1
|
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 1996; 86:263-74. [PMID: 8706131 DOI: 10.1016/s0092-8674(00)80098-7] [Citation(s) in RCA: 1079] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have identified the yeast and human homologs of the SKP1 gene as a suppressor of cdc4 mutants and as a cyclin F-binding protein. Skp1p indirectly binds cyclin A/Cdk2 through Skp2p, and directly binds Skp2p, cyclin F, and Cdc4p through a novel structural motif called the F-box. SKP1 is required for ubiquitin-mediated proteolysis of Cin2p, Clb5p, and the Cdk inhibitor Sic1p, and provides a link between these molecules and the proteolysis machinery. A large number of proteins contain the F-box motif and are thereby implicated in the ubiquitin pathway. Different skp1 mutants arrest cells in either G1 or G2, suggesting a connection between regulation of proteolysis in different stages of the cycle.
Collapse
|
|
29 |
1079 |
2
|
Lynch KR, O'Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z, Connolly BM, Bai C, Austin CP, Chateauneuf A, Stocco R, Greig GM, Kargman S, Hooks SB, Hosfield E, Williams DL, Ford-Hutchinson AW, Caskey CT, Evans JF. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999; 399:789-93. [PMID: 10391245 DOI: 10.1038/21658] [Citation(s) in RCA: 795] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cysteinyl leukotrienes-leukotriene C4(LTC4), leukotriene D4(LTD4) and leukotriene E4(LTE4)-are important mediators of human bronchial asthma. Pharmacological studies have determined that cysteinyl leukotrienes activate at least two receptors, designated CysLT1 and CysLT2. The CysLT1-selective antagonists, such as montelukast (Singulair), zafirlukast (Accolate) and pranlukast (Onon), are important in the treatment of asthma. Previous biochemical characterization of CysLT1 antagonists and the CysLT1 receptor has been in membrane preparations from tissues enriched for this receptor. Here we report the molecular and pharmacological characterization of the cloned human CysLT1 receptor. We describe the functional activation (calcium mobilization) of this receptor by LTD4 and LTC4, and competition for radiolabelled LTD4 binding to this receptor by the cysteinyl leukotrienes and three structurally distinct classes of CysLT1-receptor antagonists. We detected CysLT1-receptor messenger RNA in spleen, peripheral blood leukocytes and lung. In normal human lung, expression of the CysLT1-receptor mRNA was confined to smooth muscle cells and tissue macrophages. Finally, we mapped the human CysLT1-receptor gene to the X chromosome.
Collapse
|
|
26 |
795 |
3
|
Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 1995; 6:387-400. [PMID: 7626805 PMCID: PMC301199 DOI: 10.1091/mbc.6.4.387] [Citation(s) in RCA: 734] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
p21Cip1 is a cyclin-dependent kinase (Cdk) inhibitor that is transcriptionally activated by p53 in response to DNA damage. We have explored the interaction of p21 with the currently known Cdks. p21 effectively inhibits Cdk2, Cdk3, Cdk4, and Cdk6 kinases (Ki 0.5-15 nM) but is much less effective toward Cdc2/cyclin B (Ki approximately 400 nM) and Cdk5/p35 (Ki > 2 microM), and does not associate with Cdk7/cyclin H. Overexpression of P21 arrests cells in G1. Thus, p21 is not a universal inhibitor of Cdks but displays selectivity for G1/S Cdk/cyclin complexes. Association of p21 with Cdks is greatly enhanced by cyclin binding. This property is shared by the structurally related inhibitor p27, suggesting a common biochemical mechanism for inhibition. With respect to Cdk2 and Cdk4 complexes, p27 shares the inhibitory potency of p21 but has slightly different kinase specificities. In normal diploid fibroblasts, the vast majority of active Cdk2 is associated with p21, but this active kinase can be fully inhibited by addition of exogenous p21. Reconstruction experiments using purified components indicate that multiple molecules of p21 can associate with Cdk/cyclin complexes and inactive complexes contain more than one molecule of p21. Together, these data suggest a model whereby p21 functions as an inhibitory buffer whose levels determine the threshold kinase activity required for cell cycle progression.
