1
|
Wang W, Vellaisamy K, Li G, Wu C, Ko CN, Leung CH, Ma DL. Development of a Long-Lived Luminescence Probe for Visualizing β-Galactosidase in Ovarian Carcinoma Cells. Anal Chem 2017; 89:11679-11684. [DOI: 10.1021/acs.analchem.7b03114] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
|
8 |
118 |
2
|
Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, Di Primo C, Wong VKW, Xiang Y, Lin L, Ma DL, Leung CH. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Nat Commun 2021; 12:3363. [PMID: 34099651 PMCID: PMC8184911 DOI: 10.1038/s41467-021-23448-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Impaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL-HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.
Collapse
Grants
- This work is supported by Hong Kong Baptist University (FRG2/15-16/002), the Health and Medical Research Fund (HMRF/14130522), the Research Grants Council (HKBU/201811, HKBU/204612 and HKBU/201913), the French Agence Nationale de la Recherche/Research Grants Council Joint Research Scheme (AHKBU201/12; Oligoswitch ANR-12-IS07-0001), the National Natural Science Foundation of China (21575121 and 81872754), the Guangdong Province Natural Science Foundation (2015A030313816), the Hong Kong Baptist University Century Club Sponsorship Scheme 2016, the Interdisciplinary Research Matching Scheme (RC-IRMS/14-15/06), the Science and Technology Development Fund, Macao SAR (0072/2018/A2 and 102/2017/A), the University of Macau (MYRG2016-00151-ICMS-QRCM, MYRG2017-00109-ICMS and MYRG2018-00187-ICMS).
Collapse
|
research-article |
4 |
108 |
3
|
Vellaisamy K, Li G, Ko CN, Zhong HJ, Fatima S, Kwan HY, Wong CY, Kwong WJ, Tan W, Leung CH, Ma DL. Cell imaging of dopamine receptor using agonist labeling iridium(iii) complex. Chem Sci 2017; 9:1119-1125. [PMID: 29675156 PMCID: PMC5885777 DOI: 10.1039/c7sc04798c] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022] Open
Abstract
A long-lived complex 13 could selectively bind to dopamine receptors (D1R/D2R) and monitor their internalization in living cells.
Dopamine receptor expression is correlated with certain types of cancers, including lung, breast and colon cancers. In this study, we report luminescent iridium(iii) complexes (11–14) as intracellular dopamine receptor (D1R/D2R) cell imaging agents. Complexes 11 and 13, which are conjugated with a dopamine receptor agonist, showed superior cell imaging characteristics, high stability and low cytotoxicity (>100 μM) in A549 lung cancer cells. siRNA knockdown and dopamine competitive assays indicated that complexes 11 and 13 could selectively bind to dopamine receptors (D1R/D2R) in A549 cells. Fluorescence lifetime microscopy demonstrated that complex 13 has a longer luminescence lifetime at the wavelength of 560–650 nm than DAPI and other chromophores in biological fluids. The long luminescence lifetime of complex 13 not only provides an opportunity for efficient dopamine receptor tracking in biological media, but also enables the temporal separation of the probe signal from the intense background signal by fluorescence lifetime microscopy for efficient analysis. Complex 13 also shows high photostability, which could allow it to be employed for long-term cellular imaging. Furthermore, complex 13 could selectively track the internalization process of dopamine receptors (D1R/D2R) in living cells. To the best of our knowledge, complex 13 is the first metal-based compound that has been used to monitor intracellular dopamine receptors in living cells.
Collapse
|
Journal Article |
8 |
96 |
4
|
Ko CN, Li G, Leung CH, Ma DL. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
6 |
85 |
5
|
Yang GJ, Ko CN, Zhong HJ, Leung CH, Ma DL. Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:E92. [PMID: 30650517 PMCID: PMC6360022 DOI: 10.3390/cancers11010092] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the one of the most frequent causes of female cancer mortality. KDM5A, a histone demethylase, can increase the proliferation, metastasis, and drug resistance of cancers, including breast cancer, and is thus an important therapeutic target. In the present work, we performed hierarchical virtual screening towards the KDM5A catalytic pocket from a chemical library containing 90,000 compounds. Using multiple biochemical methods, the cyclopenta[c]chromen derivative 1 was identified as the top candidate for KDM5A demethylase inhibitory activity. Compared with the well-known KDM5 inhibitor CPI-455 (18), 1 exhibited higher potency against KDM5A and much higher selectivity for KDM5A over both KDM4A and other KDM5 family members (KDM5B and KDM5C). Additionally, compound 1 repressed the proliferation of various KDM5A-overexpressing breast cancer cell lines. Mechanistically, 1 promoted accumulation of p16 and p27 by blocking KDM5A-mediated H3K4me3 demethylation, leading to cell cycle arrest and senescence. To date, compound 1 is the first cyclopenta[c]chromen-based KDM5A inhibitor reported, and may serve as a novel motif for developing more selective and efficacious pharmacological molecules targeting KDM5A. In addition, our research provides a possible anti-cancer mechanism of KDM5A inhibitors and highlights the feasibility and significance of KDM5A as a therapeutic target for KDM5A-overexpressing breast cancer.
