1
|
Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001; 294:2364-8. [PMID: 11743205 DOI: 10.1126/science.1065810] [Citation(s) in RCA: 1596] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Saccharomyces cerevisiae, more than 80% of the approximately 6200 predicted genes are nonessential, implying that the genome is buffered from the phenotypic consequences of genetic perturbation. To evaluate function, we developed a method for systematic construction of double mutants, termed synthetic genetic array (SGA) analysis, in which a query mutation is crossed to an array of approximately 4700 deletion mutants. Inviable double-mutant meiotic progeny identify functional relationships between genes. SGA analysis of genes with roles in cytoskeletal organization (BNI1, ARP2, ARC40, BIM1), DNA synthesis and repair (SGS1, RAD27), or uncharacterized functions (BBC1, NBP2) generated a network of 291 interactions among 204 genes. Systematic application of this approach should produce a global map of gene function.
Collapse
|
|
24 |
1596 |
2
|
Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 2000; 287:873-80. [PMID: 10657304 DOI: 10.1126/science.287.5454.873] [Citation(s) in RCA: 637] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genome-wide transcript profiling was used to monitor signal transduction during yeast pheromone response. Genetic manipulations allowed analysis of changes in gene expression underlying pheromone signaling, cell cycle control, and polarized morphogenesis. A two-dimensional hierarchical clustered matrix, covering 383 of the most highly regulated genes, was constructed from 46 diverse experimental conditions. Diagnostic subsets of coexpressed genes reflected signaling activity, cross talk, and overlap of multiple mitogen-activated protein kinase (MAPK) pathways. Analysis of the profiles specified by two different MAPKs-Fus3p and Kss1p-revealed functional overlap of the filamentous growth and mating responses. Global transcript analysis reflects biological responses associated with the activation and perturbation of signal transduction pathways.
Collapse
|
|
25 |
637 |
3
|
Evangelista M, Blundell K, Longtine MS, Chow CJ, Adames N, Pringle JR, Peter M, Boone C. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 1997; 276:118-22. [PMID: 9082982 DOI: 10.1126/science.276.5309.118] [Citation(s) in RCA: 508] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Saccharomyces cerevisiae BNI1 gene product (Bni1p) is a member of the formin family of proteins, which participate in cell polarization, cytokinesis, and vertebrate limb formation. During mating pheromone response, bni1 mutants showed defects both in polarized morphogenesis and in reorganization of the underlying actin cytoskeleton. In two-hybrid experiments, Bni1p formed complexes with the activated form of the Rho-related guanosine triphosphatase Cdc42p, with actin, and with two actin-associated proteins, profilin and Bud6p (Aip3p). Both Bni1p and Bud6p (like Cdc42p and actin) localized to the tips of mating projections. Bni1p may function as a Cdc42p target that links the pheromone response pathway to the actin cytoskeleton.
Collapse
|
|
28 |
508 |
4
|
Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG. A protein interaction map for cell polarity development. J Cell Biol 2001; 154:549-71. [PMID: 11489916 PMCID: PMC2196425 DOI: 10.1083/jcb.200104057] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.
Collapse
|
research-article |
24 |
241 |
5
|
Boone C, Sommer SS, Hensel A, Bussey H. Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Biophys Biochem Cytol 1990; 110:1833-43. [PMID: 2186051 PMCID: PMC2200168 DOI: 10.1083/jcb.110.5.1833] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Saccharomyces cerevisiae KRE1 gene encodes a Ser/Thr-rich protein, that is directed into the yeast secretory pathway, where it is highly modified, probably through addition of O-linked mannose residues. Gene disruption of the KRE1 locus leads to a 40% reduced level of cell wall (1----6)-beta-glucan. Structural analysis of the (1----6)-beta-glucan fraction, isolated from a strain with a krel disruption mutation, showed that it had an altered structure with a smaller average polymer size. Mutations in two other loci, KRE5 and KRE6 also lead to a defect in cell wall (1----6)-beta-glucan production and appear to be epistatic to KRE1. These findings outline a possible pathway of assembly of yeast cell wall (1----6)-beta-glucan.
