1
|
Abstract
We have induced the stable expression of muscle-specific genes in human nonmuscle cells. Normal diploid human amniocytes were fused with differentiated mouse muscle cells by using polyethylene glycol. The fusion product, a stable heterocaryon in which the parental cell nuclei remained distinct, did not undergo division and retained a full complement of chromosomes. This is in contrast with typical interspecific hybrids (syncaryons), in which the parental nuclei are combined and chromosomes are progressively lost during cell division. The human muscle proteins, myosin light chains 1 and 2, MB and MM creatine kinase and a functional mouse-human hybrid MM enzyme molecule were detected in the heterocaryons. Synthesis of these proteins was evident 24 hr after fusion and increased in a time-dependent manner thereafter. Our results indicate that differentiated mouse muscle nuclei can activate human muscle genes in the nuclei of a cell type in which they are not normally expressed, and that this activation occurs via the cytoplasm. The activators are still present in cells which have already initiated differentiation, are recognized by nuclei of another species, and do not diffuse between unfused cells. The reprogrammed amniocyte nuclei of stable heterocaryons provide a unique system in which to study the mechanisms regulating gene expression during cell specialization.
Collapse
|
|
42 |
684 |
2
|
Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C. Plasticity of the differentiated state. Science 1985; 230:758-66. [PMID: 2414846 DOI: 10.1126/science.2414846] [Citation(s) in RCA: 677] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heterokaryons provide a model system in which to examine how tissue-specific phenotypes arise and are maintained. When muscle cells are fused with nonmuscle cells, muscle gene expression is activated in the nonmuscle cell type. Gene expression was studied either at a single cell level with monoclonal antibodies or in mass cultures at a biochemical and molecular level. In all of the nonmuscle cell types tested, including representatives of different embryonic lineages, phenotypes, and developmental stages, muscle gene expression was induced. Differences among cell types in the kinetics, frequency, and gene dosage requirements for gene expression provide clues to the underlying regulatory mechanisms. These results show that the expression of genes in the nuclei of differentiated cells is remarkably plastic and susceptible to modulation by the cytoplasm. The isolation of the genes encoding the tissue-specific trans-acting regulators responsible for muscle gene activation should now be possible.
Collapse
|
|
40 |
677 |
3
|
Webster C, Silberstein L, Hays AP, Blau HM. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 1988; 52:503-13. [PMID: 3342447 DOI: 10.1016/0092-8674(88)90463-1] [Citation(s) in RCA: 469] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We show that Duchenne muscular dystrophy (DMD) selectively affects a subset of skeletal muscle fibers specialized for fast contraction. Muscle fiber types were characterized immunohistochemically with monoclonal antibodies that distinguish isoforms of fetal and adult-fast or adult-slow myosin heavy chain present in the same fiber. Fetal myosin expression increased with patient age and was not due to arrested development but rather to de novo synthesis, which served as a sensitive indicator of muscle regeneration. A subset of fast fibers were the first to degenerate (type IIb). Extensive fast fiber regeneration occurred before slow fibers were affected. These results suggest that the DMD gene product has a specific function in a subpopulation of muscle fibers specialized to respond to the highest frequency of neuronal stimulation with maximal rates of contraction.
Collapse
|
|
37 |
469 |
4
|
Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, Myszczynska MA, Higginbottom A, Walsh MJ, Whitworth AJ, Kaspar BK, Meyer K, Shaw PJ, Grierson AJ, De Vos KJ. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 2016; 35:1656-76. [PMID: 27334615 PMCID: PMC4969571 DOI: 10.15252/embj.201694401] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc‐51‐like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a‐dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62‐positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient‐derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD‐associated p62 pathology.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
307 |
5
|
Abstract
We have developed an in vitro system for the study of postnatal human muscle under standardized conditions. The technique utilizes cloning to isolate pure populations of muscle cells. By manipulating culture conditions we can maximize either proliferation or differentiation of individual clones or of clones pooled to yield mass cultures of muscle cells. The muscle phenotype is stable; cells can be stored in liquid nitrogen for long-term use without loss of proliferative or differentiative potential. We have determined proliferative capacity of muscle cells from an analysis of clonal growth kinetics; we determined differentiative capacity from morphological evidence (cell fusion, striations, contractions, and the appearance of acetylcholine receptors) and biochemical analysis of muscle protein synthesis (creatine kinase, alpha-actin, tropomyosin, and myosin light chains). Our approach eliminates the variability in cellular composition that has complicated studies of primary muscle to date. We can now study in a controlled fashion the interactions and contributions of different cell types to the development of normal and genetically dystrophic human muscle.
