1
|
Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E, Buzadzija K, Cavero R, D'Abreo C, Donaldson I, Dorairajoo D, Dumontier MJ, Dumontier MR, Earles V, Farrall R, Feldman H, Garderman E, Gong Y, Gonzaga R, Grytsan V, Gryz E, Gu V, Haldorsen E, Halupa A, Haw R, Hrvojic A, Hurrell L, Isserlin R, Jack F, Juma F, Khan A, Kon T, Konopinsky S, Le V, Lee E, Ling S, Magidin M, Moniakis J, Montojo J, Moore S, Muskat B, Ng I, Paraiso JP, Parker B, Pintilie G, Pirone R, Salama JJ, Sgro S, Shan T, Shu Y, Siew J, Skinner D, Snyder K, Stasiuk R, Strumpf D, Tuekam B, Tao S, Wang Z, White M, Willis R, Wolting C, Wong S, Wrong A, Xin C, Yao R, Yates B, Zhang S, Zheng K, Pawson T, Ouellette BFF, Hogue CWV. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res 2005; 33:D418-24. [PMID: 15608229 PMCID: PMC540005 DOI: 10.1093/nar/gki051] [Citation(s) in RCA: 447] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
447 |
2
|
Sun J, Xin C, Eu JP, Stamler JS, Meissner G. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 2001; 98:11158-62. [PMID: 11562475 PMCID: PMC58700 DOI: 10.1073/pnas.201289098] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown previously that at physiologically relevant oxygen tension (pO(2) approximately 10 mmHg), NO S-nitrosylates 1 of approximately 50 free cysteines per ryanodine receptor 1 (RyR1) subunit and transduces a calcium-sensitizing effect on the channel by means of calmodulin (CaM). It has been suggested that cysteine-3635 is part of a CaM-binding domain, and its reactivity is attenuated by CaM [Porter Moore, C., Zhang, J. Z., Hamilton, S. L. (1999) J. Biol. Chem. 274, 36831-36834]. Therefore, we tested the hypothesis that the effect of NO was mediated by C3635. The full-length RyR1 single-site C3635A mutant was generated and expressed in HEK293 cells. The mutation resulted in the loss of CaM-dependent NO modulation of channel activity and reduced S-nitrosylation by NO to background levels but did not affect NO-independent channel modulation by CaM or the redox sensitivity of the channel to O(2) and glutathione. Our results reveal that different cysteines within the channel have been adapted to serve in nitrosative and oxidative responses, and that S-nitrosylation of the cysteine-containing CaM-binding domain underlies the mechanism of CaM-dependent regulation of RyR1 by NO.
Collapse
|
research-article |
24 |
225 |
3
|
Gao L, Balshaw D, Xu L, Tripathy A, Xin C, Meissner G. Evidence for a role of the lumenal M3-M4 loop in skeletal muscle Ca(2+) release channel (ryanodine receptor) activity and conductance. Biophys J 2000; 79:828-40. [PMID: 10920015 PMCID: PMC1300981 DOI: 10.1016/s0006-3495(00)76339-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.
Collapse
|
research-article |
25 |
118 |
4
|
Zheng S, Wu X, Zhang L, Xin C, Liu Y, Shi J, Peng Z, Xu S, Fu F, Yu J, Sun W, Xu S, Li J, Wang J. The occurrence of porcine circovirus 3 without clinical infection signs in Shandong Province. Transbound Emerg Dis 2017; 64:1337-1341. [PMID: 28653486 PMCID: PMC7169790 DOI: 10.1111/tbed.12667] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) was detected in Shandong, China. One hundred and thirty‐two of 222 (59.46%) samples were PCV3 positive, while 52 of 132 (39.39%) samples were co‐infected with PCV2. There were no clinical signs of infection in either multiparous sows or live‐born infants. Two strains of PCV3 were indentified from natural stillborn foetuses. Phylogenetic analysis showed the two strains of PCV3 are 96% identical to the known PCV3/Pig/USA (KX778720.1, KX966193.1 and KX898030.1) and closely related to Barbel Circovirus. Further studies of the epidemiology of PCV3 and the co‐infection with PCV2 are needed.