Collapse
|
research-article |
30 |
734 |
4
|
Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995; 9:650-62. [PMID: 7729684 DOI: 10.1101/gad.9.6.650] [Citation(s) in RCA: 696] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclin-dependent kinases (Cdks) are positive regulators of cell proliferation, whereas Cdk inhibitors (CKIs) inhibit proliferation. We describe a new CKI, p57KIP2, which is related to p21CIP1 and p27KIP1. p57KIP2 is a potent, tight-binding inhibitor of several G1 cyclin/Cdk complexes, and its binding is cyclin dependent. Unlike CIP1, KIP2 is not regulated by p53. Overexpression of p57KIP2 arrests cells in G1. p57KIP2 proteins have a complex structure. Mouse p57KIP2 consists of four structurally distinct domains: an amino-terminal Cdk inhibitory domain, a proline-rich domain, an acidic-repeat region, and a carboxy-terminal domain conserved with p27KIP1. Human p57KIP2 appears to have conserved the amino- and carboxy-terminal domains but has replaced the internal regions with sequences containing proline-alanine repeats. In situ hybridization during mouse embryogenesis revealed that KIP2 mRNA displays a striking pattern of expression during development, showing high level expression in skeletal muscle, brain, heart, lungs, and eye. Most of the KIP2-expressing cells are terminally differentiated, suggesting that p57KIP2 is involved in decisions to exit the cell cycle during development and differentiation. Human KIP2 is located at 11p15.5, a region implicated in both sporadic cancers and Beckwith-Wiedemann syndrome, a familial cancer syndrome, marking it as a candidate tumor suppressor. The discovery of a new member of the p21CIP1 inhibitor family with novel structural features and expression patterns suggests a complex role for these proteins in cell cycle control and development.
Collapse
|
|
30 |
696 |
5
|
Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M, Joyner AL. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 2000; 127:1593-605. [PMID: 10725236 DOI: 10.1242/dev.127.8.1593] [Citation(s) in RCA: 468] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secreted factor Sonic hedgehog (SHH) is both required for and sufficient to induce multiple developmental processes, including ventralization of the CNS, branching morphogenesis of the lungs and anteroposterior patterning of the limbs. Based on analogy to the Drosophila Hh pathway, the multiple GLI transcription factors in vertebrates are likely to both transduce SHH signaling and repress Shh transcription. In order to discriminate between overlapping versus unique requirements for the three Gli genes in mice, we have produced a Gli1 mutant and analyzed the phenotypes of Gli1/Gli2 and Gli1/3 double mutants. Gli3(xt) mutants have polydactyly and dorsal CNS defects associated with ectopic Shh expression, indicating GLI3 plays a role in repressing Shh. In contrast, Gli2 mutants have five digits, but lack a floorplate, indicating that it is required to transduce SHH signaling in some tissues. Remarkably, mice homozygous for a Gli1(zfd)mutation that deletes the exons encoding the DNA-binding domain are viable and appear normal. Transgenic mice expressing a GLI1 protein lacking the zinc fingers can not induce SHH targets in the dorsal brain, indicating that the Gli1(zfd)allele contains a hypomorphic or null mutation. Interestingly, Gli1(zfd/zfd);Gli2(zfd/+), but not Gli1(zfd/zfd);Gli3(zfd/+) double mutants have a severe phenotype; most Gli1(zfd/zfd);Gli2(zfd/+) mice die soon after birth and all have multiple defects including a variable loss of ventral spinal cord cells and smaller lungs that are similar to, but less extreme than, Gli2(zfd/zfd) mutants. Gli1/Gli2 double homozygous mutants have more extreme CNS and lung defects than Gli1(zfd/zfd);Gli2(zfd/+) mutants, however, in contrast to Shh mutants, ventrolateral neurons develop in the CNS and the limbs have 5 digits with an extra postaxial nubbin. These studies demonstrate that the zinc-finger DNA-binding domain of GLI1 protein is not required for SHH signaling in mouse. Furthermore, Gli1 and Gli2, but not Gli1 and Gli3, have extensive overlapping functions that are likely downstream of SHH signaling.
