1
|
Miller SA, Policastro RA, Sriramkumar S, Lai T, Huntington TD, Ladaika CA, Kim D, Hao C, Zentner GE, O'Hagan HM. LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer. Cancer Res 2021; 81:3791-3805. [PMID: 34035083 DOI: 10.1158/0008-5472.can-20-3562] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in BRAF-mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In BRAF-mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs. Mechanistically, secretory cells and the factors they secrete, such as trefoil factor 3, promoted colony formation and activation of cell survival pathways in the entire cell population. Lysine-specific demethylase 1 (LSD1) was identified as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss blocks formation of EEC progenitors and reduces tumor growth and metastasis. These findings reveal an important role for EEC progenitors in supporting colorectal cancer. SIGNIFICANCE: This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.
Collapse
|
Journal Article |
4 |
66 |
2
|
Ghobashi AH, Vuong TT, Kimani JW, Ladaika CA, Hollenhorst PC, O’Hagan HM. Activation of AKT induces EZH2-mediated β-catenin trimethylation in colorectal cancer. iScience 2023; 26:107630. [PMID: 37670785 PMCID: PMC10475482 DOI: 10.1016/j.isci.2023.107630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Colorectal cancer (CRC) develops in part through the deregulation of different signaling pathways, including activation of the WNT/β-catenin and PI3K/AKT pathways. Additionally, the lysine methyltransferase enhancer of zeste homologue 2 (EZH2) is commonly overexpressed in CRC. EZH2 canonically represses gene transcription by trimethylating lysine 27 of histone H3, but also has non-histone substrates. Here, we demonstrated that in CRC, active AKT phosphorylated EZH2 on serine 21. Phosphorylation of EZH2 by AKT induced EZH2 to interact with and methylate β-catenin at lysine 49, which increased β-catenin's binding to the chromatin. Additionally, EZH2-mediated β-catenin trimethylation induced β-catenin to interact with TCF1 and RNA polymerase II and resulted in dramatic gains in genomic regions with β-catenin occupancy. EZH2 catalytic inhibition decreased stemness but increased migratory phenotypes of CRC cells with active AKT. Overall, we demonstrated that EZH2 modulates AKT-induced changes in gene expression through the AKT/EZH2/β-catenin axis in CRC.
Collapse
|
research-article |
2 |
9 |
3
|
Allen JM, Jaggers RM, Solden LM, Loman BR, Davies RH, Mackos AR, Ladaika CA, Berg BM, Chichlowski M, Bailey MT. Dietary Oligosaccharides Attenuate Stress-Induced Disruptions in Immune Reactivity and Microbial B-Vitamin Metabolism. Front Immunol 2019; 10:1774. [PMID: 31417554 PMCID: PMC6681768 DOI: 10.3389/fimmu.2019.01774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Exposure to stressful stimuli dysregulates inflammatory processes and alters the gut microbiota. Prebiotics, including long-chain fermentable fibers and milk oligosaccharides, have the potential to limit inflammation through modulation of the gut microbiota. To determine whether prebiotics attenuate stress-induced inflammation and microbiota perturbations, mice were fed either a control diet or a diet supplemented with galactooligosaccharides, polydextrose and sialyllactose (GOS+PDX+SL) or sialyllactose (SL) for 2 weeks prior to and during a 6-day exposure to a social disruption stressor. Spleens were collected for immunoreactivity assays. Colon contents were examined for stressor- and diet- induced changes in the gut microbiome and metabolome through 16S rRNA gene sequencing, shotgun metagenomic sequencing and UPLC-MS/MS. Results: Stress increased circulating IL-6 and enhanced splenocyte immunoreactivity to an ex vivo LPS challenge. Diets containing GOS+PDX+SL or SL alone attenuated these responses. Stress exposure resulted in large changes to the gut metabolome, including robust shifts in amino acids, peptides, nucleotides/nucleosides, tryptophan metabolites, and B vitamins. Multiple B vitamins were inversely associated with IL-6 and were augmented in mice