1
|
Landuyt A, Kochetygov I, McMonagle CJ, Kumar PV, Yuwono JA, Queen WL, Abdala PM, Müller CR. Role of Na 2CO 3 as Nucleation Seeds to Accelerate the CO 2 Uptake Kinetics of MgO-Based Sorbents. JACS AU 2024; 4:4809-4820. [PMID: 39735919 PMCID: PMC11672151 DOI: 10.1021/jacsau.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
There is an urgent need for inexpensive, functional materials that can capture and release CO2 under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO2 sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO2 uptakes, MgO-based CO2 sorbents feature slow carbonation kinetics, limiting their CO2 uptake during typical industrial contact times. The addition of molten alkali metal nitrate promoters, such as NaNO3, can partially mitigate the slow kinetics. Here, we investigate how the CO2 uptake kinetics of NaNO3-promoted MgO can be increased further through the addition of finely dispersed Na2CO3. The incorporation of Na2CO3 significantly increases the CO2 uptake rate from 1.4 to 14.6 mmol MgCO3 (mol MgO)-1 s-1. Using in situ synchrotron X-ray powder diffraction (XRD), we track the formation of MgCO3 and elucidate the mechanism through which Na2CO3 promotes the CO2 uptake of MgO. Our findings demonstrate that Na2CO3 rapidly converts within seconds into Na2Mg(CO3)2 during carbonation, acting subsequently as nucleation seeds for MgCO3 formation, in turn significantly enhancing CO2 uptake kinetics. Further, the presence of Na2Mg(CO3)2 considerably enhances the mobility of ions in the sorbent, leading to sintering of MgCO3. Importantly, Na2Mg(CO3)2 promotes MgCO3 formation even in the presence of molten RbNO3, a salt with a limited ability to dissolve [Mg2+···CO3 2-] ion pairs, indicating that Na2Mg(CO3)2 lowers the critical ion pair concentration required for MgCO3 nucleation. Additionally, the partial dissolution of Na2CO3 in NaNO3 may increase the concentration of carbonate ions in the melt, further accelerating carbonation kinetics in MgO-(Na2CO3/NaNO3).
Collapse
|
2
|
Peydayesh M, Kovacevic A, Hoffmann L, Donat F, Wobill C, Baraldi L, Zhou J, Müller CR, Mezzenga R. Sustainable Smart Packaging from Protein Nanofibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414658. [PMID: 39568233 DOI: 10.1002/adma.202414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Smart packaging technologies are revolutionizing the food industry by extending shelf life and enhancing quality monitoring through environmental responsiveness. Here, a novel smart packaging concept is presented, based on amyloid fibrils (AM) and red radish anthocyanins (RRA), to effectively monitor food spoilage by color change. A protein nanofibrils biofilm is developed from whey protein, which is functionalized with RRA to endow the resulting films with advanced monitoring capabilities. A comprehensive characterization, including pH responsiveness, water vapor permeability, thermal and mechanical testing, and colorimetric responses, demonstrates the superiority of AM/RRA films compared to control films based on whey monomer building blocks. The findings indicate that the AM/RRA films can effectively monitor, for example, shrimp freshness, showing visible changes within one day at room temperature and significant alterations in color after two days. Furthermore, these films exhibit high antibacterial and antioxidant activities, reinforcing their suitability for efficient food packaging. By integrating bio-based materials from whey and natural anthocyanins, this research presents a biodegradable, sustainable, and cost-effective smart packaging solution, contributing to eco-friendly innovations in food preservation.
