1
|
Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, McKeehan WL. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 2000; 275:15482-9. [PMID: 10809780 DOI: 10.1074/jbc.275.20.15482] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Heparan sulfate-regulated transmembrane tyrosine kinase receptor FGFR4 is the major FGFR isotype in mature hepatocytes. Fibroblast growth factor has been implicated in the definition of liver from foregut endoderm where FGFR4 is expressed and stimulation of hepatocyte DNA synthesis in vitro. Here we show that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (-/-) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7alpha-hydroxylase, the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. Expression pattern and cholate-dependent, cholesterol-induced hepatomegaly in the FGFR4 (-/-) mice suggested that activation of receptor interacting protein 140, a co-repressor of feed-forward activator liver X receptor alpha, may mediate the negative regulation of cholesterol- and bile acid-controlled liver cholesterol 7alpha-hydroxylase transcription by FGFR4 and cholate. The results demonstrate that transmembrane sensors interface with metabolite-controlled transcription networks and suggest that pericellular matrix-controlled liver FGFR4 in particular may ensure adequate cholesterol for cell structures and signal transduction.
Collapse
|
|
25 |
275 |
2
|
Zhai D, Jin C, Satterthwait AC, Reed JC. Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ 2006; 13:1419-21. [PMID: 16645636 DOI: 10.1038/sj.cdd.4401937] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
|
19 |
199 |
3
|
Han VK, Hynes MA, Jin C, Towle AC, Lauder JM, Lund PK. Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res 1986; 16:97-107. [PMID: 2427741 DOI: 10.1002/jnr.490160110] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Techniques of in situ hybridization histochemistry, Northern blot hybridization, and immunocytochemistry were used to investigate the biosynthesis of glucagon-like immunoreactants (GLIs) in rat brain. Cells in the nucleus tractus solitarius of the medulla oblongata of adult rat brain hybridized to a synthetic oligonucleotide probe (GLP-I oligomer) corresponding to nucleotide sequences in pancreatic proglucagon mRNA encoding glucagon-like peptide I (GLP-I), and stained with antisera specific for two antigenic determinants of pancreatic proglucagon, glucagon, and GLP-I. These data suggest that there is de novo synthesis of proglucagon in cells of the nucleus tractus solitarius via expression of a proglucagon mRNA similar to that produced in pancreas. Previous studies have shown that cells in hypothalamus stain with GLP-I antisera, but not with glucagon antisera. However, cells in the hypothalamus did not hybridize with the GLP-I oligomer and may therefore produce a GLP-I immunoreactant that is encoded by a mRNA different from the pancreatic proglucagon-mRNA-encoding glucagon and GLP-I. Northern blot hybridizations with a cDNA probe encoding the entire pancreatic proglucagon sequence did not detect proglucagon/GLP-I mRNAs in polyadenylated RNAs (Poly A RNA) from adult rat brainstem and hypothalamus, probably because of their low abundance. Poly A RNAs from fetal rat brain, however, contained two mRNAs that hybridized to the proglucagon cDNA probe. One mRNA of 1,300 bases is the same size as pancreatic proglucagon mRNA. The second mRNA of 1,500 bases may encode the GLP-I immunoreactant detected in the hypothalamus of adult rat brain. The presence of neurons with glucagon and glucagon-like peptides in the nucleus tractus solitarius suggests a role of these peptides in gustatory and/or cardiopulmonary control.