Collapse
|
research-article |
35 |
198 |
6
|
Aggarwal M, Boone CD, Kondeti B, McKenna R. Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 2012; 28:267-77. [DOI: 10.3109/14756366.2012.737323] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
|
13 |
184 |
7
|
Martin RV, Sauvage B, Folkins I, Sioris CE, Boone C, Bernath P, Ziemke J. Space-based constraints on the production of nitric oxide by lightning. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007831] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
18 |
155 |
8
|
Dimitrov NV, Meyer C, Ullrey DE, Chenoweth W, Michelakis A, Malone W, Boone C, Fink G. Bioavailability of beta-carotene in humans. Am J Clin Nutr 1988; 48:298-304. [PMID: 3407609 DOI: 10.1093/ajcn/48.2.298] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Normal healthy volunteers were studied after they ingested various beta-carotene doses. Daily administration of 15 or 45 mg beta-carotene resulted in significant increase in plasma beta-carotene levels. The extent of increase and the pattern of plasma beta-carotene levels showed substantial interindividual variation. Absorption of beta-carotene was affected by dietary fat concentration. Individuals placed on a high-fat diet showed significant increases in plasma beta-carotene as compared with those placed on a low-fat diet. Pharmacological doses of beta-carotene (45 and 90 mg) were used in intermittent schedules (5-6 d intervals) without altering the steady state of beta-carotene plasma levels. Yellowing of the skin occasionally occurred during daily dosing with 45 mg beta-carotene without evidence of toxicity. The observed individual variation in bioavailability of beta-carotene raises questions regarding clinical use of this micronutrient. It appears that determination of target plasma beta-carotene concentrations is essential for effective use of this compound in prevention or treatment.
Collapse
|
Clinical Trial |
37 |
148 |
9
|
Lee L, Klee SK, Evangelista M, Boone C, Pellman D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J Cell Biol 1999; 144:947-61. [PMID: 10085293 PMCID: PMC2148193 DOI: 10.1083/jcb.144.5.947] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.
Collapse
|
research-article |
26 |
138 |
10
|
Adames N, Blundell K, Ashby MN, Boone C. Role of yeast insulin-degrading enzyme homologs in propheromone processing and bud site selection. Science 1995; 270:464-7. [PMID: 7569998 DOI: 10.1126/science.270.5235.464] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Saccharomyces cerevisiae AXL1 gene product Axl1p shares homology with the insulin-degrading enzyme family of endoproteases. Yeast axl1 mutants showed a defect in a-factor pheromone secretion, and a probable site of processing by Axl1p was identified within the a-factor precursor. In addition, Axl1p appears to function as a morphogenetic determinant for axial bud site selection. Amino acid substitutions within the presumptive active site of Axl1p caused defects in propheromone processing but failed to perturb bud site selection. Thus, Axl1p has been shown to participate in the dual regulation of distinct signaling pathways, and a member of the insulinase family has been implicated in propeptide processing.
Collapse
|
|
30 |
117 |
11
|
Anderson BL, Boldogh I, Evangelista M, Boone C, Greene LA, Pon LA. The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J Cell Biol 1998; 141:1357-70. [PMID: 9628892 PMCID: PMC2132798 DOI: 10.1083/jcb.141.6.1357] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1997] [Revised: 04/23/1998] [Indexed: 02/07/2023] Open
Abstract
The budding yeast contains two type I myosins, Myo3p and Myo5p, with redundant functions. Deletion of both myosins results in growth defects, loss of actin polarity and polarized cell surface growth, and accumulation of intracellular membranes. Expression of myc-tagged Myo5p in myo3Delta myo5Delta cells fully restores wild-type characteristics. Myo5p is localized as punctate, cortical structures enriched at sites of polarized cell growth. We find that latrunculin-A-induced depolymerization of F-actin results in loss of Myo5p patches. Moreover, incubation of yeast cells at 37 degrees C results in transient depolarization of both Myo5p patches and the actin cytoskeleton. Mutant Myo5 proteins with deletions in nonmotor domains were expressed in myo3Delta myo5Delta cells and the resulting strains were analyzed for Myo5p function. Deletion of the tail homology 2 (TH2) domain, previously implicated in ATP-insensitive actin binding, has no detectable effect on Myo5p function. In contrast, myo3Delta myo5Delta cells expressing mutant Myo5 proteins with deletions of the src homology domain 3 (SH3) or both TH2 and SH3 domains display defects including Myo5p patch depolarization, actin disorganization, and phenotypes associated with actin dysfunction. These findings support a role for the SH3 domain in Myo5p localization and function in budding yeast. The proline-rich protein verprolin (Vrp1p) binds to the SH3 domain of Myo3p or Myo5p in two-hybrid tests, coimmunoprecipitates with Myo5p, and colocalizes with Myo5p. Immunolocalization of the myc-tagged SH3 domain of Myo5p reveals diffuse cytoplasmic staining. Thus, the SH3 domain of Myo5p contributes to but is not sufficient for localization of Myo5p either to patches or to sites of polarized cell growth. Consistent with this, Myo5p patches assemble but do not localize to sites of polarized cell surface growth in a VRP1 deletion mutant. Our studies support a multistep model for Myo5p targeting in yeast. The first step, assembly of Myo5p patches, is dependent upon F-actin, and the second step, polarization of actin patches, requiresVrp1p and the SH3 domain of Myo5p.