fed either GOS+PDX+SL or SL diets. Stressed mice exhibited distinct microbial communities with lower abundances of Lactobacillus spp. and higher abundances of Bacteroides spp. Diet supplementation with GOS+PDX+SL, but not SL alone, orthogonally altered the microbiome and enhanced the growth of Bifidobacterium spp. Metagenome-assembled genomes (MAGs) from mice fed the GOS+PDX+SL diet unveiled genes in a Bifidobacterium MAG for de novo B vitamin synthesis. B vitamers directly attenuated the stressor-induced exacerbation of cytokine production in LPS-stimulated splenocytes. Conclusions: Overall, these data indicate that colonic metabolites, including B vitamins, are responsive to psychosocial stress. Dietary prebiotics reestablish colonic B vitamins and limit stress-induced inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
7 |
4
|
Ghobashi AH, Kimani JW, Ladaika CA, O'Hagan HM. PTEN depletion reduces H3K27me3 levels to promote epithelial-to-mesenchymal transition in epithelial colorectal cancer cells. PLoS One 2024; 19:e0313769. [PMID: 39561122 PMCID: PMC11575820 DOI: 10.1371/journal.pone.0313769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Epithelial-to-mesenchymal (EMT) transition is one of the best-known examples of tumor cell plasticity. EMT enhances cancer cell metastasis, which is the main cause of colorectal cancer (CRC)-related mortality. Therefore, understanding underlying molecular mechanisms contributing to the EMT process is crucial to finding druggable targets and more effective therapeutic approaches in CRC. In this study, we demonstrated that phosphatase and tensin homolog (PTEN) knockdown (KD) induces EMT in epithelial CRC, likely through the activation of AKT. PTEN KD modulated chromatin accessibility and reprogrammed gene transcription to mediate EMT in epithelial CRC cells. Active AKT can phosphorylate enhancer of zeste homolog 2 (EZH2) on serine 21, which switches EZH2 from a transcriptional repressor to an activator. Interestingly, PTEN KD reduced the global levels of trimethylation of histone 3 at lysine 27(H3K27me3) in an EZH2-phosphorylation-dependent manner. Additionally, EZH2 phosphorylation at serine 21 reduced the interaction of EZH2 with another polycomb repressive complex 2 (PRC2) component, suppressor of zeste 12 (SUZ12), suggesting that the reduced H3K27me3 levels in PTEN KD cells were due to a disruption of the PRC2 complex. Overall, we demonstrated that PTEN KD modulates changes in gene expression to induce the EMT process in epithelial CRC cells by phosphorylating EZH2 and activates transcription factors such as activator protein 1 (AP1).
Collapse
|
|
1 |
|
5
|
Ladaika CA, Ghobashi AH, Boulton WC, Miller SA, O'Hagan HM. Single-cell multi-omics reveals insights into differentiation of rare cell types in mucinous colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578409. [PMID: 38370733 PMCID: PMC10871185 DOI: 10.1101/2024.02.01.578409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neuroendocrine cells have been implicated in therapeutic resistance and worse overall survival in many cancer types. Mucinous colorectal cancer (mCRC) is uniquely enriched for enteroendocrine cells (EECs), the neuroendocrine cell of the normal colon epithelium, as compared to non-mucinous CRC. Therefore, targeting EEC differentiation may have clinical value in mCRC. Here, single cell multi-omics was used to uncover epigenetic alterations that accompany EEC differentiation, identify STAT3 as a novel regulator of EEC specification, and discover a rare cancer-specific cell type with enteric neuron-like characteristics. Further experiments demonstrated that lysine-specific demethylase 1 (LSD1) and CoREST2 mediate STAT3 demethylation and regulate STAT3 chromatin binding. Knockdown of CoREST2 in an orthotopic xenograft mouse model resulted in decreased primary tumor growth and lung metastases. In culmination, these results provide rationale for new LSD1 inhibitors that target the interaction between LSD1 with STAT3 or CoREST2, which may improve clinical outcomes for patients with mCRC.
