1
|
El Khéchine A, Couderc C, Flaudrops C, Raoult D, Drancourt M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One 2011; 6:e24720. [PMID: 21935444 PMCID: PMC3172293 DOI: 10.1371/journal.pone.0024720] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022] Open
Abstract
Background Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed. Methodology We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 105 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25 M. avium and 12 non-tuberculosis clinical isolates with identification scores ≥2 within 2.5 hours. Conclusions Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heat-inactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories in both developed and developing countries.
Collapse
|
Journal Article |
14 |
128 |
2
|
Kempf M, Bakour S, Flaudrops C, Berrazeg M, Brunel JM, Drissi M, Mesli E, Touati A, Rolain JM. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS One 2012; 7:e31676. [PMID: 22359616 PMCID: PMC3280980 DOI: 10.1371/journal.pone.0031676] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/11/2012] [Indexed: 11/17/2022] Open
Abstract
Rapid detection of carbapenem-resistant Acinetobacter baumannii strains is critical and will benefit patient care by optimizing antibiotic therapies and preventing outbreaks. Herein we describe the development and successful application of a mass spectrometry profile generated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) that utilized the imipenem antibiotic for the detection of carbapenem resistance in a large series of A. baumannii clinical isolates from France and Algeria. A total of 106 A. baumannii strains including 63 well-characterized carbapenemase-producing and 43 non-carbapenemase-producing strains, as well as 43 control strains (7 carbapenem-resistant and 36 carbapenem-sensitive strains) were studied. After an incubation of bacteria with imipenem for up to 4 h, the mixture was centrifuged and the supernatant analyzed by MALDI-TOF MS. The presence and absence of peaks representing imipenem and its natural metabolite was analyzed. The result was interpreted as positive for carbapenemase production if the specific peak for imipenem at 300.0 m/z disappeared during the incubation time and if the peak of the natural metabolite at 254.0 m/z increased as measured by the area under the curves leading to a ratio between the peak for imipenem and its metabolite being <0.5. This assay, which was applied to the large series of A. baumannii clinical isolates, showed a sensitivity of 100.0% and a specificity of 100.0%. Our study is the first to demonstrate that this quick and simple assay can be used as a routine tool as a point-of-care method for the identification of A. baumannii carbapenemase-producers in an effort to prevent outbreaks and the spread of uncontrollable superbugs.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
123 |
3
|
La Scola B, Campocasso A, N’Dong R, Fournous G, Barrassi L, Flaudrops C, Raoult D. Tentative Characterization of New Environmental Giant Viruses by MALDI-TOF Mass Spectrometry. Intervirology 2010; 53:344-53. [DOI: 10.1159/000312919] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
|
15 |
110 |
4
|
Ayyadurai S, Flaudrops C, Raoult D, Drancourt M. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. BMC Microbiol 2010; 10:285. [PMID: 21073689 PMCID: PMC2992509 DOI: 10.1186/1471-2180-10-285] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates.
Collapse
|
Journal Article |
15 |
81 |
5
|
Moliner C, Ginevra C, Jarraud S, Flaudrops C, Bedotto M, Couderc C, Etienne J, Fournier PE. Rapid identification of Legionella species by mass spectrometry. J Med Microbiol 2009; 59:273-284. [PMID: 19926729 DOI: 10.1099/jmm.0.014100-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella species are facultative, intracellular bacteria that infect macrophages and protozoa, with the latter acting as transmission vectors to humans. These fastidious bacteria mostly cause pulmonary tract infections and are routinely identified by various molecular methods, mainly PCR targeting the mip gene and sequencing, which are expensive and time-consuming. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has emerged as a rapid and inexpensive method for identification of bacterial species. This study evaluated the use of MALDI-TOF-MS for rapid species and serogroup identification of 21 Legionella species recognized as human pathogens. To this end, a reference MS database was developed including 59 Legionella type strains, and a blind test was performed using 237 strains from various species. Two hundred and twenty-three of the 237 strains (94.1 %) were correctly identified at the species level, although ten (4.2 %) were identified with a score lower than 2.0. Fourteen strains (5.9 %) from eight species were misidentified at the species level, including seven (3.0 %) with a significant score, suggesting an intraspecific variability of protein profiles within some species. MALDI-TOF-MS was reproducible but could not identify Legionella strains at the serogroup level. When compared with mip gene sequencing, MALDI-TOF-MS exhibited a sensitivity of 99.2 and 89.9 % for the identification of Legionella strains at the genus and species level, respectively. This study demonstrated that MALDI-TOF-MS is a reliable tool for the rapid identification of Legionella strains at the species level.