Collapse
|
3
|
Oing A, von Müller E, Donat F, Müller CR. Material Engineering Solutions toward Selective Redox Catalysts for Chemical-Looping-Based Olefin Production Schemes: A Review. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:17326-17342. [PMID: 39324101 PMCID: PMC11420948 DOI: 10.1021/acs.energyfuels.4c03196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
Chemical looping (CL) has emerged as a promising approach in the oxidative dehydrogenation (ODH) of light alkanes, offering an opportunity for significant reductions in emissions and energy consumption in the ethylene and propylene production industry. While high olefin yields are achievable via CL, the material requirements (e.g., electronic and geometric structures) that prevent the total conversion of alkanes to CO x are not clearly understood. This review aims to give a concise understanding of the nucleophilic oxygen species involved in the selective reaction pathways for olefin production as well as of the electrophilic oxygen species that promote an overoxidation to CO x products. It further introduces advanced characterization techniques such as X-ray photoelectron spectroscopy, Raman spectroscopy, electron paramagnetic resonance spectroscopy, and resonant inelastic X-ray scattering, which have been employed successfully in identifying such reactive oxygen species. To mitigate CO x formation and enhance olefin selectivity, material engineering solutions are discussed. Common techniques include doping of the bulk or surface and the deposition of functional coatings. In the context of energy consumption and CO2 intensity, techno-economic assessments of CL-ODH systems have predicted energy savings of up to 80% compared to established olefin production processes such as steam cracking or dehydrogenation. Finally, although their practical application has been limited to date, the potential advantages of the use of fluidized bed reactors in CL-ODH are presented.
Collapse
|
4
|
Pokochueva EV, Kountoupi E, Janák M, Kuznetsov DA, Prosvirin IP, Müller CR, Fedorov A, Koptyug IV. Implications for the Hydrogenation of Propyne and Propene with Parahydrogen due to the in situ Transformation of Rh 2C to Rh 0/C. Chemphyschem 2024; 25:e202400270. [PMID: 38837531 DOI: 10.1002/cphc.202400270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
NMR spectroscopy studies using parahydrogen-induced polarization have previously established the existence of the pairwise hydrogen addition route in the hydrogenation of unsaturated hydrocarbons over heterogeneous catalysts, including those based on rhodium (Rh0). This pathway requires the incorporation of both hydrogen atoms from one hydrogen molecule to the same product molecule. However, the underlying mechanism for such pairwise hydrogen addition must be better understood. The involvement of carbon, either in the form of carbonaceous deposits on the surface of a catalyst or as a metal carbide phase, is known to modify catalytic properties significantly and thus could also affect the pairwise hydrogen addition route. Here, we explored carbon's role by studying the hydrogenation of propene and propyne with parahydrogen on a Rh2C catalyst and comparing the results with those for a Rh0/C catalyst obtained from Rh2C via H2 pretreatment. While the catalysts Rh2C and Rh0/C differ notably in the rate of conversion of parahydrogen to normal hydrogen as well as in terms of hydrogenation activity, our findings suggest that the carbide phase does not play a significant role in the pairwise H2 addition route on rhodium catalysts.
Collapse
|
5
|
Fan Q, Li H, Saqline S, Donat F, Tan M, Tao L, Müller CR, Xu ZJ, Liu W. An investigation of the structural and electronic origins of enhanced chemical looping air separation performance of B-site substituted SrFe 1-xCo xO 3-δ perovskites. Phys Chem Chem Phys 2024. [PMID: 39034776 DOI: 10.1039/d4cp02152e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Chemical looping air separation (CLAS) is a promising process intensification technology for extracting oxygen from air for oxygen enrichment in process streams. Co-doped strontium ferrites (SrFe1-xCoxO3-δ) have been found to have outstanding activities for CLAS processes. In this study, we explore the underlying factors driving the enhancement in oxygen uptake and release performance of perovskite structured SrFe1-xCoxO3-δ oxygen carriers for CLAS. Phase-pure perovskites, with B site substituted by up to 75 mol% Co, were prepared by a sol-gel method and systematically investigated through a wide range of well controlled experimental and computational approaches. While all SrFe1-xCoxO3-δ oxygen carriers showed excellent cyclic stability and structural reversibility over CLAS cycles, increased B site occupancy by Co resulted in monotonic decrease in onset temperature for oxygen release and increase in oxygen carrying capacity. These experimental trends can be fundamentally explained by an increase in the structural tolerance factor, an elevation in transition metal d-band, as well as an increased degree of hybridization between the metal d-band and the O p band. Therefore, these ab initio structural and electronic descriptors are useful design rationales for the hypothesis-driven synthesis of high-performing oxygen carriers for CLAS.
Collapse
|
6
|
Wu YH, Janák M, Abdala PM, Borca CN, Wach A, Kierzkowska A, Donat F, Huthwelker T, Kuznetsov DA, Müller CR. Probing Surface Transformations of Lanthanum Nickelate Electrocatalysts during Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:11887-11896. [PMID: 38529556 DOI: 10.1021/jacs.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.