Collapse
|
research-article |
6 |
54 |
6
|
Dong ZZ, Lu L, Ko CN, Yang C, Li S, Lee MY, Leung CH, Ma DL. A MnO 2 nanosheet-assisted GSH detection platform using an iridium(iii) complex as a switch-on luminescent probe. NANOSCALE 2017; 9:4677-4682. [PMID: 28139807 DOI: 10.1039/c6nr08357a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A rapid and sensitive detection platform for GSH has been constructed by combining a MnO2 nanosheet with a luminescent iridium(iii) complex [Ir(Cl-phq)2(Cl-phen)]+. The MnO2 nanosheet was prepared by using a facile one-step approach and was characterized by TEM. The luminescence intensity of the detection platform responded linearly with the GSH concentration from 1 to 200 μM (R2 = 0.9951), and the detection limit for GSH was 0.13 μM. More importantly, practical application of the detection platform for visualizing the intracellular GSH distribution in living zebrafish has also been demonstrated.
Collapse
|
|
8 |
54 |
7
|
Lin S, Wang W, Hu C, Yang G, Ko CN, Ren K, Leung CH, Ma DL. The application of a G-quadruplex based assay with an iridium(iii) complex to arsenic ion detection and its utilization in a microfluidic chip. J Mater Chem B 2017; 5:479-484. [DOI: 10.1039/c6tb02656g] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, the iridium(iii) complex 1 was synthesized and employed in constructing an assay which is based on a G-quadruplex for detecting arsenic ions in aqueous solution.
Collapse
|
|
8 |
45 |
8
|
Yang GJ, Zhong HJ, Ko CN, Wong SY, Vellaisamy K, Ye M, Ma DL, Leung CH. Identification of a rhodium(iii) complex as a Wee1 inhibitor against TP53-mutated triple-negative breast cancer cells. Chem Commun (Camb) 2018; 54:2463-2466. [PMID: 29367998 DOI: 10.1039/c7cc09384e] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rhodium(iii) complex 1 was identified as a potent Wee1 inhibitor in vitro and in cellulo. It decreased Wee1 activity and unscheduled mitotic entry, and induced cell damage and death in TP53-mutated triple-negative breast cancer cells. 1 represents a promising scaffold for further development of more potent metal-based Wee1 antagonists.
Collapse
|
Journal Article |
7 |
45 |
9
|
Lam DSC, Wong RLM, Lai KHW, Ko CN, Leung HY, Lee VYW, Lau JYN, Huang SS. COVID-19: Special Precautions in Ophthalmic Practice and FAQs on Personal Protection and Mask Selection. Asia Pac J Ophthalmol (Phila) 2020; 9:67-77. [PMID: 32349113 PMCID: PMC7227209 DOI: 10.1097/apo.0000000000000280] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory coronavirus-2, was first reported in December 2019. The World Health Organization declared COVID-19 a pandemic on March 11, 2020 and as of April 17, 2020, 210 countries are affected with >2,000,000 infected and 140,000 deaths. The estimated case fatality rate is around 6.7%. We need to step up our infection control measures immediately or else it may be too late to contain or control the spread of COVID-19. In case of local outbreaks, the risk of infection to healthcare workers and patients is high. Ophthalmic practice carries some unique risks and therefore high vigilance and special precautions are needed. We share our protocols and experiences in the prevention of infection in the current COVID-19 outbreak and the previous severe acute respiratory syndrome epidemic in Hong Kong. We also endeavor to answer the key frequently asked questions in areas of the coronaviruses, COVID-19, disease transmission, personal protection, mask selection, and special measures in ophthalmic practices. COVID-19 is highly infectious and could be life-threatening. Using our protocol and measures, we have achieved zero infection in our ophthalmic practices in Hong Kong and China. Preventing spread of COVID-19 is possible and achievable.