Collapse
|
Journal Article |
8 |
118 |
5
|
Yamaguchi N, Xin C, Meissner G. Identification of apocalmodulin and Ca2+-calmodulin regulatory domain in skeletal muscle Ca2+ release channel, ryanodine receptor. J Biol Chem 2001; 276:22579-85. [PMID: 11306590 DOI: 10.1074/jbc.m102729200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fusion proteins and full-length mutants were generated to identify the Ca(2+)-free (apoCaM) and Ca(2+)-bound (CaCaM) calmodulin binding sites of the skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1). [(35)S]Calmodulin (CaM) overlays of fusion proteins revealed one potential Ca(2+)-dependent (aa 3553-3662) and one Ca(2+)-independent (aa 4302-4430) CaM binding domain. W3620A or L3624D substitutions almost abolished completely, whereas V3619A or L3624A substitutions reduced [(35)S]CaM binding to fusion protein (aa 3553-3662). Three full-length RyR1 single-site mutants (V3619A,W3620A,L3624D) and one deletion mutant (Delta4274-4535) were generated and expressed in human embryonic kidney 293 cells. L3624D exhibited greatly reduced [(35)S]CaM binding affinity as indicated by a lack of noticeable binding of apoCaM and CaCaM (nanomolar) and the requirement of CaCaM (micromolar) for the inhibition of RyR1 activity. W3620A bound CaM (nanomolar) only in the absence of Ca(2+) and did not show inhibition of RyR1 activity by 3 microm CaCaM. V3619A and the deletion mutant bound apoCaM and CaCaM at levels compared with wild type. V3619A activity was inhibited by CaM with IC(50) approximately 200 nm, as compared with IC(50) approximately 50 nm for wild type and the deletion mutant. [(35)S]CaM binding experiments with sarcoplasmic reticulum vesicles suggested that apoCaM and CaCaM bind to the same region of the native RyR1 channel complex. These results indicate that the intact RyR1 has a single CaM binding domain that is shared by apoCaM and CaCaM.
Collapse
|
|
24 |
79 |
6
|
Xin C, Sam K, Ming L. A compression algorithm for DNA sequences. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2001; 20:61-6. [PMID: 11494771 DOI: 10.1109/51.940049] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
24 |
60 |
7
|
Xin C, Wang J, Zhang W, Wang L, Peng X. Retinal and choroidal thickness evaluation by SD-OCT in adults with obstructive sleep apnea-hypopnea syndrome (OSAS). Eye (Lond) 2014; 28:415-21. [PMID: 24406421 DOI: 10.1038/eye.2013.307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To assess the macular retina and choroidal thickness change in patients with obstructive sleep apnea-hypopnea syndrome (OSAS) with no significant symptoms and pathological changes in the fundus using spectral domain-optical coherence tomography. METHODS This prospective, observational case-control study consisted of 53 eyes of 53 patients with OSAS and 12 eyes of 12 age-matched controls. Macular and choroidal thicknesses were measured by optical coherence tomography. RESULTS The foveal and nasal macular thicknesses were significantly different between four groups (P=0.001, P=0.016). The foveal thickness of the control group was significantly thinner than that of the severe group (P=0.000). The nasal macular thickness of the control group was significantly thinner than that of the severe group (P=0.008). A significant correlation was found between oxygen desaturation index (ODI) and macular center thickness (r=0.357, R(2)=0.127, P=0.004), with an ODI coefficient of 0.457 (P=0.004). Similarly, a significant correlation was found between ODI and nasal macular thickness (r=0.265, R(2)=0.070, P=0.033), with an ODI coefficient of 0.233 (P=0.033). The subfoveal choroidal thickness was significantly different among the groups (F=3.657, P=0.017). The subfoveal choroidal thickness of the severe group was significantly thinner than that of the control group, mild group, and moderate group (P=0.023, 0.006, and 0.036, respectively). The choroidal thickness 1 mm nasal to the fovea was significantly different between the groups after correcting for age and diopter (F=3.411, P=0.023). The choroidal thickness 1 mm nasal to the fovea was significantly thinner in the severe group compared with the control group and mild group (P=0.013 and 0.010, respectively). Choroidal thickness was significantly correlated with diopter (r=0.520, R(2)=0.270, P<0.001), with a coefficient of 0.327 (P<0.001), and with ODI (r=0.520, R(2)=0.165, P=0.001), with a coefficient of -0.370 (P=0.001). CONCLUSIONS OSAS patients showed decreased foveal and nasal macular thickness, similar to the subfoveal and nasal choroidal thickness. These findings suggest that, because of intermittent hypoxia, OSAS might change the retinal and choroidal blood supply.