Collapse
|
Preprint |
1 |
|
6
|
Ladaika CA, Chakraborty A, Masood A, Hostetter G, Yi JM, O'Hagan HM. LSD1 inhibition attenuates targeted therapy-induced lineage plasticity in BRAF mutant colorectal cancer. Mol Cancer 2025; 24:122. [PMID: 40264166 PMCID: PMC12016338 DOI: 10.1186/s12943-025-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND BRAF activating mutations occur in approximately 10% of metastatic colorectal cancer (CRCs) and are associated with worse prognosis in part due to an inferior response to standard chemotherapy. Standard of care for patients with refractory metastatic BRAFV600E CRC is treatment with BRAF and EGFR inhibitors and recent FDA approval was given to use these inhibitors in combination with chemotherapy for patients with treatment naïve metastatic BRAFV600E CRC. Lineage plasticity to neuroendocrine cancer is an emerging mechanism of targeted therapy resistance in several cancer types. Enteroendocrine cells (EECs), the neuroendocrine cell of the intestine, are uniquely present in BRAF mutant CRC as compared to BRAF wildtype CRC. METHODS BRAF plus EGFR inhibitor treatment induced changes in cell composition were determined by gene expression, imaging and single cell approaches in multiple models of BRAF mutant CRC. Furthermore, multiple clinically relevant inhibitors of the lysine demethylase LSD1 were tested to determine which inhibitor blocked the changes in cell composition. RESULTS Combined BRAF and EGFR inhibition enriched for EECs in all BRAF mutant CRC models tested. Additionally, EECs and other secretory cell types were enriched in a subset of BRAFV600E CRC patient samples following targeted therapy. Importantly, inhibition of LSD1 with a clinically relevant inhibitor attenuated targeted therapy-induced EEC enrichment through blocking the interaction of LSD1, CoREST2 and STAT3. CONCLUSIONS Our findings that BRAF plus EGFR inhibition induces lineage plasticity in BRAFV600E CRC represents a new paradigm for how resistance to BRAF plus EGFR inhibition occurs. Additionally, our finding that LSD1 inhibition blocks lineage plasticity has the potential to improve responses to BRAF plus EGFR inhibitor therapy in patients.
Collapse
|
research-article |
1 |
|
7
|
Ladaika CA, Ghobashi AH, Boulton WC, Miller SA, O'Hagan HM. LSD1 and CoREST2 Potentiate STAT3 Activity to Promote Enteroendocrine Cell Differentiation in Mucinous Colorectal Cancer. Cancer Res 2025; 85:52-68. [PMID: 39365378 DOI: 10.1158/0008-5472.can-24-0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Neuroendocrine cells have been implicated in therapeutic resistance and worse overall survival in many cancer types. Mucinous colorectal cancer (mCRC) is uniquely enriched for enteroendocrine cells (EEC), the neuroendocrine cells of the normal colon epithelium, as compared with non-mCRC. Therefore, targeting EEC differentiation may have clinical value in mCRC. In this study, single-cell multiomics uncovered epigenetic alterations that accompany EEC differentiation, identified STAT3 as a regulator of EEC specification, and discovered a rare cancer-specific cell type with enteric neuron-like characteristics. Furthermore, lysine-specific demethylase 1 (LSD1) and CoREST2 mediated STAT3 demethylation and enhanced STAT3 chromatin binding. Knockdown of CoREST2 in an orthotopic xenograft mouse model resulted in decreased primary tumor growth and lung metastases. Collectively, these results provide a rationale for developing LSD1 inhibitors that target the interaction between LSD1 and STAT3 or CoREST2, which may improve clinical outcomes for patients with mCRC. Significance: STAT3 activity mediated by LSD1 and CoREST2 induces enteroendocrine cell specification in mucinous colorectal cancer, suggesting disrupting interaction among LSD1, CoREST2, and STAT3 as a therapeutic strategy to target neuroendocrine differentiation.