Collapse
|
research-article |
44 |
277 |
6
|
Parker PJ, Kour G, Marais RM, Mitchell F, Pears C, Schaap D, Stabel S, Webster C. Protein kinase C--a family affair. Mol Cell Endocrinol 1989; 65:1-11. [PMID: 2673888 DOI: 10.1016/0303-7207(89)90159-7] [Citation(s) in RCA: 252] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural analysis of protein kinase C has led to the identification of a family of related gene products. This family of kinases consists of six unique genes that give rise to at least seven polypeptides. The high degree of conservation and the differential distribution of these mRNAs/proteins suggest that they perform distinct functions in vivo. Characterization of the activities of some of these proteins in vitro shows that there are functional differences with respect to both their regulation and substrate specificity. This indicates that each member of this family may play a unique role in signal transduction.
Collapse
|
Review |
36 |
252 |
7
|
Blau HM, Webster C, Pavlath GK. Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 1983; 80:4856-60. [PMID: 6576361 PMCID: PMC384144 DOI: 10.1073/pnas.80.15.4856] [Citation(s) in RCA: 237] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A defect in the proliferative capacity of satellite cells, mononucleated precursors of mature muscle fibers, was found in clonal analyses of cells cultured from Duchenne muscular dystrophy (DMD) patients. The total yield of myoblasts per gram of muscle biopsy was decreased to 5% of normal. Of the DMD myoblast clones obtained, a large proportion contained a morphological class of flat distended cells that had an increased generation time and ceased to proliferate beyond 100-1,000 cells but could be induced to fuse and form myotubes. The altered muscle phenotype was detected in all cultures from DMD patients but was rarely found among myoblasts of controls. By age 14 yr, it comprised as man as 90% of DMD myoblasts. The remaining DMD myoblast clones, which initially grew well, had severely impaired proliferative capacity upon passage and further cultivation. Eventually all myoblasts from DMD muscle tissue exhibited defective growth potential. In contrast, the fibroblast yield and proliferative capacity from DMD samples did not differ from normal. Based on these findings, we propose a hypothesis for the etiology of DMD: Dividing myoblasts are required for muscle growth and maintenance, and the limited capacity of DMD myoblasts to grow is directly related to the progressive muscle degeneration characteristic of the disease.
Collapse
|
research-article |
42 |
237 |
8
|
Webster C, Blau HM. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. SOMATIC CELL AND MOLECULAR GENETICS 1990; 16:557-65. [PMID: 2267630 DOI: 10.1007/bf01233096] [Citation(s) in RCA: 214] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An assessment of the replicative life-span of myoblasts is of fundamental importance in designing treatment strategies for Duchenne muscular dystrophy (DMD) based on cell or gene therapy. To ascertain myoblast life-span, or the total number of cell divisions of which a myoblast was capable, we serially passaged and counted the progeny of individual myoblasts until they senesced. We compared the life-span of myoblasts from eight DMD patients with controls: three individuals with no known neuromuscular disease, three DMD carriers, and three patients with other muscle degenerative diseases. A decline in replicative capacity was observed with increasing donor age, which was markedly accelerated for DMD relative to control myoblasts. The average myoblast from a 5-year-old control was capable of 56 doublings, or a potential yield of approximately 10(17) cells per cell. By contrast, at 2 years of age, the typical age at clinical onset, only 6% of DMD myoblasts had a life-span of 50 doublings in tissue culture, and by age 7 DMD myoblasts capable of 10 doublings were rare. Our results suggest that the myoblasts (satellite cells) of even the youngest DMD patients have undergone extensive division in an attempt to regenerate degenerating myofibers. These findings have implications for therapeutic intervention in DMD involving genetic engineering and myoblast implantation.