Collapse
|
Observational Study |
11 |
56 |
8
|
Zheng S, Shi J, Wu X, Peng Z, Xin C, Zhang L, Liu Y, Gao M, Xu S, Han H, Yu J, Sun W, Cong X, Li J, Wang J. Presence of Torque teno sus virus 1 and 2 in porcine circovirus 3-positive pigs. Transbound Emerg Dis 2017; 65:327-330. [PMID: 29285888 DOI: 10.1111/tbed.12792] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 12/01/2022]
Abstract
In this study, the co-infection of Torque teno sus virus (TTSuV) and porcine circovirus type 3 (PCV3) was reported. One hundred and ten of 132 (83.3%) PCV3-positive samples were co-infected with Torque teno sus virus 1 (TTSuV1). Ninety-four of 132 (71.2%) PCV3-positive samples were co-infected with Torque teno sus virus 2 (TTSuV2). Sixty-six of 132 (50.0%) of PCV3-positive samples were co-infected with both TTSuV1 and TTSuV2. There were no clinical signs of infection in pigs that were both PCV3-positive and PCV2-negative, in either multiparous sows or live-born infants. The high co-infection rate provides valuable information for the further study of the pathological correlation between PCV3 and TTSuVs.
Collapse
|
Journal Article |
8 |
37 |
9
|
Sambuughin N, Nelson TE, Jankovic J, Xin C, Meissner G, Mullakandov M, Ji J, Rosenberg H, Sivakumar K, Goldfarb LG. Identification and functional characterization of a novel ryanodine receptor mutation causing malignant hyperthermia in North American and South American families. Neuromuscul Disord 2001; 11:530-7. [PMID: 11525881 DOI: 10.1016/s0960-8966(01)00202-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malignant hyperthermia is a pharmacogenetic disorder associated with mutations in Ca(2+) regulatory proteins. It manifests as a hypermetabolic crisis triggered by commonly used anesthetics. Malignant hyperthermia susceptibility is a dominantly inherited predisposition to malignant hyperthermia that can be diagnosed by using caffeine/halothane contracture tests. In a multigenerational North American family with a severe form of malignant hyperthermia that has caused four deaths, a novel RYR1 A2350T missense mutation was identified in all individuals testing positive for malignant hyperthermia susceptibility. The same A2350T mutation was identified in an Argentinean family with two known fatal MH reactions. Functional analysis in HEK-293 cells revealed an altered Ca(2+) dependence and increased caffeine sensitivity of the expressed mutant protein thus confirming the pathogenic potential of the RYR1 A2350T mutation.
Collapse
|
|
24 |
36 |
10
|
Ma T, Liu X, Cen Z, Xin C, Guo M, Zou C, Song W, Xie R, Wang K, Zhou H, Zhang J, Wang Z, Bian C, Cui K, Li J, Wei YQ, Li J, Zhou X. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2. Arthritis Res Ther 2018; 20:34. [PMID: 29482609 PMCID: PMC5828083 DOI: 10.1186/s13075-018-1528-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/26/2018] [Indexed: 02/05/2023] Open
Abstract
Background Interleukin-1β (IL-1β) is a pivotal proinflammatory cytokine that is strongly associated with the inflammation of gout. However, the underlying mechanism through which the production of IL-1β is regulated has not been fully elucidated. Our previous work identified that miR-302b had an important immune regulatory role in bacterial lung infections. This study was conducted to evaluate the function of miR-302b on monosodium urate (MSU) crystal-induced inflammation and its mechanism. Methods The expression pattern and the immune-regulatory role of miR-302b were evaluated both in vitro and in vivo. The functional targets of miR-302b were predicted by bioinformatics, and then validated by genetic approaches. In addition, the clinical feature of miR-302b was analyzed using serum samples of patients with gouty arthritis. Results The extremely high expression of miR-302b was observed in both macrophages and mouse air membranes treated with MSU. Intriguingly, overexpression of miR-302b regulated NF-κB and caspase-1 signaling, leading to significantly attenuate MSU-induced IL-1β. By genetic analysis, miR-302b exhibited inhibitory function on IRAK4 and EphA2 by binding to their 3′-UTR regions. Corporately silencing IRAK4 and EphA2 largely impaired MSU-induced IL-1β protein production. Moreover, it was also found that miR-302b and EphA2 suppressed the migration of macrophages. Finally, it was observed that high expression of miR-302b was a general feature in patients with gouty arthritis. Conclusions These results suggest that miR-302b can regulate IL-1β production in MSU-induced inflammation by targeting NF-κB and caspase-1 signaling, and may be a potential therapeutic target for gouty arthritis. Electronic supplementary material The online version of this article (10.1186/s13075-018-1528-9) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