Collapse
|
|
25 |
468 |
6
|
Liu Q, Pong SS, Zeng Z, Zhang Q, Howard AD, Williams DL, Davidoff M, Wang R, Austin CP, McDonald TP, Bai C, George SR, Evans JF, Caskey CT. Identification of urotensin II as the endogenous ligand for the orphan G-protein-coupled receptor GPR14. Biochem Biophys Res Commun 1999; 266:174-8. [PMID: 10581185 DOI: 10.1006/bbrc.1999.1796] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Urotensin II (UII) is a neuropeptide with potent cardiovascular effects. Its sequence is strongly conserved among different species and has structural similarity to somatostatin. No receptor for UII has been molecularly identified from any species so far. GPR14 was cloned as an orphan G protein-coupled receptor with similarity to members of the somatostatin/opioid receptor family. We have now demonstrated that GPR14 is a high affinity receptor for UII and designate it UII-R1a. HEK293 cells and COS-7 cells transfected with rat GPR14 showed strong, dose-dependent calcium mobilization in response to fish, frog, and human UII. Radioligand binding analysis showed high affinity binding of UII to membrane preparations isolated from HEK293 cells stably expressing rat GPR14. In situ hybridization analysis showed that GPR14 was expressed in motor neurons of the spinal cord, smooth muscle cells of the bladder, and muscle cells of the heart. The identification of the first receptor for UII will allow better understanding of the physiological and pharmacological roles of UII.
Collapse
|
|
26 |
205 |
7
|
Bai C, Connolly B, Metzker ML, Hilliard CA, Liu X, Sandig V, Soderman A, Galloway SM, Liu Q, Austin CP, Caskey CT. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci U S A 2000; 97:1230-5. [PMID: 10655513 PMCID: PMC15578 DOI: 10.1073/pnas.97.3.1230] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fas-mediated apoptosis is an important regulator of cell survival, and abnormalities in this system have been shown to result in a number of human pathological conditions. A secreted member of the tumor necrosis factor receptor superfamily, DcR3, was recently reported to be amplified in human lung and colon cancers as a negative regulator of Fas-mediated apoptosis. We identified this gene, which we call M68. M68 genomic DNA, mRNA, and protein levels were examined in a series of human gastrointestinal tract tumors. Using M68 immunohistochemistry and a scoring system similar to that used for HER-2/neu, we found that M68 protein was overexpressed in 30 of 68 (44%) human adenocarcinomas of the esophagus, stomach, colon, and rectum. Tumors examined by Northern blot revealed M68 mRNA highly elevated in a similar fraction of primary tumors from the same gastrointestinal tract regions, as well as in the colon adenocarcinoma cell lines SW480 and SW1116. Further, we found M68 protein to be overexpressed in a substantial number of tumors in which gene amplification could not be detected by fluorescence in situ hybridization or quantitative genomic PCR, suggesting that overexpression of M68 may precede amplification in tumors. Finally, we find that M68 lies within a four-gene cluster that includes a novel helicase-like gene (NHL) related to RAD3/ERCC2, a plasma membrane Ras-related GTPase and a member of the stathmin family, amplification or overexpression of which may also contribute to cell growth and tumor progression.
