiravir. In a SARS-CoV-2 mouse model, treatment with a dual inhibitor alone, or in combination with molnupiravir, reduced the viral load by 7- and 58-fold, respectively. Considering the clinical safety, oral bioavailability, and tolerability of izumerogant in a recent Phase I study, izumerogant-like drugs represent potent dual-targeting antiviral HDAs with pronounced broad-spectrum activity for further clinical development.
Collapse
|
3
|
Gege C, Kleymann G. Helicase-primase inhibitors for the treatment of herpes simplex virus infections - patent evaluation of WO2023/225162 from Gilead Sciences Inc. Expert Opin Ther Pat 2024; 34:863-872. [PMID: 39262042 DOI: 10.1080/13543776.2024.2403618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Helicase-primase is an interesting target for small-molecule therapy of herpes simplex virus (HSV) infections. With amenamevir already approved for varicella-zoster virus and herpes simplex in Japan and with pritelivir's granted breakthrough therapy designation for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in helicase-primase inhibitors (HPIs). Here, we analyze the first patent application from Gilead in this field, which pursued a me-too approach combining elements from an old Bayer together with a recent Medshine HPI application (which covers the Phaeno Therapeutics drug candidate HN0037). The asset was contributed to Assembly Biosciences, where it is under development as ABI-1179 at the investigational new drug (IND) enabling stage for high-recurrence genital herpes. A structure proposal for indolinoyl derivative ABI-1179 is presented, showing its potential opportunities and limitations compared to other HPIs.
Collapse
|
4
|
Gege C, Hahn F, Wangen C, Häge S, Herrmann A, Uhlig N, Eberlein V, Issmail L, Klopfleisch R, Grunwald T, Marschall M, Kohlhof H, Vitt D. Synthesis and Characterization of DHODH Inhibitors Based on the Vidofludimus Scaffold with Pronounced Anti-SARS-CoV-2 Activity. ChemMedChem 2024; 19:e202400292. [PMID: 38887198 DOI: 10.1002/cmdc.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
New strategies for the rapid development of broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses like the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Host-directed antivirals that target universal cellular metabolic pathways necessary for viral replication present a promising approach with broad-spectrum activity and low potential for development of viral resistance. Dihydroorotate dehydrogenase (DHODH) was identified as one of those universal host factors essential for the replication of many clinically relevant human pathogenic viruses. DHODH is the rate-limiting enzyme catalyzing the fourth step in the de novo pyrimidine synthesis. Therefore, it is also developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancer, autoimmune diseases and viral or bacterial infection. Thus, several DHODH inhibitors, including vidofludimus calcium (VidoCa, IMU-838), are currently in development or have been investigated in clinical trials for the treatment of virus infections such as SARS-CoV-2-mediated coronavirus disease 19 (COVID-19). Here, we report the medicinal chemistry optimization of VidoCa that resulted in metabolically more stable derivatives with improved DHODH target inhibition in various mammalian species, which translated into improved efficacy against SARS-CoV-2.
Collapse
|
5
|
Buriánek F, Gege C, Marinković P. New developments in celiac disease treatments. Drug Discov Today 2024; 29:104113. [PMID: 39067614 DOI: 10.1016/j.drudis.2024.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Celiac disease (CeD), an autoimmune disorder triggered by gluten, affects around 1% of the global population. Standard treatment is a strict gluten-free diet (GFD), which poses significant challenges due to dietary restrictions, cross-contamination and subsequent persistent intestinal inflammation. This underscores the need for new treatment options addressing the complex pathophysiology of CeD. Recent research focuses on developing drugs that target intestinal barrier regeneration, gluten peptide modification, immune response alteration, and gut microbial ecosystem modulation. These approaches offer potential for more effective management of CeD beyond GFD. Gluten-independent treatments may be particularly relevant under the FDA's draft guidance for CeD, which emphasizes drug development as an adjunct to GFD for patients with ongoing signs and symptoms of CeD despite strict GFD.
