1
|
Schenk H, Heidinger P, Insam H, Kreuzinger N, Markt R, Nägele F, Oberacher H, Scheffknecht C, Steinlechner M, Vogl G, Wagner AO, Rauch W. Prediction of hospitalisations based on wastewater-based SARS-CoV-2 epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162149. [PMID: 36773921 PMCID: PMC9911153 DOI: 10.1016/j.scitotenv.2023.162149] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology is widely applied in Austria since April 2020 to monitor the SARS-CoV-2 pandemic. With a steadily increasing number of monitored wastewater facilities, 123 plants covering roughly 70 % of the 9 million population were monitored as of August 2022. In this study, the SARS-CoV-2 viral concentrations in raw sewage were analysed to infer short-term hospitalisation occupancy. The temporal lead of wastewater-based epidemiological time series over hospitalisation occupancy levels facilitates the construction of forecast models. Data pre-processing techniques are presented, including the approach of comparing multiple decentralised wastewater signals with aggregated and centralised clinical data. Time‑lead quantification was performed using cross-correlation analysis and coefficient of determination optimisation approaches. Multivariate regression models were successfully applied to infer hospitalisation bed occupancy. The results show a predictive potential of viral loads in sewage towards Covid-19 hospitalisation occupancy, with an average lead time towards ICU and non-ICU bed occupancy between 14.8-17.7 days and 8.6-11.6 days, respectively. The presented procedure provides access to the trend and tipping point behaviour of pandemic dynamics and allows the prediction of short-term demand for public health services. The results showed an increase in forecast accuracy with an increase in the number of monitored wastewater treatment plants. Trained models are sensitive to changing variant types and require recalibration of model parameters, likely caused by immunity by vaccination and/or infection. The utilised approach displays a practical and rapidly implementable application of wastewater-based epidemiology to infer hospitalisation occupancy.
Collapse
|
2
|
Markt R, Stillebacher F, Nägele F, Kammerer A, Peer N, Payr M, Scheffknecht C, Dria S, Draxl-Weiskopf S, Mayr M, Rauch W, Kreuzinger N, Rainer L, Bachner F, Zuba M, Ostermann H, Lackner N, Insam H, Wagner AO. Expanding the Pathogen Panel in Wastewater Epidemiology to Influenza and Norovirus. Viruses 2023; 15:263. [PMID: 36851479 PMCID: PMC9966704 DOI: 10.3390/v15020263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Since the start of the 2019 pandemic, wastewater-based epidemiology (WBE) has proven to be a valuable tool for monitoring the prevalence of SARS-CoV-2. With methods and infrastructure being settled, it is time to expand the potential of this tool to a wider range of pathogens. We used over 500 archived RNA extracts from a WBE program for SARS-CoV-2 surveillance to monitor wastewater from 11 treatment plants for the presence of influenza and norovirus twice a week during the winter season of 2021/2022. Extracts were analyzed via digital PCR for influenza A, influenza B, norovirus GI, and norovirus GII. Resulting viral loads were normalized on the basis of NH4-N. Our results show a good applicability of ammonia-normalization to compare different wastewater treatment plants. Extracts originally prepared for SARS-CoV-2 surveillance contained sufficient genomic material to monitor influenza A, norovirus GI, and GII. Viral loads of influenza A and norovirus GII in wastewater correlated with numbers from infected inpatients. Further, SARS-CoV-2 related non-pharmaceutical interventions affected subsequent changes in viral loads of both pathogens. In conclusion, the expansion of existing WBE surveillance programs to include additional pathogens besides SARS-CoV-2 offers a valuable and cost-efficient possibility to gain public health information.
Collapse
|
3
|
Amman F, Markt R, Endler L, Hupfauf S, Agerer B, Schedl A, Richter L, Zechmeister M, Bicher M, Heiler G, Triska P, Thornton M, Penz T, Senekowitsch M, Laine J, Keszei Z, Klimek P, Nägele F, Mayr M, Daleiden B, Steinlechner M, Niederstätter H, Heidinger P, Rauch W, Scheffknecht C, Vogl G, Weichlinger G, Wagner AO, Slipko K, Masseron A, Radu E, Allerberger F, Popper N, Bock C, Schmid D, Oberacher H, Kreuzinger N, Insam H, Bergthaler A. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol 2022; 40:1814-1822. [PMID: 35851376 DOI: 10.1038/s41587-022-01387-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.