Collapse
MESH Headings
- ADP-Ribosylation Factors
- Amino Acid Sequence
- Apoptosis
- Chromosome Mapping
- Chromosomes, Human, Pair 20/genetics
- DNA Helicases/genetics
- DNA, Complementary/genetics
- Esophageal Neoplasms/genetics
- Expressed Sequence Tags
- GTP Phosphohydrolases/genetics
- Gastrointestinal Neoplasms/genetics
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Genes
- Humans
- Membrane Glycoproteins
- Membrane Proteins/genetics
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nerve Growth Factors/genetics
- Polymerase Chain Reaction
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Tumor Necrosis Factor
- Receptors, Tumor Necrosis Factor, Member 6b
- Sequence Alignment
- Sequence Homology, Amino Acid
- Stathmin
- fas Receptor/biosynthesis
- fas Receptor/physiology
Collapse
|
research-article |
25 |
190 |
8
|
Bai C, Fukuda N, Song Y, Ma T, Matthay MA, Verkman AS. Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest 1999; 103:555-61. [PMID: 10021464 PMCID: PMC408096 DOI: 10.1172/jci4138] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Accepted: 12/22/1998] [Indexed: 11/17/2022] Open
Abstract
The mammalian lung expresses water channel aquaporin-1 (AQP1) in microvascular endothelia and aquaporin-4 (AQP4) in airway epithelia. To test whether these water channels facilitate fluid movement between airspace, interstitial, and capillary compartments, we measured passive and active fluid transport in AQP1 and AQP4 knockout mice. Airspace-capillary osmotic water permeability (Pf) was measured in isolated perfused lungs by a pleural surface fluorescence method. Pf was remarkably reduced in AQP1 (-/-) mice (measured in cm/s x 0.001, SE, n = 5-10: 17 +/- 2 [+/+]; 6.6 +/- 0.6 AQP1 [+/-]; 1.7 +/- 0.3 AQP1 [-/-]; 12 +/- 1 AQP4 [-/-]). Microvascular endothelial water permeability, measured by a related pleural surface fluorescence method in which the airspace was filled with inert perfluorocarbon, was reduced more than 10-fold in AQP1 (-/-) vs. (+/+) mice. Hydrostatically induced lung interstitial and alveolar edema was measured by a gravimetric method and by direct measurement of extravascular lung water. Both approaches indicated a more than twofold reduction in lung water accumulation in AQP1 (-/-) vs. (+/+) mice in response to a 5- to 10-cm H2O increase in pulmonary artery pressure for five minutes. Active, near-isosmolar alveolar fluid absorption (Jv) was measured in in situ perfused lungs using 125I-albumin as an airspace fluid volume marker. Jv (measured in percent fluid uptake at 30 min, n = 5) in (+/+) mice was 6.0 +/- 0.6 (37 degrees C), increased to 16 +/- 1 by beta-agonists, and inhibited to less than 2.0 by amiloride, ouabain, or cooling to 23 degrees C. Jv (with isoproterenol) was not affected by aquaporin deletion (18.9 +/- 2.2 [+/+]; 16.4 +/- 1.5 AQP1 [-/-]; 16.3 +/- 1.7 AQP4 [-/-]). These results indicate that osmotically driven water transport across microvessels in adult lung occurs by a transcellular route through AQP1 water channels and that the microvascular endothelium is a significant barrier for airspace-capillary osmotic water transport. AQP1 facilitates hydrostatically driven lung edema but is not required for active near-isosmolar absorption of alveolar fluid.
Collapse
|
research-article |
26 |
187 |
9
|
Abstract
Cyclins are important regulators of cell cycle transitions through their ability to bind and activate cyclin-dependent protein kinases. In mammals several classes of cyclins exist which are thought to co-ordinate the timing of different events necessary for cell cycle progression. Here we describe the identification of a novel human cyclin, cyclin F, isolated as a suppressor of the G1/S deficiency of a Saccharomyces cerevisiae cdc4 mutant. Cyclin F is the largest cyclin, with a molecular weight of 87 kDa, and migrates as a 100-110 kDa protein. It contains an extensive PEST-rich C-terminus and a cyclin box region that is most closely related to cyclins A and B. Cyclin F mRNA is ubiquitiously expressed in human tissues. It fluctuates dramatically through the cell cycle, peaking in G2 like cyclin A and decreasing prior to decline of cyclin B mRNA. Cyclin F protein accumulates in interphase and is destroyed at mitosis at a time distinct from cyclin B. Cyclin F shows regulated subcellular localization, being localized in the nucleus in most cells, with a significant percentage of cells displaying only perinuclear staining. Overexpression of cyclin F, or a mutant lacking the PEST region, in human cells resulted in a significant increase in the G2 population, implicating cyclin F in the regulation of cell cycle transitions. The ubiquitous expression and phylogentic conservation of cyclin F suggests that it is likely to coordinate essential cell cycle events distinct from those regulated by other cyclins.