Collapse
|
7
|
Kountoupi E, Barrios AJ, Chen Z, Müller CR, Ordomsky VV, Comas-Vives A, Fedorov A. The Impact of Oxygen Surface Coverage and Carbidic Carbon on the Activity and Selectivity of Two-Dimensional Molybdenum Carbide (2D-Mo 2C) in Fischer-Tropsch Synthesis. ACS Catal 2024; 14:1834-1845. [PMID: 38327645 PMCID: PMC10845113 DOI: 10.1021/acscatal.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Transformations of oxygenates (CO2, CO, H2O, etc.) via Mo2C-based catalysts are facilitated by the high oxophilicity of the material; however, this can lead to the formation of oxycarbides and complicate the identification of the (most) active catalyst state and active sites. In this context, the two-dimensional (2D) MXene molybdenum carbide Mo2CTx (Tx are passivating surface groups) contains only surface Mo sites and is therefore a highly suitable model catalyst for structure-activity studies. Here, we report that the catalytic activity of Mo2CTx in Fischer-Tropsch (FT) synthesis increases with a decreasing coverage of surface passivating groups (mostly O*). The in situ removal of Tx species and its consequence on CO conversion is highlighted by the observation of a very pronounced activation of Mo2CTx (pretreated in H2 at 400 °C) under FT conditions. This activation process is ascribed to the in situ reductive defunctionalization of Tx groups reaching a catalyst state that is close to 2D-Mo2C (i.e., a material containing no passivating surface groups). Under steady-state FT conditions, 2D-Mo2C yields higher hydrocarbons (C5+ alkanes) with 55% selectivity. Alkanes up to the kerosine range form, with value of α = 0.87, which is ca. twice higher than the α value reported for 3D-Mo2C catalysts. The steady-state productivity of 2D-Mo2C to C5+ hydrocarbons is ca. 2 orders of magnitude higher relative to a reference β-Μo2C catalyst that shows no in situ activation under identical FT conditions. The passivating Tx groups of Mo2CTx can be reductively defunctionalized also by using a higher H2 pretreatment temperature of 500 °C. Yet, this approach leads to a removal of carbidic carbon (as methane), resulting in a 2D-Mo2C1-x catalyst that converts CO to CH4 with 61% selectivity in preference to C5+ hydrocarbons that are formed with only 2% selectivity. Density functional theory (DFT) results attribute the observed selectivity of 2D-Mo2C to C5+ alkanes to a higher energy barrier for the hydrogenation of surface alkyl species relative to the energy barriers for C-C coupling. The removal of O* is the rate-determining step in the FT reaction over 2D-Mo2C, and O* is favorably removed in the form of CO2 relative to H2O, consistent with the observation of a high CO2 selectivity (ca. 50%). The absence of other carbon oxygenates is explained by the energetic favoring of the direct over the hydrogen-assisted dissociative adsorption of CO.
Collapse
|
8
|
Zimmerli NK, Rochlitz L, Checchia S, Müller CR, Copéret C, Abdala PM. Structure and Role of a Ga-Promoter in Ni-Based Catalysts for the Selective Hydrogenation of CO 2 to Methanol. JACS AU 2024; 4:237-252. [PMID: 38274252 PMCID: PMC10806875 DOI: 10.1021/jacsau.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.