Collapse
|
|
39 |
122 |
4
|
Doraiswamy A, Jin C, Narayan RJ, Mageswaran P, Mente P, Modi R, Auyeung R, Chrisey DB, Ovsianikov A, Chichkov B. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater 2006; 2:267-75. [PMID: 16701886 DOI: 10.1016/j.actbio.2006.01.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 12/27/2005] [Accepted: 01/12/2006] [Indexed: 11/29/2022]
Abstract
Three-dimensional microstructured medical devices, including microneedles and tissue engineering scaffolds, were fabricated by two photon induced polymerization of Ormocer organic-inorganic hybrid materials. Femtosecond laser pulses from a titanium:sapphire laser were used to break chemical bonds on Irgacure 369 photoinitiator within a small focal volume. The radicalized starter molecules reacted with Ormocer US-S4 monomers to create radicalized polymolecules. The desired structures are fabricated by moving the laser focus in three dimensions using a galvano-scanner and a micropositioning system. Ormocer surfaces fabricated using two photon induced polymerization demonstrated acceptable cell viability and cell growth profiles against B35 neuroblast-like cells and HT1080 epithelial-like cells. Lego-like interlocking tissue engineering scaffolds and microneedle arrays with unique geometries were created using two photon induced polymerization. These results suggest that two photon induced polymerization is able to create medical microdevices with a larger range of sizes, shapes, and materials than chemical isotropic etching, injection molding, reactive ion etching, surface micromachining, bulk micromachining, polysilicon micromolding, lithography-electroforming-replication, or other conventional microfabrication techniques.
Collapse
|
Journal Article |
19 |
99 |
5
|
Mashkevich G, Repetto B, Glerum DM, Jin C, Tzagoloff A. SHY1, the yeast homolog of the mammalian SURF-1 gene, encodes a mitochondrial protein required for respiration. J Biol Chem 1997; 272:14356-64. [PMID: 9162072 DOI: 10.1074/jbc.272.22.14356] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
C173 and W125 are pet mutants of Saccharomyces cerevisiae, partially deficient in cytochrome oxidase but with elevated concentrations of cytochrome c. Assays of electron transport chain enzymes indicate that the mutations exert different effects on the terminal respiratory pathway, including an inefficient transfer of electrons between the bc1 and the cytochrome oxidase complexes. A cloned gene capable of restoring respiration in C173/U1 and W125 is identical to reading frame YGR112w of yeast chromosome VII (GenBank Z72897Z72897). The encoded protein is homologous to the product of the mammalian SURF-1 gene. In view of the homology, the yeast gene has been designated SHY1 (Surf Homolog of Yeast). An antibody against the carboxyl-terminal half of Shy1p has been used to localize the protein in the inner mitochondrial membrane. Deletion of part of SHY1 produces a phenotype similar to that of G91 mutants. Disruption of SHY1 at a BamHI site, located approximately 2/3 of the way into the gene, has no obvious phenotypic consequence. This evidence, together with the ability of a carboxyl-terminal coding sequence starting from the BamHI site to complement a shy1 mutant, suggests that the Shy1p contains two domains that can be separately expressed to form a functional protein.
Collapse
|
|
28 |
99 |
6
|
Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M, Hiraki M, Maeda T, Hu X, Adeegbe D, Kharbanda S, Wong KK, Kufe D. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 2017; 36:4037-4046. [PMID: 28288138 PMCID: PMC5509481 DOI: 10.1038/onc.2017.47] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
Abstract
Immunotherapeutic approaches, particularly PD-1/PD-L1 blockade, have improved the treatment of non-small cell lung cancer (NSCLC), supporting the premise that evasion of immune destruction is of importance for NSCLC progression. However, the signals responsible for upregulation of PD-L1 in NSCLC cells and whether they are integrated with the regulation of other immune-related genes are not known. Mucin 1 (MUC1) is aberrantly overexpressed in NSCLC, activates the NF-κB p65→ZEB1 pathway and confers a poor prognosis. The present studies demonstrate that MUC1-C activates PD-L1 expression in NSCLC cells. We show that MUC1-C increases NF-κB p65 occupancy on the CD274/PD-L1 promoter and thereby drives CD274 transcription. Moreover, we demonstrate that MUC1-C-induced activation of NF-κB→ZEB1 signaling represses the TLR9, IFNG, MCP-1 and GM-CSF genes, and that this signature is associated with decreases in overall survival. In concert with these results, targeting MUC1-C in NSCLC tumors suppresses PD-L1 and induces these effectors of innate and adaptive immunity. These findings support a previously unrecognized central role for MUC1-C in integrating PD-L1 activation with suppression of immune effectors and poor clinical outcome.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