Collapse
|
|
31 |
132 |
10
|
Bousquet J, Addis A, Adcock I, Agache I, Agusti A, Alonso A, Annesi-Maesano I, Anto JM, Bachert C, Baena-Cagnani CE, Bai C, Baigenzhin A, Barbara C, Barnes PJ, Bateman ED, Beck L, Bedbrook A, Bel EH, Benezet O, Bennoor KS, Benson M, Bernabeu-Wittel M, Bewick M, Bindslev-Jensen C, Blain H, Blasi F, Bonini M, Bonini S, Boulet LP, Bourdin A, Bourret R, Bousquet PJ, Brightling CE, Briggs A, Brozek J, Buhl R, Bush A, Caimmi D, Calderon M, Calverley P, Camargos PA, Camuzat T, Canonica GW, Carlsen KH, Casale TB, Cazzola M, Cepeda Sarabia AM, Cesario A, Chen YZ, Chkhartishvili E, Chavannes NH, Chiron R, Chuchalin A, Chung KF, Cox L, Crooks G, Crooks MG, Cruz AA, Custovic A, Dahl R, Dahlen SE, De Blay F, Dedeu T, Deleanu D, Demoly P, Devillier P, Didier A, Dinh-Xuan AT, Djukanovic R, Dokic D, Douagui H, Dubakiene R, Eglin S, Elliot F, Emuzyte R, Fabbri L, Fink Wagner A, Fletcher M, Fokkens WJ, Fonseca J, Franco A, Frith P, Furber A, Gaga M, Garcés J, Garcia-Aymerich J, Gamkrelidze A, Gonzales-Diaz S, Gouzi F, Guzmán MA, Haahtela T, Harrison D, Hayot M, Heaney LG, Heinrich J, Hellings PW, Hooper J, Humbert M, Hyland M, Iaccarino G, Jakovenko D, Jardim JR, Jeandel C, Jenkins C, Johnston SL, Jonquet O, Joos G, Jung KS, Kalayci O, Karunanithi S, Keil T, Khaltaev N, Kolek V, Kowalski ML, Kull I, Kuna P, Kvedariene V, Le LT, Lodrup Carlsen KC, Louis R, MacNee W, Mair A, Majer I, Manning P, de Manuel Keenoy E, Masjedi MR, Melen E, Melo-Gomes E, Menzies-Gow A, Mercier G, Mercier J, Michel JP, Miculinic N, Mihaltan F, Milenkovic B, Molimard M, Momas I, Montilla-Santana A, Morais-Almeida M, Morgan M, N'Diaye M, Nafti S, Nekam K, Neou A, Nicod L, O'Hehir R, Ohta K, Paggiaro P, Palkonen S, Palmer S, Papadopoulos NG, Papi A, Passalacqua G, Pavord I, Pigearias B, Plavec D, Postma DS, Price D, Rabe KF, Radier Pontal F, Redon J, Rennard S, Roberts J, Robine JM, Roca J, Roche N, Rodenas F, Roggeri A, Rolland C, Rosado-Pinto J, Ryan D, Samolinski B, Sanchez-Borges M, Schünemann HJ, Sheikh A, Shields M, Siafakas N, Sibille Y, Similowski T, Small I, Sola-Morales O, Sooronbaev T, Stelmach R, Sterk PJ, Stiris T, Sud P, Tellier V, To T, Todo-Bom A, Triggiani M, Valenta R, Valero AL, Valiulis A, Valovirta E, Van Ganse E, Vandenplas O, Vasankari T, Vestbo J, Vezzani G, Viegi G, Visier L, Vogelmeier C, Vontetsianos T, Wagstaff R, Wahn U, Wallaert B, Whalley B, Wickman M, Williams DM, Wilson N, Yawn BP, Yiallouros PK, Yorgancioglu A, Yusuf OM, Zar HJ, Zhong N, Zidarn M, Zuberbier T. Integrated care pathways for airway diseases (AIRWAYS-ICPs). Eur Respir J 2014; 44:304-23. [PMID: 24925919 DOI: 10.1183/09031936.00014614] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).