Collapse
|
9
|
Rekhtina M, Bugaev A, Dunstan MT, Dal Pozzo A, Nadjafi M, Borca C, Huthwelker T, Abdala PM, Müller CR. Probing the Local Structure of Na in NaNO 3-Promoted, MgO-Based CO 2 Sorbents via X-ray Absorption Spectroscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10060-10069. [PMID: 38107192 PMCID: PMC10720340 DOI: 10.1021/acs.chemmater.3c02077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
This work provides insight into the local structure of Na in MgO-based CO2 sorbents that are promoted with NaNO3. To this end, we use X-ray absorption spectroscopy (XAS) at the Na K-edge to interrogate the local structure of Na during the CO2 capture (MgO + CO2 ↔ MgCO3). The analysis of Na K-edge XAS data shows that the local environment of Na is altered upon MgO carbonation when compared to that of NaNO3 in the as-prepared sorbent. We attribute the changes observed in the carbonated sorbent to an alteration in the local structure of Na at the NaNO3/MgCO3 interfaces and/or in the vicinity of [Mg2+···CO32-] ionic pairs that are trapped in the cooled NaNO3 melt. The changes observed are reversible, i.e., the local environment of NaNO3 was restored after a regeneration treatment to decompose MgCO3 to MgO. The ex situ Na K-edge XAS experiments were complemented by ex situ magic-angle spinning 23Na nuclear magnetic resonance (MAS 23Na NMR), Mg K-edge XAS and X-ray powder diffraction (XRD). These additional experiments support our interpretation of the Na K-edge XAS data. Furthermore, we develop in situ Na (and Mg) K-edge XAS experiments during the carbonation of the sorbent (NaNO3 is molten under the conditions of the in situ experiments). These in situ Na K-edge XANES spectra of molten NaNO3 open new opportunities to investigate the atomic scale structure of CO2 sorbents modified with Na-based molten salts by using XAS.
Collapse
|
10
|
Dong Z, Peydayesh M, Donat F, Jin T, Li T, Müller CR, Mezzenga R. Amine-Functionalized Amyloid Aerogels for CO 2 Capture. CHEMSUSCHEM 2023; 16:e202300767. [PMID: 37681554 DOI: 10.1002/cssc.202300767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Climate change caused by excessive CO2 emissions constitutes an increasingly dire threat to human life. Reducing CO2 emissions alone may not be sufficient to address this issue, so that the development of emerging adsorbents for the direct capture of CO2 from the air becomes essential. Here, we apply amyloid fibrils derived from different food proteins as the solid adsorbent support and develop aminosilane-modified amyloid fibril-templated aerogels for CO2 capture applications. The results indicate that the CO2 sorption properties of the aerogels depend on the mixing ratio of aminosilane featuring different amine groups and the type of amyloid fibril used. Notably, amine-functionalized β-lactoglobulin (BLG) fibril-templated aerogels show the highest CO2 adsorption capacity of 51.52 mg (1.17 mmol) CO2 /g at 1 bar CO2 and 25.5 mg (0.58 mmol) CO2 /g at 400 ppm; similarly, the CO2 adsorption capacity of chitosan-BLG fibril hybrid aerogels is superior to that of pure chitosan. This study provides a proof-of-concept design for an amyloid fibril-templated hybrid material facilitating applications of protein-based adsorbents for CO2 capture, including direct air capture.
Collapse
|
11
|
Krödel M, Leroy C, Kim SM, Naeem MA, Kierzkowska A, Wu YH, Armutlulu A, Fedorov A, Florian P, Müller CR. Of Glasses and Crystals: Mitigating the Deactivation of CaO-Based CO 2 Sorbents through Calcium Aluminosilicates. JACS AU 2023; 3:3111-3126. [PMID: 38034972 PMCID: PMC10685428 DOI: 10.1021/jacsau.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
CaO-based sorbents are cost-efficient materials for high-temperature CO2 capture, yet they rapidly deactivate over carbonation-regeneration cycles due to sintering, hindering their utilization at the industrial scale. Morphological stabilizers such as Al2O3 or SiO2 (e.g., introduced via impregnation) can improve sintering resistance, but the sorbents still deactivate through the formation of mixed oxide phases and phase segregation, rendering the stabilization inefficient. Here, we introduce a strategy to mitigate these deactivation mechanisms by applying (Al,Si)Ox overcoats via atomic layer deposition onto CaCO3 nanoparticles and benchmark the CO2 uptake of the resulting sorbent after 10 carbonation-regeneration cycles against sorbents with optimized overcoats of only alumina/silica (+25%) and unstabilized CaCO3 nanoparticles (+55%). 27Al and 29Si NMR studies reveal that the improved CO2 uptake and structural stability of sorbents with (Al,Si)Ox overcoats is linked to the formation of glassy calcium aluminosilicate phases (Ca,Al,Si)Ox that prevent sintering and phase segregation, probably due to a slower self-diffusion of cations in the glassy phases, reducing in turn the formation of CO2 capture-inactive Ca-containing mixed oxides. This strategy provides a roadmap for the design of more efficient CaO-based sorbents using glassy stabilizers.