Collapse
|
6
|
Gege C, Kleymann G. Replacement of sulfonamide by sulfoximine within a helicase-primase inhibitor with restricted flexibility. Bioorg Med Chem Lett 2024; 106:129761. [PMID: 38642810 DOI: 10.1016/j.bmcl.2024.129761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Helicase-primase is an interesting target for the therapy of herpes simplex virus (HSV) infections. Since amenamevir is already approved for varicella-zoster virus (VZV) and HSV in Japan and pritelivir has received breakthrough therapy status for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in me-too approaches. Here, we describe the attempt to improve nervous tissue penetration in Phaeno Therapeutics drug candidate HN0037 to target the latent reservoir of HSV by installing less polar moieties, mainly a difluorophenyl instead of a pyridyl group, and replacing the primary sulfonamide with a methyl sulfoximine moiety. However, all obtained stereoisomers exhibited a weaker inhibitory activity on HSV-1 and HSV-2.
Collapse
|
7
|
Wangen C, Raithel A, Tillmanns J, Gege C, Herrmann A, Vitt D, Kohlhof H, Marschall M, Hahn F. Validation of nuclear receptor RORγ isoform 1 as a novel host-directed antiviral target based on the modulation of cholesterol levels. Antiviral Res 2024; 221:105769. [PMID: 38056603 DOI: 10.1016/j.antiviral.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Currently, the clinically approved repertoire of antiviral drugs predominantly comprises direct-acting antivirals (DAAs). However, the use of DAAs is frequently limited by adverse effects, restriction to individual virus species, or the induction of viral drug resistance. These issues will likely be resolved by the introduction of host-directed antivirals (HDAs) targeting cellular proteins crucial for viral replication. However, experiences with the development of antiviral HDAs and clinical applications are still in their infancy. With the present study, we explored the human nuclear receptor and transcription factor RORγ isoform 1 (RORγ1), a member of the retinoic acid receptor-related orphan receptor (ROR) family, as a putative target of antiviral HDAs. To this end, cell culture models were used to investigate major viral human pathogens, i.e. the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human cytomegalovirus (HCMV), varicella zoster virus (VZV) and human immunodeficiency virus 1 (HIV-1). Our results demonstrated (i) an antiviral activity of the clinically relevant RORγ modulators cedirogant and others, (ii) that isoform RORγ1 acts as the responsible determinant and drug target in the analyzed cell culture-based models, (iii) a selectivity of the antiviral effect for RORγ1 over related receptors RORα and RORβ, (iv) a late-phase inhibition exerted by cedirogant in HCMV replication and (v) a mechanistic link to the cellular cholesterol biosynthesis. Combined, the data highlight this novel RORγ-specific antiviral targeting concept and the developmental potential of RORγ-directed small molecules.
Collapse
|
8
|
Bernstein DI, Sawtell NM, Bravo FJ, Dixon DA, Gege C, Kleymann G. Intermittent therapy with helicase-primase inhibitor IM-250 efficiently controls recurrent herpes disease and reduces reactivation of latent HSV. Antiviral Res 2023; 219:105733. [PMID: 37858763 DOI: 10.1016/j.antiviral.2023.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Herpes is a contagious life-long infection with persistently high incidence and prevalence, causing significant disease worldwide. Current therapies have efficacy against active HSV infections but no impact on the latent viral reservoir in neurons. Thus, despite treatment, disease recurs from latency and the infectious potential remains unaffected within patients. Here, efficacy of the helicase-primase inhibitor (HPI) IM-250 against chronic neuronal HSV infections utilizing two classic herpes in vivo latency/reactivation animal models (intravaginal guinea pig HSV-2 infection model and ocular mouse HSV-1 infection model) is presented. Intermittent therapy of infected animals with 4-7 cycles of IM-250 during latency silences subsequent recurrences analyzed up to 6 months. In contrast to common experience, our studies show that the latent reservoir is indeed accessible to antiviral therapy altering the latent viral reservoir such that reactivation frequency can be reduced significantly by prior IM-250 treatment. We provide evidence that antiviral treatment during HSV latency can reduce future reactivation from the latent reservoir, supporting a conceptual shift in the antiviral field, and reframing what is achievable with respect to therapy of latent neuronal HSV infections.