94 |
7
|
Glerum DM, Muroff I, Jin C, Tzagoloff A. COX15 codes for a mitochondrial protein essential for the assembly of yeast cytochrome oxidase. J Biol Chem 1997; 272:19088-94. [PMID: 9228094 DOI: 10.1074/jbc.272.30.19088] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The respiratory defect of Saccharomyces cerevisiae mutants assigned to complementation group G4 of a pet strain collection stems from their failure to synthesize cytochrome oxidase. The mutations do not affect expression of either the mitochondrially or nuclearly encoded subunits of the enzyme. The cytochrome oxidase deficiency also does not appear to be related to mitochondrial copper metabolism or heme a biosynthesis. These data suggest that the mutants are likely to be impaired in assembly of the enzyme. A gene designated COX15 has been cloned by transformation of mutants from complementation group G4. This gene is identical to reading frame YER141w on chromosome 5. To facilitate further studies, Cox15p has been expressed as a biotinylated protein. Biotinylated Cox15p fully restores cytochrome oxidase in cox15 mutants, indicating that the carboxyl-terminal sequence with biotin does not affect its function. Cox15p is a constituent of the mitochondrial inner membrane and, because of its resistance to proteolysis, probably is largely embedded in the phospholipid bilayer of the membrane. The present studies further emphasize the complexity of cytochrome oxidase assembly and report a new constituent of mitochondria involved in this process. The existence of COX15 homologs in Schizosaccharomyces pombe and Caenorhabditis elegans suggests that it may be widely distributed in eucaryotic organisms.
Collapse
|
|
28 |
92 |
8
|
Jin C, Qi R, Yin Y, Hu X, Duan L, Xu Q, Zhang Z, Zhong Y, Feng B, Xiang H, Gong Q, Liu Y, Lu G, Li L. Abnormalities in whole-brain functional connectivity observed in treatment-naive post-traumatic stress disorder patients following an earthquake. Psychol Med 2014; 44:1927-1936. [PMID: 24168716 DOI: 10.1017/s003329171300250x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Convergent studies have highlighted the dysfunction of the amygdala, prefrontal cortex and hippocampus in post-traumatic stress disorder (PTSD). However, only a few studies have investigated the functional connectivity between brain regions in PTSD patients during the resting state, which may improve our understanding of the neuropathophysiology of PTSD. The aim of this study was to investigate patterns of whole-brain functional connectivity in treatment-naive PTSD patients without co-morbid conditions who experienced the 8.0-magnitude earthquake in the Sichuan province of China. METHOD A total of 72 PTSD patients and 86 trauma-exposed non-PTSD controls participated in the resting-state functional magnetic resonance imaging study. All these subjects were recruited from the disaster zone of the 2008 Sichuan earthquake. Functional connectivities between 90 paired brain regions in PTSD patients were compared with those in trauma-exposed non-PTSD controls. Furthermore, Pearson correlation analysis was performed between significantly abnormal connectivities in PTSD patients and their clinician-administered PTSD scale (CAPS) scores. RESULTS Compared with non-PTSD controls, PTSD patients showed weaker positive connectivities between the middle prefrontal cortex (mPFC) and the amygdala, hippocampus, parahippocampal gyrus and rectus, as well as between the inferior orbitofrontal cortex and the hippocampus. In addition, PTSD patients showed stronger negative connectivity between the posterior cingulate cortex (PCC) and the insula. The CAPS scores in PTSD patients correlated negatively with the connectivity between the amygdala and the mPFC. CONCLUSIONS PTSD patients showed abnormalities in whole-brain functional connectivity, primarily affecting the connectivities between the mPFC and limbic system, and connectivity between the PCC and insula.