Collapse
|
research-article |
5 |
38 |
10
|
Wong RL, Ting DS, Wan KH, Lai KH, Ko CN, Ruamviboonsuk P, Huang SS, Lam DS, Tham CC. COVID-19: Ocular Manifestations and the APAO Prevention Guidelines for Ophthalmic Practices. Asia Pac J Ophthalmol (Phila) 2020; 9:281-284. [PMID: 32739937 PMCID: PMC7480794 DOI: 10.1097/apo.0000000000000308] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization declared the Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 a "Pandemic" on March 11, 2020. As of June 1, 2020, Severe Acute Respiratory Syndrome Coronavirus 2 has infected >6.2 million people and caused >372,000 deaths, including many health care personnel. It is highly infectious and ophthalmologists are at a higher risk of the infection due to a number of reasons including the proximity between doctors and patients during ocular examinations, microaerosols generated by the noncontact tonometer, tears as a potential source of infection, and some COVID-19 cases present with conjunctivitis. This article describes the ocular manifestations of COVID-19 and the APAO guidelines in mitigating the risks of contracting and/or spreading COVID-19 in ophthalmic practices.
Collapse
|
Review |
5 |
27 |
11
|
Lin TP, Ko CN, Zheng K, Lai KH, Wong RL, Lee A, Zhang S, Huang SS, Wan KH, Lam DS. COVID-19: Update on Its Ocular Involvements, and Complications From Its Treatments and Vaccinations. Asia Pac J Ophthalmol (Phila) 2021; 10:521-529. [PMID: 34839344 PMCID: PMC8673850 DOI: 10.1097/apo.0000000000000453] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023] Open
Abstract
ABSTRACT The coronavirus disease 2019 (COVID-19) came under the attention of the international medical community when China first notified the World Health Organization of a pneumonia outbreak of then-unknown etiology in Wuhan in December 2019. Since then, COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has appalled the world by spreading at a pandemic speed. Although ophthalmologists do not directly engage in the clinical care of COVID-19 patients, the ophthalmology community has become aware of the close ties between its practice and the pandemic. Not only are ophthalmologists at heightened risk of SARS-CoV-2 exposure due to their physical proximity with patients in routine ophthalmic examinations, but SARS-CoV-2 possesses ocular tropism resulting in ocular complications beyond the respiratory tract after viral exposure. Furthermore, patients could potentially suffer from adverse ocular effects in the therapeutic process. This review summarized the latest literature to cover the ophthalmic manifestations, effects of treatments, and vaccinations on the eye to aid the frontline clinicians in providing effective ophthalmic care to COVID-19 patients as the pandemic continues to evolve.
Collapse
|
Review |
4 |
25 |
12
|
Li G, Liu H, Feng R, Kang TS, Wang W, Ko CN, Wong CY, Ye M, Ma DL, Wan JB, Leung CH. A bioactive ligand-conjugated iridium(III) metal-based complex as a Keap1-Nrf2 protein-protein interaction inhibitor against acetaminophen-induced acute liver injury. Redox Biol 2021; 48:102129. [PMID: 34526248 PMCID: PMC8710994 DOI: 10.1016/j.redox.2021.102129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatotoxicity caused by an overdose of acetaminophen (APAP) is the leading reason for acute drug-related liver failure. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a protein that helps to regulate redox homeostasis and coordinate stress responses via binding to the Kelch-like ECH-associated protein 1 (Keap1). Targeting the Keap1-Nrf2 interaction has recently emerged as a potential strategy to alleviate liver injury caused by APAP. Here, we designed and synthesized a number of iridium (III) and rhodium (III) complexes bearing ligands with reported activity against oxidative stress, which is associated with Nrf2 transcriptional activation. The iridium (III) complex 1 bearing a bioactive ligand 2,9-dimethyl-1,10-phenanthroline and 4-chloro-2-phenylquinoline, a derivative of the bioactive ligand 2-phenylquinoline, was identified as a direct small-molecule inhibitor of the Keap1–Nrf2 protein-protein interaction. 1 could stabilize Keap1 protein, upregulate HO-1 and NQO1, and promote Nrf2 nuclear translocation in normal liver cells. Moreover, 1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction and without inducing organ damage and immunotoxicity in mice. Our study demonstrates the identification of a selective and efficacious antagonist of Keap1–Nrf2 interaction possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo, and, more importantly, validates the feasibility of conjugating metal complexes with bioactive ligands to generate metal-based drug leads as non-toxic Keap1–Nrf2 interaction inhibitors for treating APAP-induced acute liver injury.