36 |
11
|
Nakai J, Gao L, Xu L, Xin C, Pasek DA, Meissner G. Evidence for a role of C-terminus in Ca(2+) inactivation of skeletal muscle Ca(2+) release channel (ryanodine receptor). FEBS Lett 1999; 459:154-8. [PMID: 10518010 DOI: 10.1016/s0014-5793(99)01232-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Six chimeras of the skeletal muscle (RyR1) and cardiac muscle (RyR2) Ca(2+) release channels (ryanodine receptors) previously used to identify RyR1 dihydropyridine receptor interactions [Nakai et al. (1998) J. Biol. Chem. 273, 13403] were expressed in HEK293 cells to assess their Ca(2+) dependence in [(3)H]ryanodine binding and single channel measurements. The results indicate that the C-terminal one-fourth has a major role in Ca(2+) activation and inactivation of RyR1. Further, our results show that replacement of RyR1 regions with corresponding RyR2 regions can result in loss and/or reduction of [(3)H]ryanodine binding affinity while maintaining channel activity.
Collapse
|
|
26 |
24 |
12
|
Zheng S, Wu X, Shi J, Peng Z, Gao M, Xin C, Liu Y, Wang S, Xu S, Han H, Yu J, Sun W, Cong X, Li J, Wang J. Rapid specific and visible detection of porcine circovirus type 3 using loop-mediated isothermal amplification (LAMP). Transbound Emerg Dis 2018; 65:597-601. [PMID: 29504259 DOI: 10.1111/tbed.12835] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/30/2022]
Abstract
In this study, a rapid and specific assay for the detection of porcine circovirus type 3 (PCV3) was established using loop-mediated isothermal amplification (LAMP). Four primers were specifically designed to amplify PCV3. The LAMP assay was effectively optimized to amplify PCV3 by water bath at 60°C for 60 min. The detection limit was approximately 1 × 101 copy in this LAMP assay. Compared to porcine circovirus type 2 (PCV2), both gE and gD genes of pseudorabies virus (PRV) and porcine parvovirus (PPV), the LAMP assay showed a high specific detection of PCV3. A visible detection method was developed using SYBR Green I to recognize the results rapidly. Based on the detection of 20 clinical tissue samples, the LAMP assay was more practical and convenient than classical PCR due to its simplicity, high sensitivity, rapidity, specificity, visibility and cost efficiency.
Collapse
|
Journal Article |
7 |
24 |
13
|
Sun S, Wang J, Liu J, Yin F, Xin C, Zeng X, Li J, Chen Q. MiR-302b Suppresses Tumor Metastasis by Targeting Frizzled 6 in OSCC. J Dent Res 2021; 100:739-745. [PMID: 33478325 DOI: 10.1177/0022034520986551] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for approximately 90% of malignant epithelial tumors of the oral and maxillofacial region. OSCC has high rate of metastasis and poor prognosis. Tobacco and/or alcohol consumption and human papillomavirus infection are relatively exact susceptibility factors for OSCC, but the specific process of oral mucosal carcinogenesis and progression is very complicated. microRNA-302b (miR-302b) could regulate various characteristics of many tumor cells, such as proliferation and apoptosis, but its role and mechanism in OSCC have not been reported. This research aims to study the effect of miR-302b on the invasion and migration ability of OSCC and the mechanism by which it functions as well as to identify new prognostic indicators and therapeutic targets for OSCC patients. Functional studies showed that the miR-302b level was negatively correlated with the invasion and migration ability of OSCC. The studies also showed that the overexpression of miR-302b could attenuate the invasion and migration ability of OSCC cells and reduce lymphangiogenesis and the lung metastasis rate of OSCC cells in a mouse model. Mechanistic studies were performed by quantitative polymerase chain reactions, luciferase assays, and RNA pull-down experiments. The results verified that frizzled class receptor 6 (FZD6) is a target gene of miR-302b in OSCC that could promote cell invasion and migration. Clinical studies demonstrate that the protein expression level of FZD6 was higher in OSCC and metastatic lymph nodes than in normal oral mucosa epithelium. Taken together, these data showed that miR-302b could inhibit the invasion and migration ability of OSCC cells by targeting and downregulating FZD6, thereby inhibiting OSCC metastasis. As a new target gene of miR-302b, FZD6 has the potential to become a prognostic and therapeutic target for OSCC patients.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