Collapse
|
research-article |
27 |
104 |
12
|
Boone C, Chen TR, Ruddle FH. Assignment of three human genes to chromosomes (LDH-A to 11, TK to 17, and IDH to 20) and evidence for translocation between human and mouse chromosomes in somatic cell hybrids (thymidine kinase-lactate dehydrogenase A-isocitrate dehydrogenase-C-11, E-17, and F-20 chromosomes). Proc Natl Acad Sci U S A 1972; 69:510-4. [PMID: 4110482 PMCID: PMC426491 DOI: 10.1073/pnas.69.2.510] [Citation(s) in RCA: 100] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Independently derived man-mouse somatic cell hybrids and their derivative subclones show a positive correlation between the expression of human lactate dehydrogenase A subunits and the occurrence of the human C-11 chromosome. Data are also presented that confirm the previously reported linkage of the thymidine kinase locus to the E-17 chromosome. A translocation of the E-17 chromosome provides presumptive evidence for the assignment of the thymidine kinase locus to the long arm segment of the E-17 chromosome. This translocation also provides evidence for translocation between man and mouse chromosomes in somatic cell hybrids. A presumptive association between the human phenotype for isocitrate dehydrogenase and the human F group is also described. Identification of specific human chromosomes was achieved by the application of several new cytological techniques: measurement of chromosome arm length, in situ annealing with mouse satellite complementary RNA, constitutive heterochromatin staining with Giemsa, and quinacrine mustard fluorochromatic staining.
Collapse
|
research-article |
53 |
100 |
13
|
Liotta LA, Vembu D, Kleinman HK, Martin GR, Boone C. Collagen required for proliferation of cultured connective tissue cells but not their transformed counterparts. Nature 1978; 272:622-4. [PMID: 565469 DOI: 10.1038/272622a0] [Citation(s) in RCA: 84] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
47 |
84 |
14
|
Hill K, Boone C, Goebl M, Puccia R, Sdicu AM, Bussey H. Yeast KRE2 defines a new gene family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins. Genetics 1992; 130:273-83. [PMID: 1541391 PMCID: PMC1204848 DOI: 10.1093/genetics/130.2.273] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have cloned, sequenced and disrupted the KRE2 gene of Saccharomyces cerevisiae, identified by killer-resistant mutants with a defective cell wall receptor for the toxin. The KRE2 gene is close to PHO8 on chromosome 4, and encodes a predicted 49-kD protein, Kre2p, that probably enters the secretory pathway. Haploid cells carrying a disruption of the KRE2 locus grow more slowly than wild-type cells at 30 degrees, and fail to grow at 37 degrees. At 30 degrees, kre2 mutants showed altered N-linked glycosylation of proteins, as the average size of N-linked outer chains was reduced. We identified two other genes, YUR1 on chromosome 10, and KTR1 on chromosome 15, whose predicted products share 36% identity with Kre2p over more than 300 amino acid residues. Yur1p has an N-terminal signal sequence like Kre2p, while Ktr1p has a predicted topology consistent with a type 2 membrane protein. In all cases the conserved regions of these proteins appear to be on the lumenal side of secretory compartments, suggesting related function. KRE2, KTR1 and YUR1 define a new yeast gene family.