Collapse
|
Journal Article |
16 |
54 |
6
|
Flaudrops C, Armstrong N, Raoult D, Chabrière E. Determination of the animal origin of meat and gelatin by MALDI-TOF-MS. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
|
10 |
45 |
7
|
Fotso Fotso A, Mediannikov O, Diatta G, Almeras L, Flaudrops C, Parola P, Drancourt M. MALDI-TOF mass spectrometry detection of pathogens in vectors: the Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl Trop Dis 2014; 8:e2984. [PMID: 25058611 PMCID: PMC4109908 DOI: 10.1371/journal.pntd.0002984] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Africa, relapsing fever borreliae are neglected vector-borne pathogens that cause mild to deadly septicemia and miscarriage. Screening vectors for the presence of borreliae currently requires technically demanding, time- and resource-consuming molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has recently emerged as a tool for the rapid identification of vectors and the identification of cultured borreliae. We investigated whether MALDI-TOF-MS could detect relapsing fever borreliae directly in ticks. METHODOLOGY/PRINCIPAL FINDINGS As a first step, a Borrelia MALDI-TOF-MS database was created to house the newly determined Mean Spectrum Projections for four Lyme disease group and ten relapsing fever group reference borreliae. MALDI-TOF-MS yielded a unique protein profile for each of the 14 tested Borrelia species, with 100% reproducibility over 12 repeats. In a second proof-of-concept step, the Borrelia database and a custom software program that subtracts the uninfected O. sonrai profile were used to detect Borrelia crocidurae in 20 Ornithodoros sonrai ticks, including eight ticks that tested positive for B. crocidurae by PCR-sequencing. A B. crocidurae-specific pattern consisting of 3405, 5071, 5898, 7041, 8580 and 9757-m/z peaks was found in all B. crocidurae-infected ticks and not found in any of the un-infected ticks. In a final blind validation step, MALDI-TOF-MS exhibited 88.9% sensitivity and 93.75% specificity for the detection of B. crocidurae in 50 O. sonrai ticks, including 18 that tested positive for B. crocidurae by PCR-sequencing. MALDI-TOF-MS took 45 minutes to be completed. CONCLUSIONS/SIGNIFICANCE After the development of an appropriate database, MALDI-TOF-MS can be used to identify tick species and the presence of relapsing fever borreliae in a single assay. This work paves the way for the use of MALDI-TOF-MS for the dual identification of vectors and vectorized pathogens.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
42 |
8
|
Fournier PE, Couderc C, Buffet S, Flaudrops C, Raoult D. Rapid and cost-effective identification of Bartonella species using mass spectrometry. J Med Microbiol 2009; 58:1154-1159. [PMID: 19528172 DOI: 10.1099/jmm.0.009647-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria of the genus Bartonella are emerging zoonotic bacteria recognized in a variety of human diseases. Due to their poor chemical reactivity, these fastidious bacteria are poorly characterized using routine phenotypic laboratory tests. Identification is usually achieved using molecular techniques that are time-consuming, expensive and technically demanding. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a new technique for bacterial species identification. This study evaluated the use of MALDI-TOF MS for rapid genus and species identification of Bartonella species. Reference strains representing 17 recognized Bartonella species were studied. For each species, MS spectra for four colonies were analysed. The consensus spectrum obtained for each species was unique among spectra obtained for 2843 bacteria within the Bruker database, including 109 alphaproteobacteria. Thirty-nine additional blind-coded Bartonella strains were correctly identified at the species level, including 36 with a significant score. Altogether, these data demonstrate that MS is an accurate and reproducible tool for rapid and inexpensive identification of Bartonella species.