19 |
14
|
Xin C, Huang F, Wang J, Li J, Chen Q. Roles of circRNAs in cancer chemoresistance (Review). Oncol Rep 2021; 46:225. [PMID: 34468007 DOI: 10.3892/or.2021.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a type of endogenous, high‑stability, noncoding RNA. circRNAs exhibit various biological functions, and are involved in physiological and pathological processes occurring in various diseases, including cancers. They can not only act as microRNA and protein sponges, but also interact with proteins, translated peptides, and transcriptional and translational regulators, and compete with pre‑mRNA splicing. Chemotherapy is one of the most important types of cancer treatment. However, the resistance of cancer cells to chemotherapy is a leading reason for the failure of chemotherapy. It has been reported that circRNAs play important roles in cancer resistance via a number of mechanisms. The functions of the circRNAs provide insight into their roles in chemoresistance pathways. In addition, some circRNAs may serve as novel biomarkers for the diagnosis and prognosis of cancer resistance. Obtaining improved understanding of the molecular regulatory networks featuring circRNAs in tumors and searching for markers for the diagnosis and treatment of cancer resistance are leading issues in circRNA research. The present review introduced the functions of circRNAs, illustrated the mechanisms underlying drug resistance in cancer, described the contributions of circRNAs to this resistance and discussed the potential application of circRNAs in the treatment of drug‑resistant cancer. In particular, the review aimed to reveal the main mechanisms of circRNAs in cancer drug resistance, including mechanisms involving drug transport and metabolism, alterations of drug targets, DNA damage repair, downstream resistance mechanisms, adaptive responses and the tumor microenvironment. The findings may provide novel therapeutic targets for clinical treatment of cancer chemoresistance.
Collapse
|
|
4 |
17 |
15
|
Huang F, Xin C, Lei K, Bai H, Li J, Chen Q. Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma. Cell Oncol (Dordr) 2020; 43:763-777. [PMID: 32495292 DOI: 10.1007/s13402-020-00521-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has the highest mortality rate among all head and neck cancers and a relatively low five-year survival rate. Generally, the development of an oral mucosal malignancy represents a multistep process beginning with normal oral mucosa epithelium and culminating in OSCC after transitioning through intermediary oral premalignant disorders (OPMDs), during which dysplasia is often observed. Noncoding RNAs (ncRNAs) are RNAs that are not translated into proteins, but still can participate in regulating neoplastic cell behavior. Recently, data have emerged on the role of ncRNAs in the progression of oral mucosal malignant diseases, but the exact mechanisms through which ncRNAs are involved remain to be elucidated. CONCLUSIONS Knowledge on ncRNAs has added an extra layer of complexity to our understanding of the malignant progression of oral mucosal diseases. The identification of ncRNAs in multiple body fluids as biomarkers may provide new diagnostic options that can be used for the diagnosis and prognosis of OPMDs and OSCC, respectively. Despite overall advances that have been made in cancer treatment, the treatment options for OPMDs and OSCC are still limited. Several studies have shown that ncRNA-based treatment regimens may hold promise as alternative methods for treating OPMDs and OSCC. The use of ncRNAs as therapeutic agents, including miR-155, miR-34 and lncRNA HOTAIR, appear promising.