Collapse
|
research-article |
33 |
77 |
15
|
Boone C, Bussey H, Greene D, Thomas DY, Vernet T. Yeast killer toxin: site-directed mutations implicate the precursor protein as the immunity component. Cell 1986; 46:105-13. [PMID: 3521889 DOI: 10.1016/0092-8674(86)90864-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yeast killer toxin and a component giving immunity to it are both encoded by a gene specifying a single 35 kd precursor polypeptide. This precursor is composed of a leader peptide, the alpha and beta subunits of the secreted toxin, and a glycosylated gamma peptide separating the latter. The toxin subunits are proteolytically processed from the precursor during toxin secretion. Using site-directed mutagenesis, we have identified a region of the precursor gene necessary for expression of the immunity phenotype. This immunity-coding region extends through the C-terminal half of the alpha subunit into the N-terminal part of the gamma glycopeptide. Mutations in other parts of the gene allow full immunity but produce precursors that fail to be processed. The precursor can therefore confer immunity, and we propose that it does so in the wild type by competing with mature toxin for binding to a membrane receptor.
Collapse
|
|
39 |
72 |
16
|
Boone C, Blackman K, Brandchaft P. Tumour immunity induced in mice with cell-free homogenates of influenza virus-infected tumour cells. Nature 1971; 231:265-6. [PMID: 4325180 DOI: 10.1038/231265a0] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
54 |
71 |
17
|
Pinard MA, Lotlikar SR, Boone CD, Vullo D, Supuran CT, Patrauchan MA, McKenna R. Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. Bioorg Med Chem 2015; 23:4831-4838. [PMID: 26068018 DOI: 10.1016/j.bmc.2015.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/10/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Carbonic anhydrases (CAs) are metallo-enzymes that catalyze the reversible hydration of carbon dioxide into bicarbonate and a proton. The β-class CAs (β-CAs) are expressed in prokaryotes, fungi, plants, and more recently have been isolated in some animals. The β-CA class is divided into two subclasses, termed type I and II, defined by pH catalytic activity profile and active site structural configuration. Type I β-CAs display catalytic activity over a broad pH range (6.5-9.0) with the active site zinc tetrahedrally coordinated by three amino acids and a hydroxide/water. In contrast, type II β-CAs are catalytically active only at a pH 8 and higher where they adopt a functional active site configuration like that of type I. However, below pH 8 they are conformationally self-inactivated by the addition of a fourth amino acid coordinating the zinc and thereby displacing the zinc bound solvent. We have determined the structure of psCA3, a type II β-CA, isolated from Pseudomonas aeruginosa (P. aeruginosa) PAO1 at pH 8.3, in its open active state to a resolution of 1.9 Å. The active site zinc is coordinated by Cys42, His98, Cys101 and a water/hydroxide molecule. P. aeruginosa is a multi-drug resistant bacterium and displays intrinsic resistance to most of the currently used antibiotics; therefore, there is a need for new antibacterial targets. Kinetic data confirm that psCA3 belongs to the type II subclass and that sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid are micromolar inhibitors. In vivo studies identified that among six tested inhibitors representing sulfonamides, inorganic anions, and small molecules, acetazolamide has the most significant dose-dependent inhibitory effect on P. aeruginosa growth.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
54 |
18
|
Boone C, Mourot J, Grégoire F, Remacle C. The adipose conversion process: regulation by extracellular and intracellular factors. REPRODUCTION, NUTRITION, DEVELOPMENT 2000; 40:325-58. [PMID: 11081662 DOI: 10.1051/rnd:2000103] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
White adipose tissue regulates lipid metabolism and acts as a secretory organ. Because of its importance for human health and animal production, many studies have attempted to better understand its development at the cellular and molecular levels by culturing preadipose cells in vitro. This synthesis article describes our current knowledge, acquired by this approach, concerning the regulation of the different steps of the adipocyte differentiation program by extracellular (hormones, cytokines, growth factors, retinoids and fatty acids) and intracellular agents (second messengers and transcription factors). The discrepant effects that have been observed for some of these factors are also discussed. This information is very important in the perspective of a better control of fat deposits in human and breeding species.