Collapse
|
9
|
Vietor J, Gege C, Stiller T, Busch R, Schallmayer E, Kohlhof H, Höfner G, Pabel J, Marschner JA, Merk D. Development of a Potent Nurr1 Agonist Tool for In Vivo Applications. J Med Chem 2023; 66:6391-6402. [PMID: 37127285 PMCID: PMC10184128 DOI: 10.1021/acs.jmedchem.3c00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a neuroprotective transcription factor and an emerging target in neurodegenerative diseases. Despite strong evidence for a role in Parkinson's and Alzheimer's disease, pharmacological control and validation of Nurr1 are hindered by a lack of suitable ligands. We have discovered considerable Nurr1 activation by the clinically studied dihydroorotate dehydrogenase (DHODH) inhibitor vidofludimus calcium and systematically optimized this scaffold to a Nurr1 agonist with nanomolar potency, strong activation efficacy, and pronounced preference over the highly related receptors Nur77 and NOR1. The optimized compound induced Nurr1-regulated gene expression in astrocytes and exhibited favorable pharmacokinetics in rats, thus emerging as a superior chemical tool to study Nurr1 activation in vitro and in vivo.
Collapse
|
10
|
Gege C, Kleymann G. Helicase-primase inhibitors from Medshine Discovery Inc. (WO2018/127207 and WO2020/007355) for the treatment of herpes simplex virus infections – structure proposal for Phaeno Therapeutics drug candidate HN0037. Expert Opin Ther Pat 2022; 32:933-937. [DOI: 10.1080/13543776.2022.2113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Kav B, Demé B, Gege C, Tanaka M, Schneck E, Weikl TR. Interplay of Trans- and Cis-Interactions of Glycolipids in Membrane Adhesion. Front Mol Biosci 2021; 8:754654. [PMID: 34869588 PMCID: PMC8641917 DOI: 10.3389/fmolb.2021.754654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
Glycolipids mediate stable membrane adhesion of potential biological relevance. In this article, we investigate the trans- and cis-interactions of glycolipids in molecular dynamics simulations and relate these interactions to the glycolipid-induced average separations of membranes obtained from neutron scattering experiments. We find that the cis-interactions between glycolipids in the same membrane leaflet tend to strengthen the trans-interactions between glycolipids in apposing leaflets. The trans-interactions of the glycolipids in our simulations require local membrane separations that are significantly smaller than the average membrane separations in the neutron scattering experiments, which indicates an important role of membrane shape fluctuations in glycolipid trans-binding. Simulations at the experimentally measured average membrane separations provide a molecular picture of the interplay between glycolipid attraction and steric repulsion of the fluctuating membranes probed in the experiments.
Collapse
|
12
|
Gege C, Bravo FJ, Uhlig N, Hagmaier T, Schmachtenberg R, Elis J, Burger-Kentischer A, Finkelmeier D, Hamprecht K, Grunwald T, Bernstein DI, Kleymann G. A helicase-primase drug candidate with sufficient target tissue exposure affects latent neural herpes simplex virus infections. Sci Transl Med 2021; 13:13/598/eabf8668. [PMID: 34135112 DOI: 10.1126/scitranslmed.abf8668] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
More than 50% of the world population is chronically infected with herpesviruses. Herpes simplex virus (HSV) infections are the cause of herpes labialis (cold sores), genital herpes, and sight-impairing keratitis. Less frequently, life-threatening disseminated disease (encephalitis and generalized viremia) can also occur, mainly in immunocompromised patients and newborns. After primary infection, HSV persists for life in a latent state in trigeminal or sacral ganglia and, triggered by diverse stimuli, disease recurs in more than 30% of patients up to several times a year. Current therapy with nucleoside analogs targeting the viral polymerase is somewhat effective but limited by poor exposure in the nervous system, and latent infections are not affected by therapy. Here, we report on an inhibitor of HSV helicase-primase with potent in vitro anti-herpes activity, a different mechanism of action, a low frequency of HSV resistance, and a favorable pharmacokinetic and safety profile. Improved target tissue exposure results in superior efficacy in preventing and treating HSV infection and disease in animal models as compared to standard of care. Therapy of primary HSV infections with drug candidate IM-250 {(S)-2-(2',5'-difluoro-[1,1'-biphenyl]-4-yl)-N-methyl-N-(4-methyl-5-(S-methylsulfon-imidoyl)thiazol-2-yl)acetamide} not only reduces the duration of disease symptoms or time to healing but also prevents recurrent disease in guinea pigs. Treatment of recurrent infections reduces the frequency of recurrences and viral shedding, and, unlike nucleosidic drugs, IM-250 remains effective for a time after cessation of treatment. Hence, IM-250 has advantages over standard-of-care therapies and represents a promising therapeutic for chronic HSV infection, including nucleoside-resistant HSV.