Collapse
|
4
|
Zoboli O, Clara M, Gabriel O, Scheffknecht C, Humer M, Brielmann H, Kulcsar S, Trautvetter H, Kittlaus S, Amann A, Saracevic E, Krampe J, Zessner M. Occurrence and levels of micropollutants across environmental and engineered compartments in Austria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:636-653. [PMID: 30522069 DOI: 10.1016/j.jenvman.2018.10.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Occurrence and concentration of a broad spectrum of micropollutants are investigated in Austrian river catchments, namely polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organotin compounds, perfluoroalkyl acids (PFAAs) and metals. The parallel analysis across multiple environmental and engineered compartments sheds light on the ratio of dissolved and particulate transport and on differences in concentration levels between point and diffuse emission pathways. It is found that some PAHs and organotins are present in rivers, groundwater and bulk deposition at higher concentrations than in municipal wastewater effluents. Among PFAAs and metals, highest concentrations were recorded either in atmospheric deposition or in discharges from wastewater treatment plants. The relevance of the analysis across compartments is best shown by the case of perfluorooctanesulfonic acid (PFOS). Despite municipal wastewater effluents being the emission pathway with highest concentrations, this study reveals that not only rivers, but also atmospheric deposition and groundwater sometimes exceed the environmental quality standard for surface waters. Moreover, this work reveals partially counterintuitive patterns. In rivers with treated wastewater discharges, increasing levels of dissolved compounds were measured at rising flow conditions, whereas the opposite would be expected owing to the dilution effect. This might derive from the mobilisation from soil or suspended particulate matter or rather find its explanation in high concentrations in atmospheric deposition. These hypotheses require however being tested through targeted studies. Additional future research includes the analysis of how regional or catchment specific characteristics might alter the relative importance of different emission pathways, and the modelling of emission and river loads to assess their relative contribution to river pollution.
Collapse
|
5
|
Könemann S, Kase R, Simon E, Swart K, Buchinger S, Schlüsener M, Hollert H, Escher BI, Werner I, Aït-Aïssa S, Vermeirssen E, Dulio V, Valsecchi S, Polesello S, Behnisch P, Javurkova B, Perceval O, Di Paolo C, Olbrich D, Sychrova E, Schlichting R, Leborgne L, Clara M, Scheffknecht C, Marneffe Y, Chalon C, Tušil P, Soldàn P, von Danwitz B, Schwaiger J, San Martín Becares MI, Bersani F, Hilscherová K, Reifferscheid G, Ternes T, Carere M. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Clara M, Gans O, Windhofer G, Krenn U, Hartl W, Braun K, Scharf S, Scheffknecht C. Occurrence of polycyclic musks in wastewater and receiving water bodies and fate during wastewater treatment. CHEMOSPHERE 2011; 82:1116-23. [PMID: 21144551 DOI: 10.1016/j.chemosphere.2010.11.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 05/12/2023]
Abstract
The occurrence of cashmerane (DPMI), celestolide, phantolide, traesolide (ATII), galaxolide (HHCB) and tonalide (AHTN) in sewage and surface waters and their fate during wastewater treatment and anaerobic sludge digestion is investigated. AHTN and HHCB are the most important representatives and influent concentrations of 0.41-1.8 and 0.9-13 μgL(-1) are observed. DPMI is detected in influent and effluent samples but in notably lower concentrations than AHTN and HHCB. Major sources of polycyclic musks are households, whereas industrial emitters seem to be of minor importance. This conclusion is supported by the analysis of selected industrial wastewaters (metal, textile and paper industry). Specific emissions of 0.36 ± 0.19 and 1.6 ± 1.0 mg cap(-1)d(-1) for AHTN and HHCB are calculated. Overall removal efficiencies between approx 50% and more than 95% are observed during biological wastewater treatment and removal with the excess sludge is the major removal pathway. Log K(D) values of 3.73-4.3 for AHTN, 3.87-4.34 for HHCB and 2.42-3.22 for DPMI are observed in secondary sludge. During sludge digestion no or only slight removal occurred. Mean polycyclic musk concentrations in digested sludge amounted to 1.9 ± 0.9 (AHTN), 14.2 ± 5.8 (HHCB), 0.8 ± 0.4 (ATII) and 0.2 ± 0.09 (DPMI) mgkg(-1) dry matter. In the receiving water systems a comparable distribution as during wastewater treatment is observed. AHTN, HHCB and DPMI are detected in surface waters (ND (not detected) - <0.04, ND - 0.32 and ND - 0.02 μg L(-1)) as well as AHTN and HHCB in sediments (ND - 20, ND - 120 μg kg(-1)). For HHCB an apparent K(OC) value of 4.1-4.4 is calculated for sediments. Major source for polycyclic musks in surface waters are discharges from wastewater treatment plants. For HHCB and DPMI 100% of the load observed in the sampled surface waters derive from discharges of treated wastewater.