Collapse
|
Review |
25 |
53 |
19
|
Boone C, Davis NG, Sprague GF. Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc Natl Acad Sci U S A 1993; 90:9921-5. [PMID: 8234336 PMCID: PMC47684 DOI: 10.1073/pnas.90.21.9921] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The STE3 gene of Saccharomyces cerevisiae encodes a G protein-coupled receptor that is specific for the mating pheromone a-factor. The ste3L194Q mutation, which leads to the substitution of glutamine for leucine-194 within the third cytoplasmic loop of the receptor, resulted in a 20-fold increase in pheromone sensitivity and also caused partial constitutive activation of the response pathway. Moreover, other amino acid substitutions at the 194 position and several deletion mutations that collectively remove most of the third cytoplasmic loop resulted in hyperactive receptors. Therefore, we suggest that one role of the third cytoplasmic loop is to function as a negative regulatory domain involved in the maintenance of a nonsignaling state of the receptor. The constitutive activity and the pheromone hypersensitivity of ste3L194Q cells were recessive, suggesting that the wild-type receptor can antagonize the signal associated with the activated receptor. The ste3 delta 306 mutation, which results in truncation of most of the C-terminal domain of the receptor, led to a 20-fold increase in pheromone sensitivity, indicating that this domain also mediates negative regulation of the receptor. The ste3L194Q and ste3 delta 306 mutations appear to affect receptor activity independently, because the double mutant was associated with a 400-fold increase in pheromone sensitivity.
Collapse
|
research-article |
32 |
53 |
20
|
Dorer R, Boone C, Kimbrough T, Kim J, Hartwell LH. Genetic analysis of default mating behavior in Saccharomyces cerevisiae. Genetics 1997; 146:39-55. [PMID: 9135999 PMCID: PMC1207953 DOI: 10.1093/genetics/146.1.39] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Haploid Saccharomyces cerevisiae cells find each other during conjugation by orienting their growth toward each other along pheromone gradients (chemotropism). However, when their receptors are saturated for pheromone binding, yeast cells must select a mate by executing a default pathway in which they choose a mating partner at random. We previously demonstrated that this default pathway requires the SPA2 gene. In this report we show that the default mating pathway also requires the AXL1, FUS1, FUS2, FUS3, PEA2, RVS161, and BNI1 genes. These genes, including SPA2, are also important for efficient cell fusion during chemotropic mating. Cells containing null mutations in these genes display defects in cell fusion that subtly affect mating efficiency. In addition, we found that the defect in default mating caused by mutations in SPA2 is partially suppressed by multiple copies of two genes, FUS2 and MFA2. These findings uncover a molecular relationship between default mating and cell fusion. Moreover, because axl1 mutants secrete reduced levels of a-factor and are defective at both cell fusion and default mating, these results reveal an important role for a-factor in cell fusion and default mating. We suggest that default mating places a more stringent requirement on some aspects of cell fusion than does chemotropic mating.
Collapse
|
research-article |
28 |
52 |
21
|
Boone C, Sdicu A, Laroche M, Bussey H. Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall beta-glucan synthesis. J Bacteriol 1991; 173:6859-64. [PMID: 1938890 PMCID: PMC209038 DOI: 10.1128/jb.173.21.6859-6864.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The KRE1 gene of Saccharomyces cerevisiae, sacKRE1, appears to be involved in the synthesis of cell wall beta-glucan. S. cerevisiae strains with mutations in the KRE1 gene produce a structurally altered cell wall (1----6)-beta-glucan, which results in resistance to K1 killer toxin. We isolated the canKRE1 gene from Candida albicans by its ability to complement a kre1 mutation in S. cerevisiae and confer sensitivity to killer toxin. Sequence analysis revealed that the predicted protein encoded by canKRE1 shares an overall structural similarity with that encoded by sacKRE1. The canKRE1 protein is composed of an N-terminal signal sequence, a central domain of 46% identity with the sacKRE1 protein, and a C-terminal hydrophobic tract. These structural and functional similarities imply that the canKRE1 gene carries out a function in C. albicans cell wall assembly similar to that observed for sacKRE1 in S. cerevisiae.