Collapse
|
Journal Article |
16 |
39 |
9
|
Ouedraogo R, Flaudrops C, Ben Amara A, Capo C, Raoult D, Mege JL. Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 2010; 5:e13691. [PMID: 21060873 PMCID: PMC2965159 DOI: 10.1371/journal.pone.0013691] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background MALDI-TOF mass spectrometry is currently used in microbiological diagnosis to characterize bacterial populations. Our aim was to determine whether this technique could be applied to intact eukaryotic cells, and in particular, to cells involved in the immune response. Methodology/Principal Findings A comparison of frozen monocytes, T lymphocytes and polymorphonuclear leukocytes revealed specific peak profiles. We also found that twenty cell types had specific profiles, permitting the establishment of a cell database. The circulating immune cells, namely monocytes, T lymphocytes and polymorphonuclear cells, were distinct from tissue immune cells such as monocyte-derived macrophages and dendritic cells. In addition, MALDI-TOF mass spectrometry was valuable to easily identify the signatures of monocytes and T lymphocytes in peripheral mononuclear cells. Conclusions/Significance This method was rapid and easy to perform, and unlike flow cytometry, it did not require any additional components such as specific antibodies. The MALDI-TOF mass spectrometry approach could be extended to analyze the cell composition of tissues and the activation state of immune cells.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
36 |
10
|
Zingue D, Flaudrops C, Drancourt M. Direct matrix-assisted laser desorption ionisation time-of-flight mass spectrometry identification of mycobacteria from colonies. Eur J Clin Microbiol Infect Dis 2016; 35:1983-1987. [PMID: 27549109 DOI: 10.1007/s10096-016-2750-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/03/2016] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) identification of mycobacteria requires a standard acetonitrile/formic acid pre-MALDI-TOF-MS. We prospectively compared this standard protocol with direct deposit with matrix for the identification of mycobacteria cultured on solid media. We first verified that Mycobacterium tuberculosis was killed after it was mixed with matrix. Then, 111 Mycobacterium isolates previously identified by partial rpoB gene sequencing were tested in parallel by the two protocols. An identification score >1.7 was obtained in 86/111 (77.5 %) isolates after protein extraction versus 97/111 (87.4 %) isolates after direct deposit (p = 0.039, Chi-squared test). In a third step, we determined that direct deposit achieved identification for as few as 2.104 M. tuberculosis organisms. In a fourth step, we evaluated direct deposit of one colony for 116 solid medium-cultured clinical isolates finally identified as representative of 12 species (63.8 % M. tuberculosis). For 114/116 (98.3 %) isolates with an identification score >1.2, the MALDI-TOF-MS identification was in complete agreement with the reference rpoB gene sequencing identification. One isolate with a MALDI-TOF-MS identification score of 1.22 for M. fortuitum was identified as M. avium by partial rpoB gene sequencing. One other isolate with a MALDI-TOF-MS identification score of 1.22 for M. tuberculosis was identified as M. tuberculosis by genotyping. All the original MALDI-TOF-MS spectra reported here have been deposited in a public database. Direct deposit of one colony on a MALDI-TOF-MS plate allows for an accurate identification of mycobacteria for an identification score >1.3.