Collapse
|
12
|
Abbott DF, Xu YZ, Kuznetsov DA, Kumar P, Müller CR, Fedorov A, Mougel V. Understanding the Synergy between Fe and Mo Sites in the Nitrate Reduction Reaction on a Bio-Inspired Bimetallic MXene Electrocatalyst. Angew Chem Int Ed Engl 2023:e202313746. [PMID: 37907396 DOI: 10.1002/anie.202313746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Mo- and Fe-containing enzymes catalyze the reduction of nitrate and nitrite ions in nature. Inspired by this activity, we study here the nitrate reduction reaction (NO3 RR) catalyzed by an Fe-substituted two-dimensional molybdenum carbide of the MXene family, viz., Mo2 CTx : Fe (Tx are oxo, hydroxy and fluoro surface termination groups). Mo2 CTx : Fe contains isolated Fe sites in Mo positions of the host MXene (Mo2 CTx ) and features a Faradaic efficiency (FE) and an NH3 yield rate of 41 % and 3.2 μmol h-1 mg-1 , respectively, for the reduction of NO3 - to NH4 + in acidic media and 70 % and 12.9 μmol h-1 mg-1 in neutral media. Regardless of the media, Mo2 CTx : Fe outperforms monometallic Mo2 CTx owing to a more facile reductive defunctionalization of Tx groups, as evidenced by in situ X-ray absorption spectroscopy (Mo K-edge). After surface reduction, a Tx vacancy site binds a nitrate ion that subsequently fills the vacancy site with O* via oxygen transfer. Density function theory calculations provide further evidence that Fe sites promote the formation of surface O vacancies, which are identified as active sites and that function in NO3 RR in close analogy to the prevailing mechanism of the natural Mo-based nitrate reductase enzymes.
Collapse
|
13
|
Soon WL, Peydayesh M, de Wild T, Donat F, Saran R, Müller CR, Gubler L, Mezzenga R, Miserez A. Renewable Energy from Livestock Waste Valorization: Amyloid-Based Feather Keratin Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47049-47057. [PMID: 37751482 DOI: 10.1021/acsami.3c10218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Increasing carbon emissions have accelerated climate change, resulting in devastating effects that are now tangible on an everyday basis. This is mirrored by a projected increase in global energy demand of approximately 50% within a single generation, urging a shift from fossil-fuel-derived materials toward greener materials and more sustainable manufacturing processes. Biobased industrial byproducts, such as side streams from the food industry, are attractive alternatives with strong potential for valorization due to their large volume, low cost, renewability, biodegradability, and intrinsic material properties. Here, we demonstrate the reutilization of industrial chicken feather waste into proton-conductive membranes for fuel cells, protonic transistors, and water-splitting devices. Keratin was isolated from chicken feathers via a fast and economical process, converted into amyloid fibrils through heat treatment, and further processed into membranes with an imparted proton conductivity of 6.3 mS cm-1 using a simple oxidative method. The functionality of the membranes is demonstrated by assembling them into a hydrogen fuel cell capable of generating 25 mW cm-2 of power density to operate various types of devices using hydrogen and air as fuel. Additionally, these membranes were used to generate hydrogen through water splitting and in protonic field-effect transistors as thin-film modulators of protonic conductivity via the electrostatic gating effect. We believe that by converting industrial waste into renewable energy materials at low cost and high scalability, our green manufacturing process can contribute to a fully circular economy with a neutral carbon footprint.