Collapse
|
|
11 |
88 |
9
|
Inoue O, Seiji K, Watanabe T, Kasahara M, Nakatsuka H, Yin SN, Li GL, Cai SX, Jin C, Ikeda M. Mutual metabolic suppression between benzene and toluene in man. Int Arch Occup Environ Health 1988; 60:15-20. [PMID: 3350599 DOI: 10.1007/bf00409373] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exposure intensity during a shift and the metabolite levels in the shift-end urine were examined in male workers exposed to either benzene (65 subjects; the benzene group), toluene (35 subjects; the toluene group), or a mixture of both (55 subjects; the mixture group). In addition, 35 non-exposed male workers (the control group) were similarly examined for urinary metabolites to define background levels. A linear relationship was established between the intensity of solvent exposure and the corresponding urinary metabolite levels (i.e. phenol, catechol and quinol from benzene, and hippuric acid and o-cresol from toluene) in each case when one of the three exposed groups was combined with the control group for calculation. Comparison of regression lines in combination with regression analysis disclosed that urinary levels of phenol and quinol (but not catechol) were lower in the mixture group than in the benzene group when the intensities of exposure to benzene were comparable, indicating that the biotransformation of benzene to phenolic compounds (excluding catechol) in man is suppressed by co-exposure to toluene. Conversely, metabolism of toluene to hippuric acid was suppressed by benzene co-exposure. Conversion of toluene to o-cresol was also reduced by benzene, but to a lesser extent. The significance of the present findings on the mutual suppression of metabolism between benzene and toluene is discussed in relation to solvent toxicology and biological monitoring of exposure to the solvents.
Collapse
|
|
37 |
88 |
10
|
Nguyen DT, Jin C, Thiagalingam A, McEwan AL. A review on electrical impedance tomography for pulmonary perfusion imaging. Physiol Meas 2012; 33:695-706. [DOI: 10.1088/0967-3334/33/5/695] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
13 |
87 |
11
|
Takahashi H, Jin C, Rajabi H, Pitroda S, Alam M, Ahmad R, Raina D, Hasegawa M, Suzuki Y, Tagde A, Bronson RT, Weichselbaum R, Kufe D. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene 2015; 34:5187-97. [PMID: 25659581 PMCID: PMC4530107 DOI: 10.1038/onc.2014.442] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 12/12/2014] [Indexed: 02/08/2023]
Abstract
The mucin 1 (MUC1) oncoprotein has been linked to the inflammatory response by promoting cytokine-mediated activation of the NF-κB pathway. The TGF-β-activated kinase 1 (TAK1) is an essential effector of proinflammatory NF-κB signaling that also regulates cancer cell survival. The present studies demonstrate that the MUC1-C transmembrane subunit induces TAK1 expression in colon cancer cells. MUC1 also induces TAK1 in a MUC1(+/-)/IL-10(-/-) mouse model of colitis and colon tumorigenesis. We show that MUC1-C promotes NF-κB-mediated activation of TAK1 transcription and, in a positive regulatory loop, MUC1-C contributes to TAK1-induced NF-κB signaling. In this way, MUC1-C binds directly to TAK1 and confers the association of TAK1 with TRAF6, which is necessary for TAK1-mediated activation of NF-κB. Targeting MUC1-C thus suppresses the TAK1NF-κB pathway, downregulates BCL-XL and in turn sensitizes colon cancer cells to MEK inhibition. Analysis of colon cancer databases further indicates that MUC1, TAK1 and TRAF6 are upregulated in tumors associated with decreased survival and that MUC1-C-induced gene expression patterns predict poor outcomes in patients. These results support a model in which MUC1-C-induced TAK1NF-κB signaling contributes to intestinal inflammation and colon cancer progression.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
86 |
12
|
Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C, Kharbanda S, Scaltriti M, Baselga J, Kufe D. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene 2013; 33:3422-31. [PMID: 23912457 PMCID: PMC3916940 DOI: 10.1038/onc.2013.308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022]
Abstract