Collapse
|
Review |
5 |
17 |
16
|
Xin C, Ren S, Eberhardt W, Pfeilschifter J, Huwiler A. FTY720 suppresses interleukin-1beta-induced secretory phospholipase A2 expression in renal mesangial cells by a transcriptional mechanism. Br J Pharmacol 2007; 150:943-50. [PMID: 17325654 PMCID: PMC2013874 DOI: 10.1038/sj.bjp.0707171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE FTY720 is a potent immunomodulatory prodrug that is converted to its active phosphorylated form by a sphingosine kinase. Here we have studied whether FTY720 mimicked the action of sphingosine-1-phosphate (S1P) and exerted an anti-inflammatory potential in renal mesangial cells. EXPERIMENTAL APPROACH Prostaglandin E(2) (PGE(2)) was quantified by an enzyme-linked immunosorbent-assay. Secretory phospholipase A(2) (sPLA(2)) protein was detected by Western blot analyses. mRNA expression was determined by Northern blot analysis and sPLA(2)-promoter activity was measured by a luciferase-reporter-gene assay. KEY RESULTS Stimulation of cells for 24 h with interleukin-1beta (IL-1beta) is known to trigger increased PGE(2) formation which coincides with an induction of the mRNA for group-IIA-sPLA(2) and protein expression. FTY720 dose-dependently suppressed IL-1beta-induced IIA-sPLA(2) protein secretion and activity in the supernatant. This effect is due to a suppression of cytokine-induced sPLA(2) mRNA expression which results from a reduced promoter activity. As a consequence of suppressed sPLA(2) activity, PGE(2) formation is also reduced by FTY720. Mechanistically, the FTY720-suppressed sPLA(2) expression results from an activation of the TGFbeta/Smad signalling cascade since inhibition of the TGFbeta receptor type I by a specific kinase inhibitor reverses the FTY720-mediated decrease of sPLA(2) protein expression and sPLA(2) promoter activity. CONCLUSIONS AND IMPLICATIONS In summary, our data show that FTY720 was able to mimic the anti-inflammatory activity of TGFbeta and blocked cytokine-triggered sPLA(2) expression and subsequent PGE(2) formation. Thus, FTY720 may exert additional in vivo effects besides the well reported immunomodulation and its anti-inflammatory potential should be considered.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
17 |
17
|
Xin C, Ye S, Ming Y, Shenghua Z, Qingfang M, Hongxing G, Xu S, Yuanfu X, Yuan Z, Dongmei F, Juanni L, Yingdai G, Lianfang J, Rongguang S, Zhenping Z, Jianxiang W, Tao C, Chunzheng Y, Dongsheng X, Yongsu Z. Efficient inhibition of B-cell lymphoma xenografts with a novel recombinant fusion protein: anti-CD20Fab-LDM. Gene Ther 2010; 17:1234-43. [PMID: 20463754 DOI: 10.1038/gt.2010.76] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lidamycin (LDM) is a new member of enediyne antitumor antibiotics family that can be separated and reconstituted. It consists of a labile active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). LDM is now in phase II clinical trials. In this study, we described the antitumor features of a fusion protein of LDM, anti-CD20Fab-LDM, targeted to CD20 expressed by B-lymphoid malignancies. Especially, LDM was prepared by a novel two-step method including DNA recombination and molecular reconstitution. Anti-CD20Fab-LDM exerted potent cytotoxicity against CD20+ B-cell lymphoma cell lines in vitro (IC50: 10-30 pM) and in the Raji xenograft model. Two Raji xenografts were allowed to grow to an initial mass of 80 and 500 mm³, respectively, and then anti-CD20Fab-LDM was administered intravenously with the highest dose of 4 nmol kg⁻¹ . The inhibition rates of tumor growth were 90.1 and 85%, which were saliently superior to those of nontargeted LDM. It is noteworthy that anti-CD20Fab-LDM can inhibit the growth of patient-derived cells, including rituximab-resistant patient-derived cells. Thus, CD20-targeted delivery of LDM is a specific and potent therapeutic strategy for B-lymphoid malignancies. In addition, the two-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
12 |
18
|
Yin F, Wang J, Zhao K, Xin C, Shi Y, Zeng X, Xu H, Li J, Chen Q. The significance of PA28γ and U2AF1 in oral mucosal carcinogenesis. Oral Dis 2019; 26:53-61. [PMID: 31605415 DOI: 10.1111/odi.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/20/2019] [Accepted: 10/06/2019] [Indexed: 02/05/2023]
|
|
6 |
6 |
19
|
Lin H, Hong YG, Zhou JD, Gao XH, Yuan PH, Xin C, Huang ZP, Zhang W, Hao LQ, Hou KZ. LncRNA INHBA-AS1 promotes colorectal cancer cell proliferation by sponging miR-422a to increase AKT1 axis. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2021; 24:9940-9948. [PMID: 33090398 DOI: 10.26355/eurrev_202010_23206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In recent years, long non-coding RNAs (lncRNAs) have emerged for regulating the development, as well as progression in colorectal cancer (CRC), which assists in finding new targets for CRC treatment. A previous study indicated that INHBA-AS1 promotes oral squamous cell progression by sponging miR-143-3p. However, the exact function possessed by lncRNA INHBA-AS1 in CRC development remains unclear. PATIENTS AND METHODS The expression level of INHBA-AS1 in CRC tissues and cell lines was determined by qRT-PCR. The functional role of INHBA-AS1 in CRC was investigated by a series of in vitro assays. RNA immunoprecipitation (RIP), bioinformatics analysis was utilized to explore the potential mechanisms of INHBA-AS1. RESULTS The present study identified INHBA-AS1 as a kind of lncRNA with high expression in CRC tissues and cells. Functionally, NHBA-AS1 downregulation in CRC cells suppressed CRC cell proliferation as well as colony formability. Mechanistically, INHBA-AS1/miR-422a/AKT1 established the ceRNA network to regulate MMP-2, -7, -9 expressions that participated the modulation of CRC progression. CONCLUSIONS In summary, LncRNA INHBA-AS1 contributes to CRC progression through AKT1 pathway, and provides a new mechanism to regulate CRC development, as well as a potential target for treating CRC.