1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction without inducing organ damage or immunotoxicity. Complex 1 possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo. Conjugating metal complexes with bioactive ligands opens a novel avenue for the treatment of APAP-induced liver damage.
Collapse
|
|
4 |
22 |
13
|
Li G, Boyle JW, Ko CN, Zeng W, Wong VKW, Wan JB, Chan PWH, Ma DL, Leung CH. Aurone derivatives as Vps34 inhibitors that modulate autophagy. Acta Pharm Sin B 2019; 9:537-544. [PMID: 31193773 PMCID: PMC6543056 DOI: 10.1016/j.apsb.2019.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
We report in this study the identification of a natural product-like antagonist (1a) of Vps34 as a potent autophagy modulator via structure-based virtual screening. Aurone derivative 1a strongly inhibited Vps34 activity in cell-free and cell-based assays. Significantly, 1a prevents autophagy in human cells induced either by starvation or by an mTOR inhibitor. In silico modeling and kinetic data revealed that 1a could function as an ATP-competitive inhibitor of Vps34. Moreover, it suppressed autophagy in vivo and without inducing heart or liver damage in mice. 1a could be utilized as a new motif for more selective and efficacious antagonists of Vps34 for the potential treatment of autophagy-related human diseases.
Collapse
Key Words
- Aurone derivative
- Autophagy
- CETSA, cellular thermal shift assay
- Co-IP, co-immunoprecipitation
- DMEM, Dulbecco׳s modified Eagle׳s medium
- DMSO, dimethyl sulfoxide
- EBSS, Earle׳s balanced salt solution
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- Heart or liver damage
- Inhibitor
- Natural products
- PE, phosphatidylethanolamine
- PI, phosphatidylinositol
- PI3K, phosphoinositide 3-kinase
- PI3P, phosphatidylinositol 3-phosphate
- PS, phosphatidylserine
- Structure-based virtual screening
- Vesicle trafficking
- Vps34
Collapse
|
Journal Article |
6 |
19 |
14
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
|
3 |
19 |
15
|
Leung CH, Wu KJ, Li G, Wu C, Ko CN, Ma DL. Application of label-free techniques in microfluidic for biomolecules detection and circulating tumor cells analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
6 |
14 |
16
|
Li G, Li D, Wu C, Li S, Chen F, Li P, Ko CN, Wang W, Lee SMY, Lin L, Ma DL, Leung CH. Homocysteine-targeting compounds as a new treatment strategy for diabetic wounds via inhibition of the histone methyltransferase SET7/9. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:988-998. [PMID: 35859119 PMCID: PMC9356058 DOI: 10.1038/s12276-022-00804-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
In hypoxia and hyperglycemia, SET7/9 plays an important role in controlling HIF-1α methylation and regulating the transcription of HIF-1α target genes, which are responsible for angiogenesis and wound healing. Here, we report the Ir(III) complex Set7_1a bearing acetonitrile (ACN) ligands as a SET7/9 methyltransferase inhibitor and HIF-1α stabilizer. Interestingly, Set7_1a could engage SET7/9 and strongly inhibit SET7/9 activity, especially after preincubation with homocysteine (Hcy), which is elevated in diabetes. We hypothesize that Set7_1a exchanges ACN subunits for Hcy to disrupt the interaction between SET7/9 and SAM/SAH, which are structurally related to Hcy. Inhibition of SET7/9 methyltransferase activity by Set7_1a led to reduced HIF-1α methylation at the lysine 32 residue, causing increased HIF-1α level and recruitment of HIF-1α target genes that promote angiogenesis, such as VEGF, GLUT1, and EPO, in hypoxia and hyperglycemia. Significantly, Set7_1a improved wound healing in a type 2 diabetic mouse model by activating HIF-1α signaling and downstream proangiogenic factors. To our knowledge, this is the first Hcy-targeting iridium compound shown to be a SET7/9 antagonist that can accelerate diabetic wound healing. More importantly, this study opens a therapeutic avenue for the treatment of diabetic wounds by the inhibition of SET7/9 lysine methyltransferase activity. Animal trials have demonstrated the potential of a new drug strategy to heal the wounds associated with diabetes, especially in the feet,which often lead to chronic damage, sometimes treatable only by amputation. Leung CH and Lin L at the University of Macau, China, and Ma DL at the Hong Kong Baptist University tested the new therapy on a mouse model of type 2 diabetes. The treatment uses a homocysteine-targeting metal complex that inhibits a key enzyme SET7/9 involved in the processes that cause diabetic wounds. The treatment activated a molecular signalling cascade involved in generating the new blood vessels needed for wounds to heal. It could help address the urgent need for better treatments for this serious problem.