Patients with HER2 positive breast cancer often exhibit intrinsic or acquired resistance to trastuzumab treatment. The transmembrane MUC1-C oncoprotein is aberrantly overexpressed in breast cancer cells and associates with HER2. The present studies demonstrate that silencing MUC1-C in HER2-overexpressing SKBR3 and BT474 breast cancer cells results in downregulation of constitutive HER2 activation. Moreover, treatment with the MUC1-C inhibitor, GO-203, was associated with disruption of MUC1-C/HER2 complexes and decreases in tyrosine phosphorylated HER2 (p-HER2) levels. In studies of trastuzumab-resistant SKBR3R and BT474R cells, we found that the association between MUC1-C and HER2 is markedly increased (~20-fold) as compared to that in sensitive cells. Additionally, silencing MUC1-C in the trastuzumab-resistant cells or treatment with GO-203 decreased p-HER2 and AKT activation. Moreover, targeting MUC1-C was associated with downregulation of phospho-p27 and cyclin E, which confer trastuzumab resistance. Consistent with these results, targeting MUC1-C inhibited the growth and clonogenic survival of both trastuzumab-resistant cells. Our results further demonstrate that silencing MUC1-C reverses resistance to trastuzumab and that the combination of GO-203 and trastuzumab is highly synergistic. These findings indicate that MUC1-C contributes to constitutive activation of the HER2 pathway and that targeting MUC1-C represents a potential approach to abrogate trastuzumab resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
86 |
13
|
Jin C, Taylor K, Conceicao J, Smalley R. Ultraviolet photoelectron spectra of gallium arsenide clusters. Chem Phys Lett 1990. [DOI: 10.1016/0009-2614(90)85511-a] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
35 |
83 |
14
|
Felsenfeld G, Burgess-Beusse B, Farrell C, Gaszner M, Ghirlando R, Huang S, Jin C, Litt M, Magdinier F, Mutskov V, Nakatani Y, Tagami H, West A, Yusufzai T. Chromatin boundaries and chromatin domains. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:245-50. [PMID: 16117655 DOI: 10.1101/sqb.2004.69.245] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
Review |
21 |
78 |
15
|
Nikawa H, Jin C, Makihira S, Egusa H, Hamada T, Kumagai H. Biofilm formation of Candida albicans on the surfaces of deteriorated soft denture lining materials caused by denture cleansers in vitro. J Oral Rehabil 2003; 30:243-50. [PMID: 12588495 DOI: 10.1046/j.1365-2842.2003.01024.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candidal colonization and subsequent biofilm formation on denture materials are important in the development of pathogenesis, such as denture stomatitis. Routine use of denture cleansers is one of the most effective methods of denture plaque control, although the incompatibility of soft liners and denture cleansers cause damage to the materials. The present study, biofilm formation of Candida albicans on the surfaces of soft denture lining materials, immersed in denture cleansers for 180 days were studied. Seven commercially available soft denture lining materials, were artificially deteriorated by immersion into three commercially available denture cleansers for 180 days, and subsequent fungal growth and biofilm formation were studied by measuring pH of the media and by the use of adenosine triphosphate (ATP) analysis. Fungal biofilm formation on the deteriorated soft liners varied depending upon the combination of the soft liners and denture cleansers. Several combinations of soft liners with denture cleansers exhibited the significantly high colonization capacity as compared with each sample immersed in distilled water, used as individual controls. The relationship between the biofilm formation on the samples of each material and the surface roughness of the soft lining materials was analyzed. However, no significant correlation was observed. The results, taken together, suggested that fungal colonization could be predominantly regulated by the combination of lining material with denture cleansers. In clinical terms, our findings suggests that daily cleansing of soft lining materials with mismatched denture cleansers promoted the subsequent biofilm formation of fungi on the materials.