Collapse
|
Journal Article |
4 |
4 |
20
|
Snyder RE, Xin C, Smith RS. Protein loss from axonal transport occurs without diminution of vesicle traffic. Neuroreport 1990; 1:259-62. [PMID: 1717042 DOI: 10.1097/00001756-199011000-00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein loss from the rapid anterograde axonal transport system of amphibian sensory nerve fibers was compared with the numbers and sizes of anterogradely transported vesicles in the axons. Protein was found to be lost at a rate of approximately 2% per millimeter of nerve traversed. However, no changes were observed in either the numbers or sizes of vesicles in the nerve at two locations separated by 60-75 mm. The results show that protein loss is not explained as a loss of vesicles from the transport system nor by a reduction in vesicle size.
Collapse
|
|
35 |
3 |
21
|
Guo X, Liao M, Xin C. Sequence of HA gene of avian influenza A/Chicken/Guangdong/SS/1994 (H9N2) virus. Avian Dis 2003; 47:1118-21. [PMID: 14575125 DOI: 10.1637/0005-2086-47.s3.1118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The RNA of the hemagglutinin (HA) gene of A/Chicken/Guangdong/SS/1994 (H9N2) was reverse transcription-polymerase chain reaction amplified, and the cDNA was cloned into a plasmid vector. The complete coding sequence of the HA gene was sequenced and included 1683 nucleotides, which encoded for a protein of 560 amino acids. The potential glycosylation sites related to HA protein function were highly conserved. The amino acid sequence of the HA proteolytic cleavage was G-S-S-R/G. This cleavage site sequence is compatible with a low-pathogenic avian influenza virus. Sequence comparison of this HA gene with other H9 influenza virus sequences in the GenBank database showed a 82%-97% nucleotide and amino acid sequence similarity.
Collapse
|
Journal Article |
22 |
3 |
22
|
Xin C, Li JL, Zhang YX, Yu ZH. Polymorphisms in lncRNA PTENP1 and the risk of oral squamous cell carcinoma in a Chinese population. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2019; 22:5583-5587. [PMID: 30229832 DOI: 10.26355/eurrev_201809_15822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE PTENP1, a long noncoding RNA, has previously been reported to be involved in tumorigenesis and cancer progression. The relationship between PTENP1 and susceptibility tumors is reported, while, an association of PTENP1 with the risk of oral squamous cell carcinoma (OSCC) in Chinese population is lacked. This research is designed to investigate the association of PTENP1 with susceptibility of OSCC. PATIENTS AND METHODS In this research, TaqMan technology was used to test genotype in 342 OSCC patients and 711 healthy controls, so as to analyze the association between PTENP1 polymorphisms (rs7853346 rs865005 and rs10971638) and susceptibility of oral squamous cell carcinoma. RESULTS The results of this research showed that rs7853346 [Additive model: Adjusted odds ratio (OR) = 0.81, 95% confidence interval (CI) = 0.66-0.99] was related to the OSCC risk. It was not found that the other two sites were associated with the susceptibility of OSCC. CONCLUSIONS This research indicated that rs7853346 is statistically correlated with the OSCC risk.