Collapse
|
13
|
Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently? Expert Opin Drug Discov 2021; 16:1517-1535. [PMID: 34192992 DOI: 10.1080/17460441.2021.1948833] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The transcription factor retinoic acid-related orphan receptor gamma t (RORγt) has been identified as the master regulator of TH17 cell differentiation and IL-17/22 production and is therefore an attractive target for the treatment of inflammatory diseases. Several orally or topically administered small molecule RORγt inverse agonists (RIAs) have progressed up to the end of clinical Phase 2.Areas covered: Based on publications and patent evaluations this review summarizes the evolution of the chemical matter for all 16 pharmaceutical companies, who develop(ed) a clinical-stage RIAs (until March 2021). Structure proposals for some clinical stage RIAs are presented and the outcome of the clinical trials is discussed.Expert opinion: So far, the clinical trials have been plagued with a high attrition rate. Main reasons were lack of efficacy (topical) or safety signals (oral) as well as, amongst other things, thymic lymphomas as seen with BMS-986251 in a preclinical study and liver enzyme elevations in humans with VTP-43742. Possibilities to mitigate these risks could be the use of RIAs with different chemical structures not interfering with thymocytes maturation and no livertox-inducing properties. With new frontrunners (e.g., ABBV-157 (cedirogant), BI 730357 or IMU-935) this is still an exciting time for this treatment approach.
Collapse
|
14
|
Mayr F, Möller G, Garscha U, Fischer J, Rodríguez Castaño P, Inderbinen SG, Temml V, Waltenberger B, Schwaiger S, Hartmann RW, Gege C, Martens S, Odermatt A, Pandey AV, Werz O, Adamski J, Stuppner H, Schuster D. Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. Int J Mol Sci 2020; 21:E7102. [PMID: 32993084 PMCID: PMC7582679 DOI: 10.3390/ijms21197102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/01/2022] Open
Abstract
Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17β-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.
Collapse
|
15
|
Gege C, Albers M, Kinzel O, Kleymann G, Schlüter T, Steeneck C, Hoffmann T, Xue X, Cummings MD, Spurlino J, Milligan C, Fourie AM, Edwards JP, Leonard K, Coe K, Scott B, Pippel D, Goldberg SD. Optimization and biological evaluation of thiazole-bis-amide inverse agonists of RORγt. Bioorg Med Chem Lett 2020; 30:127205. [DOI: 10.1016/j.bmcl.2020.127205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/22/2023]
|
16
|
Gege C, Hambruch E, Hambruch N, Kinzel O, Kremoser C. Nonsteroidal FXR Ligands: Current Status and Clinical Applications. Handb Exp Pharmacol 2019; 256:167-205. [PMID: 31197565 DOI: 10.1007/164_2019_232] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
FXR agonists have demonstrated very promising clinical results in the treatment of liver disorders such as primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and nonalcoholic steatohepatitis (NASH). NASH, in particular, is one of the last uncharted white territories in the pharma landscape, and there is a huge medical need and a large potential pharmaceutical market for a NASH pharmacotherapy. Clinical efficacy superior to most other treatment options was shown by FXR agonists such as obeticholic acid (OCA) as they improved various metabolic features including liver steatosis as well as liver inflammation and fibrosis. But OCA's clinical success comes with some major liabilities such as pruritus, high-density lipoprotein cholesterol (HDLc) lowering, low-density lipoprotein cholesterol (LDLc) increase, and a potential for drug-induced liver toxicity. Some of these effects can be attributed to on-target effects exerted by FXR, but with others it is not clear whether it is FXR- or OCA-related. Therefore a quest for novel, proprietary FXR agonists is ongoing with the aim to increase FXR potency and selectivity over other proteins and to overcome at least some of the OCA-associated clinical side effects through an improved pharmacology. In this chapter we will discuss the historical and ongoing efforts in the identification and development of nonsteroidal, which largely means non-bile acid-type, FXR agonists for clinical use.