Collapse
|
14
|
Chen Z, Zimmerli NK, Zubair M, Yakimov AV, Björgvinsdóttir S, Alaniva N, Willinger E, Barnes AB, Bedford NM, Copéret C, Florian P, Abdala PM, Fedorov A, Müller CR. Nature of GaO x Shells Grown on Silica by Atomic Layer Deposition. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7475-7490. [PMID: 37780414 PMCID: PMC10536998 DOI: 10.1021/acs.chemmater.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Indexed: 10/03/2023]
Abstract
Gallia-based shells with a thickness varying from a submonolayer to ca. 2.5 nm were prepared by atomic layer deposition (ALD) using trimethylgallium, ozone, and partially dehydroxylated silica, followed by calcination at 500 °C. Insight into the atomic-scale structure of these shells was obtained by high-field 71Ga solid-state nuclear magnetic resonance (NMR) experiments and the modeling of X-ray differential pair distribution function data, complemented by Ga K-edge X-ray absorption spectroscopy and 29Si dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) studies. When applying one ALD cycle, the grown submonolayer contains mostly tetracoordinate Ga sites with Si atoms in the second coordination sphere ([4]Ga(Si)) and, according to 15N DNP SENS using pyridine as the probe molecule, both strong Lewis acid sites (LAS) and strong Brønsted acid sites (BAS), consistent with the formation of gallosilicate Ga-O-Si and Ga-μ2-OH-Si species. The shells obtained using five and ten ALD cycles display characteristics of amorphous gallia (GaOx), i.e., an increased relative fraction of pentacoordinate sites ([5]Ga(Ga)), the presence of mild LAS, and a decreased relative abundance of strong BAS. The prepared Ga1-, Ga5-, and Ga10-SiO2-500 materials catalyze the dehydrogenation of isobutane to isobutene, and their catalytic performance correlates with the relative abundance and strength of LAS and BAS, viz., Ga1-SiO2-500, a material with a higher relative fraction of strong LAS, is more active and stable compared to Ga5- and Ga10-SiO2-500. In contrast, related ALD-derived Al1-, Al5-, and Al10-SiO2-500 materials do not catalyze the dehydrogenation of isobutane and this correlates with the lack of strong LAS in these materials that instead feature abundant strong BAS formed via the atomic-scale mixing of Al sites with silica, leading to Al-μ2-OH-Si sites. Our results suggest that [4]Ga(Si) sites provide strong Lewis acidity and drive the dehydrogenation activity, while the appearance of [5]Ga(Ga) sites with mild Lewis activity is associated with catalyst deactivation through coking. Overall, the atomic-level insights into the structure of the GaOx-based materials prepared in this work provide a guide to design active Ga-based catalysts by a rational tailoring of Lewis and Brønsted acidity (nature, strength, and abundance).
Collapse
|
15
|
Zhou H, Docherty SR, Phongprueksathat N, Chen Z, Bukhtiyarov AV, Prosvirin IP, Safonova OV, Urakawa A, Copéret C, Müller CR, Fedorov A. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu-Zn/SiO 2 Catalysts for the Hydrogenation of CO 2 to Methanol. JACS AU 2023; 3:2536-2549. [PMID: 37772188 PMCID: PMC10523371 DOI: 10.1021/jacsau.3c00319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
The direct synthesis of methanol via the hydrogenation of CO2, if performed efficiently and selectively, is potentially a powerful technology for CO2 mitigation. Here, we develop an active and selective Cu-Zn/SiO2 catalyst for the hydrogenation of CO2 by introducing copper and zinc onto dehydroxylated silica via surface organometallic chemistry and atomic layer deposition, respectively. At 230 °C and 25 bar, the optimized catalyst shows an intrinsic methanol formation rate of 4.3 g h-1 gCu-1 and selectivity to methanol of 83%, with a space-time yield of 0.073 g h-1 gcat-1 at a contact time of 0.06 s g mL-1. X-ray absorption spectroscopy at the Cu and Zn K-edges and X-ray photoelectron spectroscopy studies reveal that the CuZn alloy displays reactive metal support interactions; that is, it is stable under H2 atmosphere and unstable under conditions of CO2 hydrogenation, indicating that the dealloyed structure contains the sites promoting methanol synthesis. While solid-state nuclear magnetic resonance studies identify methoxy species as the main stable surface adsorbate, transient operando diffuse reflectance infrared Fourier transform spectroscopy indicates that μ-HCOO*(ZnOx) species that form on the Cu-Zn/SiO2 catalyst are hydrogenated to methanol faster than the μ-HCOO*(Cu) species that are found in the Zn-free Cu/SiO2 catalyst, supporting the role of Zn in providing a higher activity in the Cu-Zn system.