Collapse
|
Journal Article |
6 |
3 |
23
|
Lei K, Bai H, Sun S, Xin C, Li J, Chen Q. PA28γ, an Accomplice to Malignant Cancer. Front Oncol 2020; 10:584778. [PMID: 33194729 PMCID: PMC7662426 DOI: 10.3389/fonc.2020.584778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
PA28γ is a nuclear activator of the 20S proteasome, which is involved in the regulation of several essential cellular processes and angiogenesis. Over the past 20 years, many amino acid sites and motifs have been proven to play important roles in the characteristic functions of PA28γ. The number of binding partners and validated cellular functions of PA28γ have increased, which has facilitated the clarification of its involvement in different biological events. PA28γ is involved in the progression of various diseases, and its aberrant overexpression in cancer is remarkable. Patients with low levels of PA28γ expression have a higher survival rate than those with high levels of PA28γ expression, as has been shown for a wide variety of tumors. The functions of PA28γ in cancer can be divided into five main categories: cell proliferation, cell apoptosis, metastasis and invasion, cell nuclear dynamics that have relevance to angiogenesis, and viral infection. In this review, we focus on the role of PA28γ in cancer, summarizing its aberrant expression, prooncogenic effects and underlying mechanisms in various cancers, and we highlight the possible cancer-related applications of PA28γ, such as its potential use in the diagnosis, targeted treatment and prognostic assessment of cancer.
Collapse
|
Review |
5 |
3 |
24
|
Zhenyao C, Xin C, Zhaoxia W. 17P Long non-coding RNA SNHG20 promotes non-small cell lung cancer cell progression by silencing of P21 expression. J Thorac Oncol 2018. [DOI: 10.1016/s1556-0864(18)30297-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
7 |
1 |
25
|
Xin C, Wang X, Li X, Chen Y, Wang X, Ning J, Yang S, Wang Z. [Silencing SIRT1 reduces 5-fluorouracil resistance of cholangiocarcinoma cells by inhibiting the FOXO1/Rab7 autophagy pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:454-459. [PMID: 37087591 PMCID: PMC10122739 DOI: 10.12122/j.issn.1673-4254.2023.03.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
OBJECTIVE To investigate the mechanism by which SIRT1 silencing reduces 5-fluorouracil (5-FU) resistance of cholangiocarcinoma cells and the role of FOXO1/Rab7 autophagy pathway in mediating this effect. METHODS Human cholangiocarcinoma HCCC-9810 cells were treated with 50, 100, 150, and 200 μg/mL 5-FU to construct a 5-FU-resistant cell model, whose expressions of SIRT1, FOXO1 and Rab7 were detected with immunofluorescence assay, Western blotting and RTqPCR, and the expression levels of autophagy related proteins (Beclin1, LC3, and p62) were detected with Western blotting. The 5-FU resistant cells were transfected with a SIRT1 siRNA, and the changes in 5-Fu resistance and migration ability of the cells were evaluated using CCK-8 assay and wound healing assay; The changes in FOXO1 and Rab7 mRNA levels and protein expressions of SIRT1, FOXO1, Rab7, Beclin1, LC3 and P62 were detected with RT-qPCR and Western blotting. RESULTS Treatments with 5-FU at 50, 100, 150, and 200 μg/mL all inhibited the proliferation of HCCC-9810 cells. Immunofluorescence assay revealed significantly enhanced SIRT1 expression in 5-FU-resistant HCC-9810 cells, and Western blotting also showed significantly up-regulated protein expressions of SIRT1, Rab7, P62, FOXO1 and Beclin 1 (P < 0.001) and an increased LC3II/LC3I ratio in the cells (P < 0.001). The mRNA levels of SIRT1, Rab7 and FOXO1 were also up-regulated in 5-Fu-resistant cells (P < 0.05). SIRT1 silencing significantly attenuated 5-FU resistance and migration ability of HCCC-9810 cells, and obviously decreased the protein expressions of SIRT1, Rab7, P62, FOXO1 and Beclin1 and the LC3II/LC3I ratio as well (P < 0.001). FOXO1 and Rab7 mRNA levels were significantly decreased in 5-FU-resistant HCC-9810 cells after SIRT1 silencing (P < 0.05). CONCLUSION Silencing SIRT1 attenuates 5-FU resistance in HCC-9810 cells by inhibiting the activation of the FOXO1/Rab7 autophagy pathway.
Collapse
|
English Abstract |
2 |
1 |