Collapse
|
|
35 |
214 |
9
|
|
|
33 |
202 |
10
|
Chang WW, Huang L, Shen M, Webster C, Burlingame AL, Roberts JK. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. PLANT PHYSIOLOGY 2000; 122:295-318. [PMID: 10677424 PMCID: PMC58868 DOI: 10.1104/pp.122.2.295] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/1999] [Accepted: 10/25/1999] [Indexed: 04/14/2023]
Abstract
Tolerance of anoxia in maize root tips is greatly improved when seedlings are pretreated with 2 to 4 h of hypoxia. We describe the patterns of protein synthesis during hypoxic acclimation and anoxia. We quantified the incorporation of [(35)S]methionine into total protein and 262 individual proteins under different oxygen tensions. Proteins synthesized most rapidly under normoxic conditions continued to account for most of the proteins synthesized during hypoxic acclimation, while the production of a very few proteins was selectively enhanced. When acclimated root tips were placed under anoxia, protein synthesis was depressed and no "new" proteins were detected. We present evidence that protein synthesis during acclimation, but not during subsequent anoxia, is crucial for acclimation. The complex and quantitative changes in protein synthesis during acclimation necessitate identification of large numbers of individual proteins. We show that mass spectrometry can be effectively used to identify plant proteins arrayed by two-dimensional gel electrophoresis. Of the 48 protein spots analyzed, 46 were identified by matching to the protein database. We describe the expression of proteins involved in a wide range of cellular functions, including previously reported anaerobic proteins, and discuss their possible roles in adaptation of plants to low-oxygen stress.
Collapse
|
research-article |
25 |
153 |
11
|
Burnie JP, Odds FC, Lee W, Webster C, Williams JD. Outbreak of systemic Candida albicans in intensive care unit caused by cross infection. BMJ : BRITISH MEDICAL JOURNAL 1985; 290:746-8. [PMID: 3918738 PMCID: PMC1418520 DOI: 10.1136/bmj.290.6470.746] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first documented outbreak of systemic candidosis shown to be due to cross infection with a particular strain of Candida albicans is reported. Over nine months in an intensive care unit 13 patients developed definite and one probable systemic candidosis. Twenty five further patients had superficial candidal infections. The strain that caused the outbreak (serotype A, morphotype A1, biotype 0/(1)5 5/7) was responsible for all the cases of systemic candidosis acquired in the intensive care unit, 11 (44%) of the superficial candidal infections in the unit, and 17% of candidal infections outside the unit but in the same hospital. The strain was also isolated from oral swabs taken from four nurses working in the unit and the hands of one of these nurses. Two out of 17 nurses were shown to have acquired the strain on their hands when examined immediately after nursing systemically infected patients. No environmental source could be identified. The strain also showed enhanced survival in handwashing experiments and was relatively resistant to Hibiscrub. Management of patients with systemic candidosis might include measures to prevent cross infection and handwashing with disinfectants that are active against candida.