Collapse
|
Journal Article |
9 |
28 |
11
|
Couturier M, Buccellato M, Costanzo S, Bourhis JM, Shu Y, Nicaise M, Desmadril M, Flaudrops C, Longhi S, Oglesbee M. High affinity binding between Hsp70 and the C-terminal domain of the measles virus nucleoprotein requires an Hsp40 co-chaperone. J Mol Recognit 2010; 23:301-15. [PMID: 19718689 DOI: 10.1002/jmr.982] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The major inducible 70 kDa heat shock protein (hsp70) binds the measles virus (MeV) nucleocapsid with high affinity in an ATP-dependent manner, stimulating viral transcription and genome replication, and profoundly influencing virulence in mouse models of brain infection. Binding is mediated by two hydrophobic motifs (Box-2 and Box-3) located within the C-terminal domain (N(TAIL)) of the nucleocapsid protein, with N(TAIL) being an intrinsically disordered domain. The current work showed that high affinity hsp70 binding to N(TAIL) requires an hsp40 co-chaperone that interacts primarily with the hsp70 nucleotide binding domain (NBD) and displays no significant affinity for N(TAIL). Hsp40 directly enhanced hsp70 ATPase activity in an N(TAIL)-dependent manner, and formation of hsp40-hsp70-N(TAIL) intracellular complexes required the presence of N(TAIL) Box-2 and 3. Results are consistent with the functional interplay between hsp70 nucleotide and substrate binding domains (SBD), where ATP hydrolysis is rate limiting to high affinity binding to client proteins and is enhanced by hsp40. As such, hsp40 is an essential variable in understanding the outcome of MeV-hsp70 interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
27 |
12
|
Malek MA, Bitam I, Levasseur A, Terras J, Gaudart J, Azza S, Flaudrops C, Robert C, Raoult D, Drancourt M. Yersinia pestis halotolerance illuminates plague reservoirs. Sci Rep 2017; 7:40022. [PMID: 28054667 PMCID: PMC5214965 DOI: 10.1038/srep40022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
The plague agent Yersinia pestis persists for years in the soil. Two millennia after swiping over Europe and North Africa, plague established permanent foci in North Africa but not in neighboring Europe. Mapping human plague foci reported in North Africa for 70 years indicated a significant location at <3 kilometers from the Mediterranean seashore or the edge of salted lakes named chotts. In Algeria, culturing 352 environmental specimens naturally containing 0.5 to 70 g/L NaCl yielded one Y. pestis Orientalis biotype isolate in a 40 g/L NaCl chott soil specimen. Core genome SNP analysis placed this isolate within the Y. pestis branch 1, Orientalis biovar. Culturing Y. pestis in broth steadily enriched in NaCl indicated survival up to 150 g/L NaCl as L-form variants exhibiting a distinctive matrix assisted laser desorption-ionization time-of-flight mass spectrometry peptide profile. Further transcriptomic analyses found the upregulation of several outer-membrane proteins including TolC efflux pump and OmpF porin implied in osmotic pressure regulation. Salt tolerance of Y. pestis L-form may play a role in the maintenance of natural plague foci in North Africa and beyond, as these geographical correlations could be extended to 31 plague foci in the northern hemisphere (from 15°N to 50°N).
Collapse
|
research-article |
8 |
13 |
13
|
Conrath K, Pereira AS, Martins CE, Timóteo CG, Tavares P, Spinelli S, Kinne J, Flaudrops C, Cambillau C, Muyldermans S, Moura I, Moura JJG, Tegoni M, Desmyter A. Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase. Protein Sci 2009; 18:619-28. [PMID: 19241371 PMCID: PMC2760367 DOI: 10.1002/pro.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 12/18/2008] [Indexed: 12/11/2022]
Abstract
Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.