Collapse
|
17
|
Gege C, Cummings MD, Albers M, Kinzel O, Kleymann G, Schlüter T, Steeneck C, Nelen MI, Milligan C, Spurlino J, Xue X, Leonard K, Edwards JP, Fourie A, Goldberg SD, Hoffmann T. Identification and biological evaluation of thiazole-based inverse agonists of RORγt. Bioorg Med Chem Lett 2018; 28:1446-1455. [DOI: 10.1016/j.bmcl.2018.03.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 01/07/2023]
|
18
|
Gege C. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from Vitae Pharmaceuticals: patent evaluation of WO2016061160 and US20160122345. Expert Opin Ther Pat 2016; 27:1-8. [PMID: 27852111 DOI: 10.1080/13543776.2017.1262350] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt or RORc2) is a key transcription factor for the differentiation of naïve proinflammatory CD4+ T cells and the production of T helper-17 (TH17) cells. Inhibiting RORγt activity is thought to be beneficial in targeting a variety of inflammatory and autoimmune disorders. Recently Vitae Pharmaceuticals (to be acquired by Allergan) reported positive top-line results from a Phase 2a clinical trial of RORγt inhibitor VTP-43742 in psoriatic patients. The compound was reported to demonstrate a clear signal of efficacy over a short four-week period and no drug-related cardiac abnormalities were observed; however, in the 700 mg dose group reversible transaminase elevations were observed in four patients, which prompted the company to cancel testing VTP-43742 at a initially planned third, higher dose. In Vitae Pharmaceuticals latest patent applications, WO2016061160 and US20160122345, potential dihydropyrrolopyridine back-up compounds of clinical candidate VTP-43742 (covered in WO2015116904) are disclosed. In light of the recently announced RORγt back-up molecule VTP-45489, the improvements of the new compounds are discussed and their potential impact is elucidated.
Collapse
|
19
|
Gege C. Retinoid-related orphan receptor gamma t (RORγt) inhibitors from Vitae Pharmaceuticals (WO2015116904) and structure proposal for their Phase I candidate VTP-43742. Expert Opin Ther Pat 2016; 26:737-44. [PMID: 26895086 DOI: 10.1517/13543776.2016.1153066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt or RORC2) is a key transcription factor for the differentiation of naïve proinflammatory CD4(+) T cells and the production of T helper-17 (TH17) cells. Inhibiting RORγt activity is thought to be beneficial in targeting a variety of inflammatory and autoimmune disorders, however current candidates remain to be validated in the clinic. Recently Vitae Pharmaceuticals successfully finished its Phase 1 single ascending dose clinical study with their proprietary RORγt inverse agonist VTP-43742. On the basis of the reported promising results, Vitae Pharmaceuticals could currently be considered as having the leading clinical candidate in the RORγt inverse agonist category. This prompts the interest on the exact chemical structure of their clinical candidate. The first relevant patent application (WO2014179564) from Vitae Pharmaceuticals describes RORγt inverse agonists with a 5,6-dihydro-4H-pyrrolo[3,4-d]thiazole core, while in the second and latest patent application (WO2015116904) this element has changed towards a 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine core. By combining information from Vitae's patent applications and trustworthy online information, the potential elucidation of the chemical structure of clinical candidate VTP-43742 is described.
Collapse
|
20
|
Gege C. Retinoid-related orphan receptor γ t modulators: comparison of Glenmark’s me-too patent application (WO2015008234) with the originator application from Merck Sharp and Dohme (WO2012106995). Expert Opin Ther Pat 2015; 25:1215-21. [DOI: 10.1517/13543776.2015.1065816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Gege C, Kinzel O, Steeneck C, Schulz A, Kremoser C. Knocking on FXR's door: the "hammerhead"-structure series of FXR agonists - amphiphilic isoxazoles with potent in vitro and in vivo activities. Curr Top Med Chem 2015; 14:2143-58. [PMID: 25388536 DOI: 10.2174/1568026614666141112094430] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 11/22/2022]
Abstract
The Farnesoid X Receptor (FXR) was recently validated in clinical studies using the bile acid analogue Obeticholic Acid (OCA) as an attractive drug target for liver diseases such as Primary Biliary Cirrhosis (PBC) or Non-alcoholic Steatohepatitis (NASH). OCA, however, turned out to induce cholesterol- related side effects upon prolonged treatment and it shows bile acid like pharmacokinetics. The quest for synthetic non-steroidal FXR agonists with general drug likeliness and improved pharmacokinetic and - dynamic properties has started more than a decade ago: The first non-steroidal and selective FXR agonist with decent submicromolar potency, GW4064, was patented in 1998 and published in 2000. Since then, many pharmaceutical companies have taken GW4064 as a structural template for their efforts in identifying novel patentable FXR agonists with the GW-derived trisubstituted isoxazole general structure. However, so far only one compound out of these different series has made it into the early stages of clinical development: The Px-102/Px-104 from Phenex is currently tested in a phase IIa study in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). In this review we try to summarize from the patent and scientific literature the attempts to improve the GW4064 structure into different directions. Furthermore, we suggest directions for further improvements of this special class of synthetic FXR agonists which all display the typical "hammerhead"-conformation in the FXR ligand binding pocket that provides the basis for their impressive in vitro and in vivo potencies.