Collapse
|
research-article |
40 |
144 |
12
|
Zarghami MH, Liu Y, Gibbs M, Gebremichael E, Webster C, Law M. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids. ACS NANO 2010; 4:2475-85. [PMID: 20359235 DOI: 10.1021/nn100339b] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We show that ligand exchange with short-chain carboxylic acids (formic, acetic, and oxalic acid) can quantitatively remove oleic acid from the surface of PbSe and PbS quantum dot (QD) films to yield p-type, carboxylate-capped QD solids with field-effect hole mobilities in the range of 10(-4)-10(-1) cm(2) V(-1) s(-1). For a given chemical treatment, PbSe devices have 10-fold higher mobilities than PbS devices because of stronger electronic coupling among the PbSe QDs and possibly a lower density of surface traps. Long-term optical and electrical measurements (i) show that carboxylate-capped PbSe QD films oxidize much more gradually in air than do thiol-capped PbSe films and (ii) quantify the slower and less extensive oxidation of PbS relative to PbSe QDs. We find that whereas the hole mobility of thiol-capped samples decreases continuously with time in air, the mobility of carboxylate-capped films first increases by an order of magnitude over several days before slowly decreasing over weeks. This behavior is a consequence of the more robust binding of carboxylate ligands to the QD surface, such that adsorbed oxygen and water initially boost the hole mobility by passivating surface states and only slowly degrade the ligand passivation to establish an oxide shell around each QD in the film. The superior hole mobilities and oxidation resistance of formic- and acetic-treated QD solids may prove useful in constructing efficient, stable QD photovoltaic devices.
Collapse
|
|
15 |
131 |
13
|
Webster C, Pavlath GK, Parks DR, Walsh FS, Blau HM. Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp Cell Res 1988; 174:252-65. [PMID: 3335226 DOI: 10.1016/0014-4827(88)90159-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have established procedures for the rapid and efficient purification of human myoblasts using the fluorescence-activated cell sorter. Our approach capitalizes on the specific reaction of monoclonal antibody 5.1H11 with a human muscle cell surface antigen. For each of the five samples analyzed, an enrichment of myoblasts to greater than 99% of the cell population was immediately achieved. Following 3 to 4 weeks of additional growth in vitro, sorted myoblast cultures remained 97% pure. Differentiation of the sorted myoblast cultures, assessed by creatine kinase activity and isozyme content, was comparable to that of pure myoblast cultures obtained by cloning, and was significantly greater than that of mixed fibroblast and myoblast cultures. An average of 10(4) viable myoblasts can be obtained per 0.1 g tissue, each with the potential to undergo approximately 40 cell divisions. Accordingly, if only two-thirds of this proliferative capacity is utilized, the potential yield approximates 10(12) myoblasts, equivalent to 1 kg of cells. Human myogenesis in vitro is no longer limited by cell number and is now amenable to molecular and biochemical analysis on a large scale.+
Collapse
|
|
37 |
111 |
14
|
Moller A, Bauer CS, Cohen RN, Webster CP, De Vos KJ. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum Mol Genet 2017; 26:4668-4679. [PMID: 28973175 PMCID: PMC5886184 DOI: 10.1093/hmg/ddx348] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022] Open
Abstract
Defective axonal transport is an early neuropathological feature of amyotrophic lateral sclerosis (ALS). We have previously shown that ALS-associated mutations in Cu/Zn superoxide dismutase 1 (SOD1) impair axonal transport of mitochondria in motor neurons isolated from SOD1 G93A transgenic mice and in ALS mutant SOD1 transfected cortical neurons, but the underlying mechanisms remained unresolved. The outer mitochondrial membrane protein mitochondrial Rho GTPase 1 (Miro1) is a master regulator of mitochondrial axonal transport in response to cytosolic calcium (Ca2+) levels ([Ca2+]c) and mitochondrial damage. Ca2+ binding to Miro1 halts mitochondrial transport by modifying its interaction with kinesin-1 whereas mitochondrial damage induces Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1) and Parkin-dependent degradation of Miro1 and consequently stops transport. To identify the mechanism underlying impaired axonal transport of mitochondria in mutant SOD1-related ALS we investigated [Ca2+]c and Miro1 levels in ALS mutant SOD1 expressing neurons. We found that expression of ALS mutant SOD1 reduced the level of endogenous Miro1 but did not affect [Ca2+]c. ALS mutant SOD1 induced reductions in Miro1 levels were Parkin dependent. Moreover, both overexpression of Miro1 and ablation of PINK1 rescued the mitochondrial axonal transport deficit in ALS mutant SOD1-expressing cortical and motor neurons. Together these results provide evidence that ALS mutant SOD1 inhibits axonal transport of mitochondria by inducing PINK1/Parkin-dependent Miro1 degradation.