Collapse
|
research-article |
16 |
13 |
14
|
Brioude G, Brégeon F, Trousse D, Flaudrops C, Secq V, De Dominicis F, Chabrières E, D'journo XB, Raoult D, Thomas PA. Rapid Diagnosis of Lung Tumors, a Feasability Study Using Maldi-Tof Mass Spectrometry. PLoS One 2016; 11:e0155449. [PMID: 27228175 PMCID: PMC4881980 DOI: 10.1371/journal.pone.0155449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/28/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Despite recent advances in imaging and core or endoscopic biopsies, a percentage of patients have a major lung resection without diagnosis. We aimed to assess the feasibility of a rapid tissue preparation/analysis to discriminate cancerous from non-cancerous lung tissue. METHODS Fresh sample preparations were analyzed with the Microflex LTTM MALDI-TOF analyzer. Each main reference spectra (MSP) was consecutively included in a database. After definitive pathological diagnosis, each MSP was labeled as either cancerous or non-cancerous (normal, inflammatory, infectious nodules). A strategy was constructed based on the number of concordant responses of a mass spectrometry scoring algorithm. A 3-step evaluation included an internal and blind validation of a preliminary database (n = 182 reference spectra from the 100 first patients), followed by validation on a whole cohort database (n = 300 reference spectra from 159 patients). Diagnostic performance indicators were calculated. RESULTS 127 cancerous and 173 non-cancerous samples (144 peripheral biopsies and 29 inflammatory or infectious lesions) were processed within 30 minutes after biopsy sampling. At the most discriminatory level, the samples were correctly classified with a sensitivity, specificity and global accuracy of 92.1%, 97.1% and 95%, respectively. CONCLUSIONS The feasibility of rapid MALDI-TOF analysis, coupled with a very simple lung preparation procedure, appears promising and should be tested in several surgical settings where rapid on-site evaluation of abnormal tissue is required. In the operating room, it appears promising in case of tumors with an uncertain preoperative diagnosis and should be tested as a complementary approach to frozen-biopsy analysis.
Collapse
|
Journal Article |
9 |
5 |
15
|
Gouriet F, Ghiab F, Couderc C, Bittar F, Tissot Dupont H, Flaudrops C, Casalta JP, Sambe-Ba B, Fall B, Raoult D, Fenollar F. Evaluation of a new extraction protocol for yeast identification by mass spectrometry. J Microbiol Methods 2016; 129:61-65. [DOI: 10.1016/j.mimet.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 11/15/2022]
|
|
9 |
5 |
16
|
Dubourg G, Cimmino T, Senkar SA, Lagier JC, Robert C, Flaudrops C, Brouqui P, Raoult D, Fournier PE, Rolain JM. Noncontiguous finished genome sequence and description of Paenibacillus antibioticophila sp. nov. GD11(T), the type strain of Paenibacillus antibioticophila. New Microbes New Infect 2015; 8:137-47. [PMID: 27257493 PMCID: PMC4877408 DOI: 10.1016/j.nmni.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022] Open
Abstract
Paenibacillus antibioticophila strain GD11T sp. nov. is the type strain of a new species within the genus Paenibacillus. This strain, whose genome is described here, was isolated from human faeces of a 63-year-old woman with multidrug-resistant tuberculosis who was receiving numerous antibiotics at the time of stool collection. P. antibioticophila is a Gram-positive aerobic bacterium. We describe here the features of this bacterium, together with the complete genome sequence and annotation. The 5 562 631 bp long genome contains 5084 protein-coding and 71 RNA genes.
Collapse
|
Journal Article |
10 |
5 |
17
|
Chetouane Y, Dubourg G, Gallian P, Delerce J, Levasseur A, Flaudrops C, Chabrière E, Chiaroni J, Raoult D, Camoin-Jau L. In vitro detection of bacterial contamination in platelet concentrates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a preliminary study. J Med Microbiol 2017; 66:1523-1530. [PMID: 28984240 DOI: 10.1099/jmm.0.000533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Platelet concentrates are at risk of transfusion-related sepsis. The microbial detection methods currently available have reached their limits, as they do not completely prevent transfusion-related bacterial contamination.The aim of this study was to develop a new strategy to detect the risk of platelet transfusion-related bacterial contamination using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). METHODOLOGY In vitro, platelet concentrates were seeded with known concentrations of bacterial strains. Protein mass profiles were acquired by using a Microflex MALDI-TOF instrument. Dedicated 'Platelet' software was used as a spectrum subtraction tool to reveal specific peaks caused by the presence of pathogens in samples. RESULTS The MALDI-TOF spectra of platelets were characterized and the reproducibility over time, regardless of the blood donor, was demonstrated with a positive predictive value of 100 %. In addition, the negative predictive value of the total number of specific peaks to predict contamination was 100 %. CONCLUSION Detecting bacteria in platelet concentrates using the MALDI-TOF approach and analysing spectra with the Platelet software present the advantage of combining the precocity of results and sufficient sensitivity (10 c.f.u. ml-1). Further research will be conducted to compare this novel method with the current conventional method in order to validate our results, the objective being to reduce the risk of platelet transfusion-related bacterial contamination.