Collapse
|
|
3 |
13 |
17
|
Ko CN, Wu C, Li G, Leung CH, Liu JB, Ma DL. A long-lived ferrocene-conjugated iridium(III) complex for sensitive turn-on luminescence detection of traces of DMSO in water and human serum. Anal Chim Acta 2017; 984:193-201. [DOI: 10.1016/j.aca.2017.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/09/2023]
|
|
8 |
12 |
18
|
Chen F, Li G, Wu C, Wang L, Ko CN, Ma DL, Leung CH. Interference Reduction Biosensing Strategy for Highly Sensitive microRNA Detection. Anal Chem 2022; 94:4513-4521. [PMID: 35234447 DOI: 10.1021/acs.analchem.2c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs are potential biomarkers for human cancers and other diseases due to their roles as post-transcriptional regulators for gene expression. However, the detection of miRNAs by conventional methods such as RT-qPCR, in situ hybridization, northern blot-based platforms, and next-generation sequencing is complicated by short length, low abundance, high sequence homology, and susceptibility to degradation of miRNAs. In this study, we developed a nicking endonuclease-mediated interference reduction rolling circle amplification (NEM-IR-RCA) strategy for the ultrasensitive and highly specific detection of miRNA-21. This method exploits the advantages of the optical properties of long-lived iridium(III) probes, in conjunction with time-resolved emission spectroscopy (TRES) and exponential rolling circle amplification (E-RCA). Under the NEM-IR-RCA-based signal enhancement processes, the limit of detection of miRNA-21 was down to 0.0095 fM with a linear range from 0.05 to 100 fM, which is comparable with the conventional RT-qPCR. Unlike RT-qPCR, the strategy was performed at a lower and constant temperature without heating/cooling cycles and reverse transcription. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specificity. Moreover, the potential application of this method was demonstrated in cancer cells and mouse serum samples, showing good agreement with RT-qPCR results. Apart from miRNA-21 detection, this platform could be also adapted for detecting other miRNAs, such as let-7a and miRNA-22, indicating its excellent potential for biomedical research and clinical diagnostics.
Collapse
|
|
3 |
10 |
19
|
Kang TS, Ko CN, Zhang JT, Wu C, Wong CY, Ma DL, Leung CH. Rhodium(III)-Based Inhibitor of the JMJD3-H3K27me3 Interaction and Modulator of the Inflammatory Response. Inorg Chem 2018; 57:14023-14026. [DOI: 10.1021/acs.inorgchem.8b02256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
|
7 |
9 |
20
|
Wan KH, Lin TPH, Ko CN, Lam DSC. Impact of COVID-19 on Ophthalmology and Future Practice of Medicine. Asia Pac J Ophthalmol (Phila) 2020; 9:279-280. [PMID: 32739939 DOI: 10.1097/apo.0000000000000305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
Editorial |
5 |
8 |
21
|
Song K, Kim YS, Moon SK, Ko CN, Cho KH, Bae HS, Lee KS. Effects of uwhangchungsimwon on cell viability, proliferation, and gene expression of human neuronal cell line IMR32. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2002; 29:445-58. [PMID: 11789587 DOI: 10.1142/s0192415x01000460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Uwhangchungsimwon (pill, UC) is one of the traditional Korean medical prescriptions that has been most frequently used for stroke. To characterize the effects of UC on human neuronal cells, the human neuroblastoma cell line IMR32 was treated with UC, and cell viability, cell proliferation, apoptosis, and gene expression were analyzed. The effect of UC on recovery of cell viability was analyzed following stress induction by nutrient depletion or cold shock. Flow cytometric analysis of the cell cycle showed that UC inhibits cell cycle progression of IMR32 in a dose- and time-dependent manner. UC was also identified to increase cell viability and suppress apoptosis induction by a DNA-damaging agent, etoposide. Quantitative RT-PCR analysis revealed that expressions of the p53 tumor suppressor gene and its downstream effect, Waf1, are stimulated whereas expressions of positive cell cycle regulators, c-Myc, c-Fos, and Cyclin D1 were repressed by UC treatment. Moreover, while expression levels of apoptosis inhibitors, Bcl-2 and Bcl-XL were increased following UC treatment, that of an apoptosis promoter, Bax, was decreased. In addition, expression of BMP-7, which has been recently demonstrated to improve the motor neuron recovery from stroke, was induced by UC while it was not detected in untreated cells. Taken together, our data suggest that the pharmacoclinical effects of UC might be derived in part from its negative regulation of cell proliferation and apoptosis through the transcriptional control of related genes.