Collapse
|
research-article |
8 |
83 |
15
|
Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA. Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. JOURNAL OF ETHNOPHARMACOLOGY 2008; 118:159-65. [PMID: 18495396 DOI: 10.1016/j.jep.2008.04.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 03/21/2008] [Accepted: 04/04/2008] [Indexed: 05/03/2023]
Abstract
In the mountains of Peru, globular colonies of Nostoc commune (Nostocales) are collected in the highland lakes by the indigenous people, who call them llullucha. They are consumed locally, traded for maize, or sold, eventually entering the folk markets of Cusco and other neighboring cities. Throughout highland Peru, Nostoc commune is highly salient as a seasonal dietary item, being eaten alone, or in picante -- a local stew -- and is said to be highly nutritious. Nostoc commune has been known to produce unusual amino acids, including those of the mycosporine group, which possibly function to prevent UV damage. We analyzed 21 different Nostoc commune spherical colonies from 7 different market collections in the Cusco area for the presence of beta-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid produced by diverse taxa of cyanobacteria, using four different analytical techniques (HPLC-FD, UPLC-UV, UPLC/MS, LC/MS/MS). We found using all four techniques that BMAA was present in the samples purchased in the Peruvian markets. Since BMAA has been putatively linked to neurodegenerative illness, it would be of interest to know if the occurrence of ALS, Alzheimer's, or Parkinson's Disease is greater among individuals who consume llullucha in Peru.
Collapse
|
|
17 |
81 |
16
|
Allen SP, Hall B, Castelli LM, Francis L, Woof R, Siskos AP, Kouloura E, Gray E, Thompson AG, Talbot K, Higginbottom A, Myszczynska M, Allen CF, Stopford MJ, Hemingway J, Bauer CS, Webster CP, De Vos KJ, Turner MR, Keun HC, Hautbergue GM, Ferraiuolo L, Shaw PJ. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain 2020; 142:586-605. [PMID: 30698736 PMCID: PMC6391613 DOI: 10.1093/brain/awy353] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or rerouting catabolism of alternative fuel sources to supplement the glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic defect in amyotrophic lateral sclerosis we used a novel phenotypic metabolic array. We profiled fibroblasts and induced neuronal progenitor-derived human induced astrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls, measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This approach shows for the first time that C9orf72 human induced astrocytes and fibroblasts have an adenosine to inosine deamination defect caused by reduction of adenosine deaminase, which is also observed in induced astrocytes from sporadic patients. Patient-derived induced astrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control induced astrocytes led to increased motor neuron toxicity in co-cultures, similar to the levels observed with patient derived induced astrocytes. Bypassing metabolically the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy output and leading to an increase in motor neuron survival in co-cultures with induced astrocytes. Inosine supplementation, in combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in patients with amyotrophic lateral sclerosis.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
79 |
17
|