Collapse
|
Journal Article |
8 |
3 |
18
|
Chetouane Y, Dubourg G, Gallian P, Flaudrops C, Chiaroni J, Chabrière E, Raoult D, Camoin-Jau L. Rapid identification of microorganisms from platelet concentrates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry after short-term incubation on liquid medium. Transfusion 2017; 58:766-773. [PMID: 29193200 DOI: 10.1111/trf.14430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Platelets (PLTs) are especially affected by the risk of bacterial contamination. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) is an accurate method for the routine identification of bacterial isolates in microbiology laboratories. We directly applied the MALDI-TOF method to bacterial detection in PLTs. In this study, we evaluated the sensitivity, specificity, and speed of a direct MALDI-TOF approach compared to the conventional method BACTEC. STUDY DESIGN AND METHODS Eight bacteria associated with PLT contamination, cited by the ISBT on transfusion-transmitted infectious diseases, were spiked into PLTs for a final concentration of approximately 100 CFU/bag (n = 5 for each strain). The PLTs were then agitated for 24 hours. One milliliter of PLTs was incubated in a shaker incubator for 8 hours at 37°C with 1 mL of trypticase soy broth (TSB). The spectra were analyzed using the MALDI Biotyper software. As a control, 8 mL of PLTs incubated into BACTEC bottles and a positive bottle were subcultured to ensure identification of bacterial growth. RESULTS Regardless of the strain of PLTs tested, MALDI-TOF analysis made detection and early identification possible at 8 hours. Analysis by BACTEC of PLTs infected with Escherichia coli, Bacillus cereus, and Providencia stuartii made early identification possible. For the remaining bacteria, the detection time by BACTEC was significantly longer than 8 hours. CONCLUSION We demonstrated the possibility of detecting bacteria in PLTs using a standardized culture step in TSB with MALDI-TOF, regardless of the strain, with the same specificity and analytical sensitivity and with a time to results of 12 hours. This direct method presented rapid and reliable results.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
2 |
19
|
Brioude G, Bregeon F, De Dominicis F, Trousse D, Orsini B, Doddoli C, Flaudrops C, D'Journo X, Raoult D, Thomas P. F-073 * CAN MASS PROTEOMIC ANALYSIS USING MALDI-TETRALOGY OF FALLOT MASS SPECTROMETRY HELP FOR RAPID DIAGNOSIS OF LUNG CANCER IN THE OPERATING ROOM? Interact Cardiovasc Thorac Surg 2014. [DOI: 10.1093/icvts/ivu167.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
11 |
|
20
|
Elharrar X, De Lesquen H, Noirez L, Flaudrops C, Brioude G, Laroumagne S, Dutau H, Martinez S, Raoult D, Astoul P, Bregeon F. Faisabilité de la spectrométrie de masse (MALDI-Tof) pour l’analyse des prélèvements obtenus par écho-endoscopie bronchique (EBUS) dans le cadre du diagnostic ou du bilan d’extension du cancer broncho-pulmonaire. Rev Mal Respir 2016. [DOI: 10.1016/j.rmr.2015.10.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
9 |
|