Collapse
|
7
|
Clara M, Windhofer G, Hartl W, Braun K, Simon M, Gans O, Scheffknecht C, Chovanec A. Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. CHEMOSPHERE 2010; 78:1078-1084. [PMID: 20096917 DOI: 10.1016/j.chemosphere.2009.12.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 05/27/2023]
Abstract
Dimethyl phthalate, diethyl phthalate, dibuthyl phthalate, butylbenzyl phthalate, bis(2-ethylbenzyl) phthalate (DEHP) and dioctyl phthalate were analysed in raw and treated wastewater as well as in surface runoff samples from traffic roads. All six investigated phthalates have been detected in all raw sewage samples, in nearly all wastewater treatment plant (WWTP) effluent samples and in all road runoff samples, with DEHP being the most abundant compound. DEHP inflow concentrations ranged 3.4-34 microg L(-1) and effluent concentrations 0.083-6.6 microg L(-1). In two WWTPs the fate of the phthalates was assessed by performing mass balances. Overall removal efficiencies of approx 95% were calculated. Removal is attributed to biotransformation and adsorption and the relevance of the removal via adsorption to sludge increased with increasing molecular weight and increasing lipophilic character of the compound. Except DEHP phthalate concentrations were higher in treated effluent samples than in road runoff. The environmental quality standard (EQS) for DEHP in surface waters is exceeded only in a few effluent samples, whereas nearly all road runoff samples were higher than the EQS. An assessment based on pure concentrations is not feasible and a mass balance based approach is required. Nevertheless the observations highlight the relevance of stormwater emissions and direct emissions from separated sewer systems to surface waters in relation to emissions from WWTPs and the necessity to consider all potential influences in the assessment of the status of surface water bodies with reference to xenobiotics.
Collapse
|
8
|
Clara M, Gans O, Weiss S, Sanz-Escribano D, Scharf S, Scheffknecht C. Perfluorinated alkylated substances in the aquatic environment: an Austrian case study. WATER RESEARCH 2009; 43:4760-4768. [PMID: 19700182 DOI: 10.1016/j.watres.2009.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 05/26/2023]
Abstract
Perfluorinated alkylated substances (PFAS) are of global interest due to their occurrence and persistency in the environment. This study includes surface waters and sediments for the analysis of eleven PFAS. The PFAS studied can be grouped in perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFS) and perfluoroalkyl sulfonamides (PFSA). The two most important compounds are perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). These two substances showed the most significant values for surface water samples with maximum concentrations of 21 ng l(-1) for PFOA and 37 ng l(-1) for PFOS. Sediment samples from seven Austrian lakes and the river Danube were studied. Whereas PFSA and PFS were not detected in any sediment sample PFCAs were detected in most of the lake samples in concentrations up to 1.7 microg kg(-1) dry wt. PFOA, perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA) were detected in all Danube river sediment samples in concentrations varying from 0.1 up to 5.1 microg kg(-1) dry wt. For the various sampling points the proportional mass flows deriving from wastewater discharges were calculated. Whereas only up to 10% of the average flow is discharged wastewater up to more than 50% of the PFAS mass flows in the rivers can be attributed to wastewater discharges. Besides wastewater different other pathways as emissions from point sources, further degradation of precursor products, runoff from contaminated sites or surface runoff as well as dry and wet deposition have to be considered as relevant sources for PFAS contamination in surface waters.