Klassen A, Elkind A, Asgharnejad M, Webster C, Laurenza A. Naratriptan is effective and well tolerated in the acute treatment of migraine. Results of a double-blind, placebo-controlled, parallel-group study. Naratriptan S2WA3001 Study Group. Headache 1997; 37:640-5. [PMID: 9439085 DOI: 10.1046/j.1526-4610.1997.3710640.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the efficacy and tolerability of naratriptan, a novel 5-HT1 agonist, in the acute treatment of migraine. DESIGN/METHODS Six hundred thirteen migraineurs, diagnosed according to International Headache Society criteria, treated a single migraine attack with naratriptan tablets (2.5 mg, 1 mg, 0.25 mg, or 0.1 mg) or placebo in a randomized, double-blind, placebo-controlled, parallel-group study conducted at 54 United States centers. At dosing and at predetermined intervals beginning 30 minutes postdose, patients recorded migraine pain severity, clinical disability, and presence of associated migraine symptoms. Safety measures included adverse events, physical examinations, vital signs, ECGs, and clinical laboratory tests. RESULTS Headache relief (moderate or severe pain at dosing reduced to mild or no pain) 4 hours postdose was reported in 60% of patients receiving naratriptan 2.5 mg compared with 50%, 35%, 32%, and 34% of patients receiving naratriptan 1 mg, 0.25 mg, 0.1 mg, and placebo, respectively (P < 0.05 naratriptan 2.5 mg and 1 mg versus placebo, 1 mg versus 0.1 mg, and 2.5 mg versus 0.1 mg and 0.25 mg). Clinical disability 4 hours postdose was reported as mild or none for 70% of patients receiving naratriptan 2.5 mg compared with 63%, 47%, 48%, and 48% of patients receiving naratriptan 1 mg, 0.25 mg, 0.1 mg, or placebo, respectively (P < 0.05 naratriptan 2.5 mg and 1 mg versus placebo, 1 mg versus 0.1 mg, and 2.5 mg versus 0.1 mg and 0.25 mg). Four-hour efficacy for absence of nausea, photophobia, and phonophobia was similar to efficacy for headache relief at each dose. The adverse event profile of each dose of naratriptan was similar to that of placebo. No clinically relevant change in any safety measure was reported. CONCLUSIONS Naratriptan is effective and well tolerated for the acute treatment of migraine. The 2.5-mg dose appears to offer the optimum ratio of efficacy to tolerability.
Collapse
|
Clinical Trial |
28 |
79 |
18
|
|
Historical Article |
24 |
77 |
19
|
Browning K, Webster C, Roberts J, Ravel J. Identification of an isozyme form of protein synthesis initiation factor 4F in plants. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50204-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
|
33 |
77 |
20
|
Ham RG, St Clair JA, Webster C, Blau HM. Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:833-44. [PMID: 3045074 DOI: 10.1007/bf02623656] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have developed a serum-free medium for clonal growth of normal human muscle satellite cells (HMSC). It consists of an optimized nutrient medium, MCDB 120, plus a serum-free supplement, designated SF, that contains epidermal growth factor (EGF), insulin, dexamethasone, bovine serum albumin, and fetuin. Fibroblast growth factor was needed with dialyzed fetal bovine serum (dFBS) as the only other supplement, but in media containing SF, it was only slightly beneficial, and was omitted from the final medium without significant loss. Clonal growth of HMSC in MCDB 120 plus SF is as good as with 15% serum and 0.5% chicken embryo or bovine pituitary extract. However, growth is further improved by use of a doubly-supplemented (DS) medium containing both SF and 5% dFBS. Clonal growth of HMSC in the DS medium far exceeds that in previous media with any amount of serum, and monolayer growth is at least equal to that in conventional media with higher levels of serum. Cells grown in these media exhibit little differentiation, even when grown to high densities. However, they retain the capacity for extensive fusion and synthesis of increased creatine kinase when transferred to a serum-free differentiation-promoting medium, such as Dulbecco's modified Eagle's medium plus insulin. All experiments were done with clonal cultures of HMSC to insure that observed growth responses were always those of muscle cells.