Collapse
|
|
1 |
|
8
|
Ladaika CA, Chakraborty A, Masood A, Hostetter G, Yi JM, O'Hagan HM. LSD1 inhibition attenuates targeted therapy-induced lineage plasticity in BRAF V600E colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620306. [PMID: 39554172 PMCID: PMC11565724 DOI: 10.1101/2024.10.25.620306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BRAF activating mutations occur in approximately 10% of metastatic colorectal cancer (CRCs) and are associated with worse prognosis due to an inferior response to standard chemotherapy. Standard of care for patients with refractory metastatic BRAF V600E CRC is treatment with BRAF and EGFR inhibitors. However, responses are not durable. Lineage plasticity to neuroendocrine cancer is an emerging mechanism of targeted therapy resistance in several cancer types. Enteroendocrine cells (EECs), the neuroendocrine cell of the intestine, are uniquely present in BRAF V600E CRC as compared to BRAF wildtype CRC. Here, we demonstrated that combined BRAF and EGFR inhibition enriches for EECs in several models of BRAF V600E CRC. Additionally, EECs and other secretory cell types were enriched in a subset of BRAF V600E CRC patient samples following targeted therapy. Importantly, inhibition of the lysine demethylase LSD1 with a clinically relevant inhibitor attenuated targeted therapy-induced EEC enrichment through blocking the interaction of LSD1, CoREST2 and STAT3. Statement of Significance Our findings that BRAF plus EGFR inhibition induces lineage plasticity in BRAF V600E CRC represents a new paradigm for how resistance to BRAF plus EGFR inhibition occurs and our finding that LSD1 inhibition blocks lineage plasticity has the potential to improve responses to BRAF plus EGFR inhibitor therapy in patients.
Collapse
|
Preprint |
1 |
|
9
|
Ghobashi AH, Lanzloth R, Ladaika CA, O'Hagan HM. Single-cell profiling reveals the impact of genetic alterations on the differentiation of inflammation-induced colon tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569463. [PMID: 38077052 PMCID: PMC10705473 DOI: 10.1101/2023.11.30.569463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (Min ApcΔ716/+ ) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAF V600E mutation ( BRAF FV600E Lgr5 tm1(Cre/ERT2)Cle Min ApcΔ716/+ , BLM) or knocking out Msh2 ( Msh2 LoxP/LoxP Vil1-cre Min ApcΔ716/+ , MSH2KO) in the Min model altered colon tumor differentiation. Using single cell RNA-sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the stem cell population. In contrast, MSH2KO tumors were characterized by an increased stem cell population that had higher WNT signaling activity compared to Min tumors. Additionally, comparative analysis of single-cell transcriptomics revealed that BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we were able to identify additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
|
Preprint |
2 |
|
10
|
Ghobashi AH, Lanzloth R, Ladaika CA, Masood A, O’Hagan HM. Single-Cell Profiling Reveals the Impact of Genetic Alterations on the Differentiation of Inflammation-Induced Murine Colon Tumors. Cancers (Basel) 2024; 16:2040. [PMID: 38893159 PMCID: PMC11171101 DOI: 10.3390/cancers16112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (MinApcΔ716/+) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAFV600E mutation (BRAFF-V600ELgr5tm1(Cre/ERT2)CleMinApcΔ716/+, BLM) or knocking out Msh2 (Msh2LoxP/LoxPVil1-creMinApcΔ716/+, MSH2KO) in the Min model altered colon tumor differentiation. Using single-cell RNA sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single-cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the tumor stem cell population. Interestingly, the tumor stem cell population of BLM tumors had revival colon stem cell characteristics with low WNT signaling and an increase in RevCSC marker gene expression. In contrast, MSH2KO tumors were characterized by an increased tumor stem cell population that had higher WNT signaling activity compared to Min tumors. Furthermore, overall BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we identified additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
|
research-article |
1 |
|