Collapse
|
|
22 |
78 |
16
|
Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, Nakahara T, Murata T, Yokoyama KK. Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:374-83. [PMID: 11168372 DOI: 10.1046/j.1432-1033.2001.01887.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rat pheochromocytoma PC12 cells undergo neuronal differentiation in response to nerve growth factor (NGF). The differentiation involves protein kinase cascades that include the kinases MEK and ERK, as well as activation of the transcription factors c-Jun and c-Fos. We show here, that exposure of PC12 cells to mannosylerythritol lipid (MEL), a yeast extracellular glycolipid, enhances the activity of acetylcholinesterase and interrupts the cell cycle at the G1 phase, with resulting outgrowth of neurites and partial cellular differentiation. Treatment with MEL stimulates the phosphorylation of ERK to a similar extent as treatment with NGF, although, the appearance of phosphorylated ERK is somewhat delayed. Both the MEL-induced outgrowth of neurites and the increase in the activity of acetylcholinesterase are prevented by PD98059, a specific inhibitor of MEK. Northern blotting analysis of c-jun transcripts and analysis of transcription in PC12 cells of a c-jun/CAT reporter construct demonstrated a significant increase in the rate of transcription of the c-jun gene upon treatment with MEL. The sequence elements required for the MEL-mediated activation of transcription of the c-jun gene are located between nucleotides -126 and -79 in the 5' flanking region. Our results suggest that MEL induces characteristics of neuronal differentiation in PC12 cells, with transactivation of the c-jun gene, via an ERK-related signal cascade that is partially overlapping the pathways activated in response to NGF. These results might provide the groundwork for the use of microbial extracellular glycolipids as novel reagents for the treatment of cancer cells.
Collapse
|
|
24 |
76 |
17
|
Liu Q, Jin C, Liao X, Shen Z, Chen DJ, Chen Y. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J Biol Chem 1999; 274:16979-87. [PMID: 10358047 DOI: 10.1074/jbc.274.24.16979] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human UBC9 is a member of the E2 (ubiquitin conjugation enzyme) family of proteins. Instead of conjugating to ubiquitin, it conjugates with a ubiquitin homologue UBL1 (also known as SUMO-1, GMP1, SMTP3, PIC1, and sentrin). UBC9 has been shown to be involved in cell cycle regulation, DNA repair, and p53-dependent processes. The binding interfaces of the UBC9 and UBL1 complex have been determined by chemical shift perturbation using nuclear magnetic resonance spectroscopy. The binding site of UBL1 resides on the ubiquitin domain, and the binding site of UBC9 is located on a structurally conserved region of E2. Because the UBC9-UBL1 system shares many similarities with the ubiquitin system in structures and in conjugation with each other and with target proteins, the observed binding interfaces may be conserved in E2-ubiquitin interactions in general.
Collapse
|
|
26 |
73 |
18
|
Jin C, Ugai H, Song J, Murata T, Nili F, Sun K, Horikoshi M, Yokoyama KK. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett 2001; 489:34-41. [PMID: 11231009 DOI: 10.1016/s0014-5793(00)02387-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mouse cDNA that encodes a DNA-binding protein was identified by yeast two-hybrid screening, using activating transcription factor-2 (ATF-2) as the bait. The protein contained a bZIP (basic amino acid-leucine zipper region) domain and its amino acid sequence was almost identical to that of rat Jun dimerization protein 2 (JDP2). Mouse JDP2 interacted with ATF-2 both in vitro and in vivo via its bZIP domain. It was encoded by a single gene and various transcripts were expressed in all tested tissues of adult mice, as well as in embryos, albeit at different levels in various tissues. Furthermore, mouse JDP2 bound to the cAMP-response element (CRE) as a homodimer or as a heterodimer with ATF-2, and repressed CRE-dependent transcription that was mediated by ATF-2. JDP2 was identified as a novel repressor protein that affects ATF-2-mediated transcription.