Collapse
|
|
37 |
76 |
21
|
Roberts JK, Hooks MA, Miaullis AP, Edwards S, Webster C. Contribution of Malate and Amino Acid Metabolism to Cytoplasmic pH Regulation in Hypoxic Maize Root Tips Studied Using Nuclear Magnetic Resonance Spectroscopy. PLANT PHYSIOLOGY 1992; 98:480-7. [PMID: 16668665 PMCID: PMC1080214 DOI: 10.1104/pp.98.2.480] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
(31)P-, (13)C-, and (15)N-nuclear magnetic resonance spectroscopy were used to determine the roles of malate, succinate, Ala, Asp, Glu, Gln, and gamma-aminobutyrate (GABA) in the energy metabolism and regulation of cytoplasmic pH in hypoxic maize (Zea mays L.) root tips. Nitrogen status was manipulated by perfusing root tips with ammonium sulfate prior to hypoxia; this pretreatment led to enhanced synthesis of Ala early in hypoxia, and of GABA at later times. We show that: (a) the ability to regulate cytoplasmic pH during hypoxia is not significantly affected by enhanced Ala synthesis. (b) Independent of nitrogen status, decarboxylation of Glu to GABA is greatest after several hours of hypoxia, as metabolism collapses. (c) Early in hypoxia, cytoplasmic malate is in part decarboxylated to pyruvate (leading to Ala, lactate, and ethanol), and in part converted to succinate. It appears that activation of malic enzyme serves to limit cytoplasmic acidosis early in hypoxia. (d) Ala synthesis in hypoxic root tips under these conditions is due to transfer of nitrogen ultimately derived from Asp and Gln, present in oxygenated tissue. We describe the relative contributions of glycolysis and malate decarboxylation in providing Ala carbons. (e) Succinate accumulation during hypoxia can be attributed to metabolism of Asp and malate; this flux to succinate is energetically negligible. There is no detectable net flux from Glc to succinate during hypoxia. The significance of the above metabolic reactions relative to ethanol and lactate production, and to flooding tolerance, is discussed. The regulation of the patterns of metabolism during hypoxia is considered with respect to cytoplasmic pH and redox state.
Collapse
|
research-article |
33 |
63 |
22
|
Webster CP, Smith EF, Shaw PJ, De Vos KJ. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities? Front Mol Neurosci 2017; 10:123. [PMID: 28512398 PMCID: PMC5411428 DOI: 10.3389/fnmol.2017.00123] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis), the correct balance between production and degradation of proteins, is essential for the health and survival of cells. Proteostasis requires an intricate network of protein quality control pathways (the proteostasis network) that work to prevent protein aggregation and maintain proteome health throughout the lifespan of the cell. Collapse of proteostasis has been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disorder. Here, we review the evidence linking dysfunctional proteostasis to the etiology of ALS and discuss how ALS-associated insults affect the proteostasis network. Finally, we discuss the potential therapeutic benefit of proteostasis network modulation in ALS.
Collapse
|
Review |
8 |
62 |
23
|
Busby S, West D, Lawes M, Webster C, Ishihama A, Kolb A. Transcription activation by the Escherichia coli cyclic AMP receptor protein. Receptors bound in tandem at promoters can interact synergistically. J Mol Biol 1994; 241:341-52. [PMID: 7520503 DOI: 10.1006/jmbi.1994.1511] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Starting with a semi-synthetic Escherichia coli promoter with a binding site for the cyclic AMP receptor protein (CRP) centred between base-pairs 41 and 42 upstream from the transcription start site, a second upstream CRP-binding site, centred between base-pairs 90 and 91, was introduced. CRP binding to this second upstream site results in a several-fold greater stimulation of CRP-dependent transcription initiation, compared to activation at the starting promoter with just one CRP-binding site. Activation of transcription by the upstream CRP molecule is blocked by the HL159 substitution, suggesting that the upstream-bound CRP makes a direct contact with RNA polymerase. Footprinting experiments suggest that RNA polymerase contacts the promoter DNA between the two CRP-binding sites, most likely due to interactions involving the C-terminal part of the alpha subunit. Synergy between tandem bound CRP molecules in transcription activation requires that the two CRP-binding sites be separated by around 40 or 50 base-pairs, but is not found at intermediate spacings. An experiment in which the upstream CRP-binding site is replaced by a site for the related transcription factor, FNR, shows that heterologous synergistic interactions between FNR and CRP are possible.