Collapse
|
9
|
Clara M, Scheffknecht C, Scharf S, Weiss S, Gans O. Emissions of perfluorinated alkylated substances (PFAS) from point sources--identification of relevant branches. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2008; 58:59-66. [PMID: 18653937 DOI: 10.2166/wst.2008.641] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Effluents of wastewater treatment plants are relevant point sources for the emission of hazardous xenobiotic substances to the aquatic environment. One group of substances, which recently entered scientific and political discussions, is the group of the perfluorinated alkylated substances (PFAS). The most studied compounds from this group are perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), which are the most important degradation products of PFAS. These two substances are known to be persistent, bioaccumulative and toxic (PBT). In the present study, eleven PFAS were investigated in effluents of municipal wastewater treatment plants (WWTP) and in industrial wastewaters. PFOS and PFOA proved to be the dominant compounds in all sampled wastewaters. Concentrations of up to 340 ng/L of PFOS and up to 220 ng/L of PFOA were observed. Besides these two compounds, perfluorohexanoic acid (PFHxA) was also present in nearly all effluents and maximum concentrations of up to 280 ng/L were measured. Only N-ethylperfluorooctane sulphonamide (N-EtPFOSA) and its degradation/metabolisation product perfluorooctane sulphonamide (PFOSA) were either detected below the limit of quantification or were not even detected at all. Beside the effluents of the municipal WWTPs, nine industrial wastewaters from six different industrial branches were also investigated. Significantly, the highest emissions or PFOS were observed from metal industry whereas paper industry showed the highest PFOA emission. Several PFAS, especially perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA) and PFOS are predominantly emitted from industrial sources, with concentrations being a factor of 10 higher than those observed in the municipal WWTP effluents. Perfluorodecane sulphonate (PFDS), N-Et-PFOSA and PFOSA were not detected in any of the sampled industrial point sources.
Collapse
|
10
|
Clara M, Scharf S, Scheffknecht C, Gans O. Occurrence of selected surfactants in untreated and treated sewage. WATER RESEARCH 2007; 41:4339-48. [PMID: 17624392 DOI: 10.1016/j.watres.2007.06.027] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 05/07/2023]
Abstract
Several surfactants were monitored in treated and untreated sewage in nine municipal wastewater treatment plants (WWTPs) in western Austria. The nine sampled WWTPs cover a wide variety referring to size and applied treatment technology. The investigation focused on linear alkylbenzene sulphonate (LAS), quaternary ammonia compounds (QAC), nonylphenol (NP), octylphenol (OP), nonylphenolmono- (NP(1)EO) and -diethoxylates (NP(2)EO). Whereas LAS, NP, OP and NP(1,2)EO were analysed separately in the liquid phase and in the solid phase, the QACs were measured in the total sample. Total influent concentrations of LAS varied between 2.4 mg l(-1) up to 6.7 mg l(-1) whereas total effluent concentrations were in the lower microg l(-1) range (11-50 microg l(-1)). Whichever the type of treatment, a clear removal during treatment was observed. Solid liquid distribution coefficients K(d) were calculated for untreated sewage. The calculated K(d) values varied between 1300 and 3900 l kg(-1). OP was of minor importance with total influent concentrations below 1microg l(-1). NP and NP(1,2)EO were present in all analysed influents in concentrations between 1 and 35microg l(-1). Effluent concentrations were notably lower than the measured influent concentrations. K(d) values for NP varied between 500 and 6600 l kg(-1), for NP(1)EO between 800 and 2700 l kg(-1) and for NP(2)EO between 100 and 1800 l kg(-1). From the QACs several alkyl benzyl (BAC), dialkyl (DDAC) and trialkyl (ATAC) ammonium chlorides with varying alkyl chain lengths were analysed. Highest total concentrations in the influents to the WWTPs were observed for the BAC-C12 and the ATAC-C16 homologues. Effluent concentrations were notably lower compared to influent concentrations, indicating removal by adsorption and/or biodegradation. The influence of the removal by adsorption increased with increasing alkyl chain length.
Collapse
|
11
|
Scheffknecht C, Peringer P. Palladium-catalysed mild transformation of non-activated terminal alkynes into acetals. J Organomet Chem 1997. [DOI: 10.1016/s0022-328x(96)06955-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|