Collapse
|
|
24 |
72 |
19
|
Xia G, Jin C, Zhou J, Yang S, Zhang S, Jin C. A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4079-85. [PMID: 11454002 DOI: 10.1046/j.1432-1327.2001.02323.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chitinases are produced throughout the growth process of fungi and are thought to play important roles in morphogenesis. Aspergillus fumigatus, is an important pathogen of immunocompromised individuals in which it causes pneumonia and invasive disseminated disease with high mortality; it is also known to produce chitinase. We have induced an exceptionally stable extracellular chitinase in A. fumigatus YJ-407, which could be isolated readily in a homogeneous form by using ammonium sulfate precipitation followed by DEAE-cellulose chromatography and preparative PAGE. The molecular mass of this chitinase was estimated to be 46 000 by SDS/PAGE, and its isoelectric point was pH 5.6. The enzyme was most active at pH 5.0 and 60 degrees C, and was inhibited strongly by Hg2+, Pb2+, Ag+, Fe2+, Mn2+ and Zn2+. The enzyme was stable over a broad pH range 4-8 and below 45 degrees C. Tryptophan and carboxyl groups were found to be essential for the enzyme activity. The Michaelis constants for swollen chitin and chitosan were 1.12 mg.mL-1 and 1.84 mg.mL-1, respectively. The enzyme showed maximum activity towards glycol chitin and partially deacetylated chitosan, and lower activity towards colloidal chitin. Analysis of the hydrolysis product showed that the enzyme has both endo- and exo-hydrolytic activities. In addition, a transglycosyl activity was also observed.
Collapse
|
|
24 |
68 |
20
|
Perrett K, Winter A, Kibwana E, Jin C, John T, Yu L, Borrow R, Curtis N, Pollard A. Antibody Persistence after Serogroup C Meningococcal Conjugate Immunization of United Kingdom Primary‐School Children in 1999–2000 and Response to a Booster: A Phase 4 Clinical Trial. Clin Infect Dis 2010; 50:1601-10. [DOI: 10.1086/652765] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
|
15 |
68 |
21
|
Jin C, Marsden I, Chen X, Liao X. Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. J Mol Biol 1999; 289:683-90. [PMID: 10369754 DOI: 10.1006/jmbi.1999.2819] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genesis is an HNF-3/fkh homologous protein. By using multi-dimensional NMR techniques, we have obtained the solution structure and backbone dynamics of Genesis complexed with a 17 base-pair DNA. Our results indicate that both the local folding and dynamic properties of Genesis are perturbed when it binds to the DNA site. Our data show that a conserved flexible amino acid sequence (wing 1) makes dynamic contacts to DNA in the complex and a short helix is induced by Genesis-DNA interactions. Our data indicate that, unlike the HNF-3gamma/DNA complex, a magnesium ion is not required in forming the stable Genesis-DNA complex.
Collapse
|
|
26 |
68 |
22
|
Gisselsson D, Jonson T, Yu C, Martins C, Mandahl N, Wiegant J, Jin Y, Mertens F, Jin C. Centrosomal abnormalities, multipolar mitoses, and chromosomal instability in head and neck tumours with dysfunctional telomeres. Br J Cancer 2002; 87:202-7. [PMID: 12107843 PMCID: PMC2376110 DOI: 10.1038/sj.bjc.6600438] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2002] [Revised: 05/01/2002] [Accepted: 05/08/2002] [Indexed: 11/08/2022] Open
Abstract
Carcinomas of the head and neck typically exhibit complex chromosome aberrations but the underlying mutational mechanisms remain obscure. Evaluation of cell division dynamics in low-passage cell lines from three benign and five malignant head and neck tumours revealed a strong positive correlation between multipolarity of the mitotic spindle and the formation of bridges at anaphase in both benign and malignant tumours. Cells exhibiting a high rate of mitotic abnormalities also showed several chromosome termini lacking TTAGGG repeats and a high frequency of dicentric chromosomes. Multicolour karyotyping demonstrated a preferential involvement in structural rearrangements of chromosomes with deficient telomeres. The majority of malignant, mitotically unstable tumours expressed the reverse transcriptase subunit of telomerase. These data indicate that some of the genomic instability in head and neck tumours is initiated by telomere dysfunction, leading to the formation of dicentric chromosomes. These form chromosome bridges at mitosis that could prevent the normal anaphase-telophase transition. In turn, this may cause an accumulation of centrosomes and mitotic multipolarity. Telomerase expression does not confer total stability to the tumour genome but could be crucial for moderating the rate of chromosomal evolution.