Collapse
|
|
31 |
53 |
24
|
Webster C, Bukkapatnam R, Seigne JD, Pow-Sang J, Hoffman M, Helal M, Ordorica R, Lockhart JL. Continent colonic urinary reservoir (Florida pouch): long-term surgical complications (greater than 11 years). J Urol 2003; 169:174-6. [PMID: 12478129 DOI: 10.1016/s0022-5347(05)64061-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE We analyzed the long-term results (greater than 10 years) of a continent cutaneous colonic urinary reservoir (Florida pouch), focusing primarily on the incidence of significant complications. MATERIALS AND METHODS Between January 1986 and October 1991, 179 patients underwent continent cutaneous colonic urinary reservoir construction. Of these patients 105 died of primary disease or were lost to followup, leaving 38 males and 36 females with a mean followup of 133 months with adequate data for analysis who are the subject of this report. The surgical technique has been previously reported. Briefly, a detubularized right colonic segment forms the reservoir, a tapered external limb reinforced at the ileocecal valve level allows continent catheterization and the ureters are directly anastomosed to the pouch. The diseases that prompted urinary diversion included bladder cancer in 28 cases, conversion from another diversion in 12, neurogenic bladder in 11, interstitial cystitis in 10, crippling incontinence in 4, radiation cystitis in 6, hemorrhagic cystitis in 1, exstrophy in 1 and colon cancer in 1. A total of 146 direct ureterocolonic reimplantations were performed. RESULTS Complications were grouped by etiology and the number of patients, including abdominal wall (peristomal hernia in 3 patients or 4%), external limb (incontinence in 5 or 6.7%, stomal stenosis in 3 or 4% and difficult catheterization in 1 or 1.4%), reservoir stones (4 or 5.4%), ureteral obstruction (primary reimplantation in 7 of 108 or 6.3%, repeat reimplantation in 4 of 24 or 16.4% and radiated ureters in 4 of 14 or 28.4%) and metabolic (persistent diarrhea in 2 or 2.7%, renal failure in 2 or 2.7% and low vitamin B12 in 3 or 4%). Severe acidosis developed in 4 individuals (5.5%). Of the 12 patients who underwent conversion from another type of diversion 7 (58%) experienced metabolic alterations. CONCLUSIONS In the long term continent colonic reservoirs have an acceptable complication rate. The most common problem is ureteral obstruction, especially in patients who have previously undergone irradiation (28.4% versus 6.3%, Fisher's test p = 0.02). Patients in whom longer bowel segments were resected, such as those with conversion from another type of diversions, experienced a greater number of complications, especially ureteral obstruction associated with repeat reimplantation (16.4% versus 6.3%, Fisher's test p = 0.23) and metabolic derangements (58% versus 6.4%, Fisher's test p = 0.0001).
Collapse
|
|
22 |
53 |
25
|
Blau HM, Webster C, Chiu CP, Guttman S, Chandler F. Differentiation properties of pure populations of human dystrophic muscle cells. Exp Cell Res 1983; 144:495-503. [PMID: 6840225 DOI: 10.1016/0014-4827(83)90431-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The interpretation of the majority of studies of Duchenne muscular dystrophy (DMD) has been complicated by the heterogeneous composition of the cultures used. In addition to muscle cells, muscle tissue contains adipocytes and fibroblasts and the proportion of these cell types varies, especially in disease states. To overcome this problem we developed culture conditions which permitted isolation and characterization of pure populations of clonally derived human muscle cells [1, 2]. Here we report the successful application of these methods to muscle cells from biopsies of individuals with diagnosed DMD. The normal and mutant human muscle cells were used in experiments of muscle differentiation in the same manner as cell lines. Frozen-stored cells were thawed, plated in a series of replicate plates, and allowed to differentiate under similar culture conditions. Yet, in contrast with cell lines, the cells were karyotypically normal, not altered by adaptation to long-term culture, and had a finite lifespan. We have systematically analysed specific properties of the normal and DMD muscle cells which differentiated in culture. The kinetics and extent of myoblast fusion, myotube morphology, and the accumulation and distribution of membrane acetylcholine receptors were monitored. In addition, the isozyme composition of creatine kinase and its intracellular and extracellular distribution were determined. Our results indicate that DMD muscle cells are fully capable of initiating myogenesis in culture and do not differ from normal muscle in several important parameters of differentiation.
Collapse
|
|
42 |
52 |