Collapse
|
22
|
Gege C, Schlüter T, Hoffmann T. Identification of the first inverse agonist of retinoid-related orphan receptor (ROR) with dual selectivity for RORβ and RORγt. Bioorg Med Chem Lett 2014; 24:5265-7. [DOI: 10.1016/j.bmcl.2014.09.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022]
|
23
|
Schneck E, Jentschel M, Gege C, Tanaka M, Demé B. Grazing-incidence neutron-induced fluorescence probes density profiles of labeled molecules at solid/liquid interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4084-4091. [PMID: 23461763 DOI: 10.1021/la400162y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report on the use of characteristic prompt γ-fluorescence after neutron capture induced by an evanescent neutron wave to probe densities and depth profiles of labeled molecules at solid/liquid interfaces. In contrast to classical scattering techniques and X-ray fluorescence, this method of "grazing-incidence neutron-induced fluorescence" combines direct chemical specificity, provided by the label, with sensitivity to the interface, inherent to the evanescent wave. We demonstrate that the formation of a supported lipid membrane can be quantitatively monitored from the characteristic fluorescence of (157)Gd(3+) ions bound to the headgroup of chelator lipids. Moreover, we were able to localize the (157)Gd(3+) ions along the surface normal with nanometer precision. This first proof of principle with a well-defined model system suggests that the method has a great potential for biology and soft matter studies where spatial resolution and chemical sensitivity are required.
Collapse
|
24
|
Gege C, Bao B, Bluhm H, Boer J, Gallagher BM, Korniski B, Powers TS, Steeneck C, Taveras AG, Baragi VM. Discovery and evaluation of a non-Zn chelating, selective matrix metalloproteinase 13 (MMP-13) inhibitor for potential intra-articular treatment of osteoarthritis. J Med Chem 2012; 55:709-16. [PMID: 22175799 DOI: 10.1021/jm201152u] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osteoarthritis (OA) is a nonsystemic disease for which no oral or parenteral disease-modifying osteoarthritic drug (DMOAD) is currently available. Matrix metalloproteinase 13 (MMP-13) has attracted attention as a target with disease-modifying potential because of its major role in tissue destruction associated with OA. Being localized to one or a few joints, OA is amenable to intra-articular (IA) therapy, which has distinct advantages over oral therapies in terms of increasing therapeutic index, by maximizing drug delivery to cartilage and minimizing systemic exposure. Here we report on the synthesis and biological evaluation of a non-zinc binding MMP-13 selective inhibitor, 4-methyl-1-(S)-({5-[(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-ylmethyl)carbamoyl]pyrazolo[1,5-a]pyrimidine-7-carbonyl}amino)indan-5-carboxylic acid (1), that is uniquely suited as a potential IA-DMOAD: it has long durability in the joint, penetrates cartilage effectively, exhibits nearly no detectable systemic exposure, and has remarkable efficacy.
Collapse
|
25
|
Schneck E, Demé B, Gege C, Tanaka M. Membrane adhesion via homophilic saccharide-saccharide interactions investigated by neutron scattering. Biophys J 2011; 100:2151-9. [PMID: 21539782 DOI: 10.1016/j.bpj.2011.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022] Open
Abstract
Solid-supported membrane multilayers doped with membrane-anchored oligosaccharides bearing the LewisX motif (Le(X) lipid) were utilized as a model system of membrane adhesion mediated via homophilic carbohydrate-carbohydrate interactions. Specular and off-specular neutron scattering in bulk aqueous electrolytes allowed us to study multilayer structure and membrane mechanics at full hydration at various Ca(2+) concentrations, indicating that membrane-anchored Le(X) cross-links the adjacent membranes. To estimate forces and energies required for cross-linking, we theoretically modeled the interactions between phospholipid membranes and compared this model with our experimental results on membranes doped with Le(X) lipids. We demonstrated that the bending rigidity, extracted from the off-specular scattering signals, is not significantly influenced by the molar fraction of Le(X) lipids, while the vertical compression modulus (and thus the intermembrane confinement) increases with the molar fraction of Le(X) lipids.
Collapse
|