Collapse
|
research-article |
34 |
47 |
22
|
Nair PV, Tong MJ, Stevenson D, Roskamp D, Boone C. A pilot study on the effects of prednisone withdrawal on serum hepatitis B virus DNA and HBeAg in chronic active hepatitis B. Hepatology 1986; 6:1319-24. [PMID: 2431991 DOI: 10.1002/hep.1840060616] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the efficacy of a short course of prednisone therapy in 20 patients with histologic evidence of chronic active hepatitis B. Sixteen of 20 prednisone-treated patients who were initially serum hepatitis B virus DNA-positive had a transient elevation of their serum ALT activity on withdrawal of prednisone. Subsequently, 14 of these 16 patients (87.5%) became persistently negative for serum hepatitis B virus DNA, and 10 also lost their HBeAg. In addition, there was a significant fall in serum ALT levels and HBsAg titers up to 12 months of follow-up in the prednisone-treated group. Five of 20 (25%) prednisone-treated patients experienced a transient episode of hepatic decompensation coinciding with the peak of enzyme elevation. To contrast, only 3 of 15 (20%) initially hepatitis B virus DNA-positive matched untreated patients followed during the same time period became negative for serum hepatitis B virus DNA, and no significant changes in serum ALT values or HBsAg titers were noted over the 12-month study period. Thus, patients with chronic active hepatitis B appear to be responsive to immunologic manipulation with prednisone as indicated by a pronounced rebound immune response and clearance of hepatitis B virus DNA with improvement in liver disease activity.
Collapse
|
|
39 |
46 |
23
|
Boone CD, Pinard M, McKenna R, Silverman D. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. Subcell Biochem 2014; 75:31-52. [PMID: 24146373 DOI: 10.1007/978-94-007-7359-2_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The carbonic anhydrases (CAs; EC 4.2.1.1) are a family of metalloenzymes that catalyze the reversible hydration of carbon dioxide (CO2) and dehydration of bicarbonate (HCO3 (-)) in a two-step ping-pong mechanism: [Formula: see text] CAs are ubiquitous enzymes and are categorized into five distinct classes (α, β, γ, δ and ζ). The α-class is found primarily in vertebrates (and the only class of CA in mammals), β is observed in higher plants and some prokaryotes, γ is present only in archaebacteria whereas the δ and ζ classes have only been observed in diatoms.The focus of this chapter is on α-CAs as the structure-function relationship is best understood for this class, in particular for humans. The reader is referred to other reviews for an overview of the structure and catalytic mechanism of the other CA classes. The overall catalytic site structure and geometry of α-CAs are described in the first section of this chapter followed by the kinetic studies, binding of CO2, and the proton shuttle network.
Collapse
|
Review |
11 |
42 |
24
|
Green JE, Greenberg NM, Ashendel CL, Barrett JC, Boone C, Getzenberg RH, Henkin J, Matusik R, Janus TJ, Scher HI. Workgroup 3: transgenic and reconstitution models of prostate cancer. Prostate 1998; 36:59-63. [PMID: 9650918 DOI: 10.1002/(sici)1097-0045(19980615)36:1<59::aid-pros11>3.0.co;2-h] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
Congress |
27 |
41 |
25
|
Tao L, Peng L, Berntsson RPA, Liu SM, Park S, Yu F, Boone C, Palan S, Beard M, Chabrier PE, Stenmark P, Krupp J, Dong M. Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun 2017; 8:53. [PMID: 28674381 PMCID: PMC5495808 DOI: 10.1038/s41467-017-00064-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 11/25/2022] Open
Abstract
Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B’s therapeutic efficacy and reduce adverse effects. Here we utilized the bacterial adenylate cyclase two-hybrid method and carried out a saturation mutagenesis screen in the Syt II-binding pocket of botulinum neurotoxin B. The screen identifies E1191 as a key residue: replacing it with M/C/V/Q enhances botulinum neurotoxin B binding to human synaptotagmin II. Adding S1199Y/W or W1178Q as a secondary mutation further increases binding affinity. Mutant botulinum neurotoxin B containing E1191M/S1199Y exhibits ~11-fold higher efficacy in blocking neurotransmission than wild-type botulinum neurotoxin B in neurons expressing human synaptotagmin II, demonstrating that enhancing receptor binding increases the overall efficacy at functional levels. The engineered botulinum neurotoxin B provides a platform to develop therapeutic toxins with improved efficacy. Humans are less sensitive to the therapeutic effects of botulinum neurotoxin B (BoNT/B) than the animal models it is tested on due to differences between the human and the mouse receptors. Here, the authors engineer BoNT/B to improve its affinity to human receptors and enhance its therapeutic efficacy.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
40 |