Collapse
|
16
|
Rekhtina M, Krödel M, Wu YH, Kierzkowska A, Donat F, Abdala PM, Müller CR. Deciphering the structural dynamics in molten salt-promoted MgO-based CO 2 sorbents and their role in the CO 2 uptake. SCIENCE ADVANCES 2023; 9:eadg5690. [PMID: 37379379 DOI: 10.1126/sciadv.adg5690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
The development of effective CO2 sorbents is vital to achieving net-zero CO2 emission targets. MgO promoted with molten salts is an emerging class of CO2 sorbents. However, the structural features that govern their performance remain elusive. Using in situ time-resolved powder x-ray diffraction, we follow the structural dynamics of a model NaNO3-promoted, MgO-based CO2 sorbent. During the first few cycles of CO2 capture and release, the sorbent deactivates owing to an increase in the sizes of the MgO crystallites, reducing in turn the abundance of available nucleation points, i.e., MgO surface defects, for MgCO3 growth. After the third cycle, the sorbent shows a continuous reactivation, which is linked to the in situ formation of Na2Mg(CO3)2 crystallites that act effectively as seeds for MgCO3 nucleation and growth. Na2Mg(CO3)2 forms due to the partial decomposition of NaNO3 during regeneration at T ≥ 450°C followed by carbonation in CO2.
Collapse
|
17
|
Luongo G, Bork AH, Abdala PM, Wu YH, Kountoupi E, Donat F, Müller CR. Activation in the rate of oxygen release of Sr 0.8Ca 0.2FeO 3-δ through removal of secondary surface species with thermal treatment in a CO 2-free atmosphere. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:6530-6542. [PMID: 36968616 PMCID: PMC10029991 DOI: 10.1039/d2ta09102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
We elucidate the underlying cause of a commonly observed increase in the rate of oxygen release of an oxygen carrier with redox cycling (here specifically for the perovskite Sr0.8Ca0.2FeO3-δ ) in chemical looping applications. This phenomenon is often referred to as activation. To this end we probe the evolution of the structure and surface elemental composition of the oxygen carrier with redox cycling by both textural and morphological characterization techniques (N2 physisorption, microscopy, X-ray powder diffraction and X-ray absorption spectroscopy). We observe no appreciable changes in the surface area, pore volume and morphology of the sample during the activation period. X-ray powder diffraction and X-ray absorption spectroscopy analysis (at the Fe and Sr K-edges) of the material before and after redox cycles do not show significant differences, implying that the bulk (average and local) structure of the perovskite is largely unaltered upon cycling. The analysis of the surface of the perovskite via X-ray photoelectron and in situ Raman spectroscopy indicates the presence of surface carbonate species in the as-synthesized sample (due to its exposure to air). Yet, such surface carbonates are absent in the activated material, pointing to the removal of carbonates during cycling (in a CO2-free atmosphere) as the underlying cause behind activation. Importantly, after activation and a re-exposure to CO2, surface carbonates re-form and yield a deactivation of the perovskite oxygen carrier, which is often overlooked when using such materials at relatively low temperature (≤500 °C) in chemical looping.
Collapse
|
18
|
Nadjafi M, Cui Y, Bachl M, Oing A, Donat F, Luongo G, Abdala PM, Fedorov A, Müller CR. On the Importance of Benchmarking the Gas‐Phase Pyrolysis Reaction in the Oxidative Dehydrogenation of Propane. ChemCatChem 2023. [DOI: 10.1002/cctc.202200694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
19
|
Wu YH, Mehta H, Willinger E, Yuwono JA, Kumar PV, Abdala PM, Wach A, Kierzkowska A, Donat F, Kuznetsov DA, Müller CR. Altering Oxygen Binding by Redox-Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System. Angew Chem Int Ed Engl 2023; 62:e202217186. [PMID: 36538473 PMCID: PMC10108258 DOI: 10.1002/anie.202217186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.
Collapse
|
20
|
Tsounis C, Kumar PV, Masood H, Kulkarni RP, Gautam GS, Müller CR, Amal R, Kuznetsov DA. Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability. Angew Chem Int Ed Engl 2023; 62:e202210828. [PMID: 36278885 PMCID: PMC10099934 DOI: 10.1002/anie.202210828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/05/2022]
Abstract
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.