Collapse
|
research-article |
23 |
66 |
23
|
Du J, Cai X, Yao J, Ding X, Wu Q, Pei S, Jiang K, Zhang Y, Wang W, Shi Y, Lai Y, Shen J, Teng M, Huang H, Fei Q, Reddy ES, Zhu J, Jin C, Yao X. The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability. Oncogene 2008; 27:4107-14. [PMID: 18297113 DOI: 10.1038/onc.2008.34] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss or gain of whole chromosome, the form of chromosome instability commonly associated with cancers is thought to arise from aberrant chromosome segregation during cell division. Chromosome segregation in mitosis is orchestrated by the interaction of kinetochores with spindle microtubules. Our studies show that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. However, it was unclear how NEK2A ensures accurate chromosome segregation in mitosis. Here we show that NEK2A-mediated Hec1 (highly expressed in cancer) phosphorylation is essential for faithful kinetochore microtubule attachments in mitosis. Using phospho-specific antibody, our studies show that NEK2A phosphorylates Hec1 at Ser165 during mitosis. Although such phosphorylation is not required for assembly of Hec1 to the kinetochore, expression of non-phosphorylatable mutant Hec1(S165) perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. Our in vitro reconstitution experiment demonstrated that Hec1 binds to microtubule in low affinity and phosphorylation by NEK2A, which prevents aberrant kinetochore-microtubule connections in vivo, increases the affinity of the Ndc80 complex for microtubules in vitro. Thus, our studies illustrate a novel regulatory mechanism in which NEK2A kinase operates a faithful chromosome attachment to spindle microtubule, which prevents chromosome instability during cell division.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
66 |
24
|
Jin C, Nikawa H, Makihira S, Hamada T, Furukawa M, Murata H. Changes in surface roughness and colour stability of soft denture lining materials caused by denture cleansers. J Oral Rehabil 2003; 30:125-30. [PMID: 12535137 DOI: 10.1046/j.1365-2842.2003.01014.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Soft denture lining materials were immersed into solutions of denture cleansers for 8 h at room temperature, and immersed into distilled water for the remainder of the 24-h period at 37 degrees C. Surface roughness of the soft denture lining materials was measured by contact type surface roughness instrument. For the colour stability test, soft denture lining materials were immersed in the denture cleansers as described above for 180 days. Finally, the colour changes of each material were quantitatively measured by a photometrical instrument to obtain the colour differences between newly processed specimen and immersed specimens (P < 0.01). An autopolymerizing silicone material, Evatouch, exhibited severe changes in surface roughness by all denture cleanser, and the generic material GC Denture Relining showed the minimal changes. Severe colour changes were also observed with some liner and cleanser combinations (P < 0.01). Except for Evatouth, the four silicone soft liners were more stable in surface roughness and in colour change than the two acrylic soft liners. One autopolymerizing silicone (GC denture relining) and one heat curing silicone (Molloplast B) demonstrated the best stability.
Collapse
|
|
22 |
63 |
25
|
Marsden I, Jin C, Liao X. Structural changes in the region directly adjacent to the DNA-binding helix highlight a possible mechanism to explain the observed changes in the sequence-specific binding of winged helix proteins. J Mol Biol 1998; 278:293-9. [PMID: 9571051 DOI: 10.1006/jmbi.1998.1703] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatocyte nuclear factor 3 (HNF-3)/fork head (fkh) family contains a large number of transcription factors and folds into a winged helix motif. Despite having almost invariable amino acid sequences in their principal DNA-binding helices, HNF-3/fkh proteins show a wide diversity of sequence-specific binding. Previous studies of chimeric HNF-3/fkh proteins demonstrated that the binding specificity is primarily influenced by a region directly adjacent to the binding helix. We report our findings of an NMR structural study performed on an HNF-3/fkh family member (Genesis, formerly HFH-2) and compare it to that of another family member (HNF-3gamma) complexed to DNA and determined by X-ray crystallography. It is found that in comparison to HNF-3gamma, Genesis contains an extra small helix directly prior to the N terminus of the primary DNA contact helix. Due to the insertion of this helix, a shorter and slightly re-positioned primary DNA contact helix is observed, which we believe leads to the DNA-binding specificity differences among family members.
Collapse
|
|
27 |
59 |