Collapse
|
|
23 |
5 |
22
|
Tian T, Ko CN, Luo W, Li D, Yang C. The anti-aging mechanism of ginsenosides with medicine and food homology. Food Funct 2023; 14:9123-9136. [PMID: 37766674 DOI: 10.1039/d3fo02580b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the acceleration of global aging and the rise in living standards, the achievement of healthy aging is becoming an imperative issue globally. Ginseng, a medicinal plant that has a long history of dietary intake and remarkable medicinal value, has become a research hotspot in the field of food and medicine. Ginsenosides, especially protopanaxadiol-type saponins and protopanaxatriol-type saponins, are among the most important active ingredients in ginseng. Ginsenosides have been found to exhibit powerful and diverse pharmacological activities, such as antiaging, antitumor, antifatigue and immunity enhancement activities. Their effects in antiaging mainly include (1) promotion of metabolism and stem cell proliferation, (2) protection of skin and nerves, (3) modulation of intestinal flora, (4) maintenance of mitochondrial function, and (5) enhancement of telomerase activity. The underlying mechanisms are primarily associated with the intervention of the signaling pathways in apoptosis, inflammation and oxidative stress. In this review, the mechanism of action of ginsenosides in antiaging as well as the potential values of developing ginsenoside-based functional foods and antiaging drugs are discussed.
Collapse
|
Review |
2 |
5 |
23
|
Wang W, Liu J, Wu LA, Ko CN, Wang X, Lin C, Liu J, Ling L, Wang J. Nicking enzyme-free strand displacement amplification-assisted CRISPR-Cas-based colorimetric detection of prostate-specific antigen in serum samples. Anal Chim Acta 2022; 1195:339479. [DOI: 10.1016/j.aca.2022.339479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
|
|
3 |
4 |
24
|
Li D, Zhong Z, Ko CN, Tian T, Yang C. From mundane to classic: Sinomenine as a multi-therapeutic agent. Br J Pharmacol 2023. [PMID: 37846470 DOI: 10.1111/bph.16267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023] Open
Abstract
Sinomenine is an active substance extracted from the traditional Chinese medicine Sinomenium acutum. Sinomenine has been shown to mediate a wide range of pharmacological actions and is known to possess good anti-inflammatory, immunosuppressive, antitumor, neuroprotective, antiarrhythmic and other pharmacological effects. Understanding the underlying mechanisms and the association between the targets and the pharmaceutical effects on different diseases is crucial to the discovery and design of new treatment strategies. In this review, we aim to give a systematic and comprehensive overview of the research progress of sinomenine over the past 20 years. We first describe the metabolism of sinomenine in vivo and then summarize the pharmacological actions of sinomenine on different diseases. Furthermore, the potential binding properties of sinomenine and the potential of developing new sinomenine-based drugs are also reviewed.
Collapse
|
Review |
2 |
1 |
25
|
Huang R, Hu Q, Ko CN, Tang FK, Xuan S, Wong HM, Jin L, Li X, Leung KCF. Nano-based theranostic approaches for infection control: current status and perspectives. MATERIALS CHEMISTRY FRONTIERS 2024; 8:9-40. [DOI: 10.1039/d3qm01048a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nano-based theranostic platforms constructed from various nanomaterials possess unique advantages in tackling bacterial and fungal infections while detecting pathogenic cells, making them a potential modality for addressing global healthcare burdens.
Collapse
|
|
1 |
1 |