Collapse
|
21
|
Wu Y, Mehta H, Willinger E, Yuwono JA, Kumar PV, Abdala PM, Wach A, Kierzkowska A, Donat F, Kuznetsov DA, Müller CR. Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/anie.202300564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Wu Y, Mehta H, Willinger E, Yuwono JA, Kumar PV, Abdala PM, Wach A, Kierzkowska A, Donat F, Kuznetsov DA, Müller CR. Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Serial MR, Benders S, Rotzetter P, Brummerloh DL, Metzger JP, Gross SP, Nussbaum J, Müller CR, Pruessmann KP, Penn A. Temperature distribution in a gas-solid fixed bed probed by rapid magnetic resonance imaging. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Landuyt A, Kumar PV, Yuwono JA, Bork AH, Donat F, Abdala PM, Müller CR. Uncovering the CO 2 Capture Mechanism of NaNO 3-Promoted MgO by 18O Isotope Labeling. JACS AU 2022; 2:2731-2741. [PMID: 36590255 PMCID: PMC9795564 DOI: 10.1021/jacsau.2c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
MgO-based CO2 sorbents promoted with molten alkali metal nitrates (e.g., NaNO3) have emerged as promising materials for CO2 capture and storage technologies due to their low cost and high theoretical CO2 uptake capacities. Yet, the mechanism by which molten alkali metal nitrates promote the carbonation of MgO (CO2 capture reaction) remains debated and poorly understood. Here, we utilize 18O isotope labeling experiments to provide new insights into the carbonation mechanism of NaNO3-promoted MgO sorbents, a system in which the promoter is molten under operation conditions and hence inherently challenging to characterize. To conduct the 18O isotope labeling experiments, we report a facile and large-scale synthesis procedure to obtain labeled MgO with a high 18O isotope content. We use Raman spectroscopy and in situ thermogravimetric analysis in combination with mass spectrometry to track the 18O label in the solid (MgCO3), molten (NaNO3), and gas (CO2) phases during the CO2 capture (carbonation) and regeneration (decarbonation) reactions. We discovered a rapid oxygen exchange between CO2 and MgO through the reversible formation of surface carbonates, independent of the presence of the promoter NaNO3. On the other hand, no oxygen exchange was observed between NaNO3 and CO2 or NaNO3 and MgO. Combining the results of the 18O labeling experiments, with insights gained from atomistic calculations, we propose a carbonation mechanism that, in the first stage, proceeds through a fast, surface-limited carbonation of MgO. These surface carbonates are subsequently dissolved as [Mg2+···CO3 2-] ionic pairs in the molten NaNO3 promoter. Upon reaching the solubility limit, MgCO3 crystallizes at the MgO/NaNO3 interface.
Collapse
|
25
|
Krödel M, Oing A, Negele J, Landuyt A, Kierzkowska A, Bork AH, Donat F, Müller CR. Yolk-shell-type CaO-based sorbents for CO 2 capture: assessing the role of nanostructuring for the stabilization of the cyclic CO 2 uptake. NANOSCALE 2022; 14:16816-16828. [PMID: 36250268 PMCID: PMC9685369 DOI: 10.1039/d2nr04492g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Improving the cyclic CO2 uptake stability of CaO-based solid sorbents can provide a means to lower CO2 capture costs. Here, we develop nanostructured yolk(CaO)-shell(ZrO2) sorbents with a high cyclic CO2 uptake stability which outperform benchmark CaO nanoparticles after 20 cycles (0.17 gCO2 gSorbent-1) by more than 250% (0.61 gCO2 gSorbent-1), even under harsh calcination conditions (i.e. 80 vol% CO2 at 900 °C). By comparing the yolk-shell sorbents to core-shell sorbents, i.e. structures with an intimate contact between the stabilizing phase and CaO, we are able to identify the main mechanisms behind the stabilization of the CO2 uptake. While a yolk-shell architecture stabilizes the morphology of single CaO nanoparticles over repeated cycling and minimizes the contact between the yolk and shell materials, core-shell architectures lead to the formation of a thick CaZrO3-shell around CaO particles, which limits CO2 transport to unreacted CaO. Hence, yolk-shell architectures effectively delay CaZrO3 formation which in turn increases the theoretically possible CO2 uptake since CaZrO3 is CO2-capture-inert. In addition, we observe that yolk-shell architectures also improved the carbonation kinetics in both the kinetic- and diffusion-controlled regimes leading to a significantly higher cyclic CO2 uptake for yolk-shell-type sorbents.
Collapse
|