Collapse
|
Journal Article |
11 |
128 |
11
|
Song Y, Fukuda N, Bai C, Ma T, Matthay MA, Verkman AS. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in oedema formation following acute lung injury: studies in transgenic aquaporin null mice. J Physiol 2000; 525 Pt 3:771-9. [PMID: 10856128 PMCID: PMC2269974 DOI: 10.1111/j.1469-7793.2000.00771.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aquaporin (AQP) water channels provide a major pathway for osmotically driven water movement across epithelial and microvascular barriers in the lung. We used mice deficient in each of the three principal lung aquaporins, AQP1, AQP4 and AQP5, to test the hypothesis that aquaporins are important in neonatal lung fluid balance, adult lung fluid clearance and formation of lung oedema after acute lung injury. Wet-to-dry weight ratios (W/D) in lungs from wild-type mice decreased from 7.9 to 5.7 over the first hour after spontaneous delivery. AQP deletion did not significantly affect W/D at 45 min after birth. Alveolar fluid clearance was measured in living ventilated mice in which 0.5 ml saline containing radiolabelled albumin was instilled into the airspaces. Fluid clearance was 17.4 % in 15 min and inhibited >90 % by amiloride, but clearance was not affected by AQP deletion. W/D was measured in established models of acute lung injury - acid aspiration and thiourea administration. Two hours after intratracheal administration of HCl, W/D increased from 3.7 to 7.5 but was not affected by AQP deletion. Three hours after intraperitoneal infusion of thiourea, W/D increased to 5.5 and marked pleural effusions appeared, but there were no differences in wild-type and AQP knockout mice. Hyperoxic subacute lung injury was induced by 95 % oxygen. Neither mean survival (143 h) nor W/D at 65 h (5.1) were significantly affected by AQP deletion. Despite their role in osmotically driven lung water transport, aquaporins are not required for the physiological clearance of lung water in the neonatal or adult lung, or for the accumulation of extravascular lung water in the injured lung.
Collapse
|
|
25 |
118 |
12
|
|
Review |
29 |
116 |
13
|
|
|
28 |
78 |
14
|
Lin Z, Wang C, Feng X, Liu M, Li J, Bai C. The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies. Nucleic Acids Res 1998; 26:3228-34. [PMID: 9628923 PMCID: PMC147677 DOI: 10.1093/nar/26.13.3228] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Condensation of DNA by multivalent cations can provide useful insights into the physical factors governing the folding and packaging of DNA in vivo. In this work, local ordered structures of spermidine-DNA complexes prepared from different DNA concentrations have been examined by using atomic force microscopy (AFM) and polarizing microscopy (PM). Two types (I and II) of DNA condensates, significantly different in sizes, were observed. It was found that for extremely dilute solutions (DNA concentrations around 1 ng/microl or below), the DNA molecules would collapse into toroidal structures with a volume equivalent to a single lambda-DNA (type I). In relatively dilute solutions (DNA concentrations between 1 and 10 ng/microll), a significantly larger structure of multimolecular toroids (circular and elliptical, type II) were formed, which were constructed by many fine particles. Measurements show that the average diameter of these fine particles was similar to the outer diameter of the monomolecular toroids observed in extremely dilute solutions, and the thickness of the multimolecular toroids had a distribution of multi-layers with height increments of 11 nm, indicating that the multimolecular toroidal structures have lamellar characteristics. Moreover, by enriching the DNA-spermidine complexes in very diluted solution, branch-like structures constructed by subunits were observed by using AFM. The analysis of the pellets in polarizing microscopy reveals a liquid-crystal-like pattern. These observations suggest that DNA-spermidine condensation could have multiple stages, which are very sensitive to the DNA and spermidine concentrations.
Collapse
|
research-article |
27 |
73 |
15
|
Li J, Bai C, Wang C, Zhu C, Lin Z, Li Q, Cao E. A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy. Nucleic Acids Res 1998; 26:4785-6. [PMID: 9753751 PMCID: PMC147909 DOI: 10.1093/nar/26.20.4785] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large DNA molecules remain difficult to be imaged by atomic force microscopy (AFM) because of the tendency of aggregation. A method is described to align long DNA fibers in a single direction on unmodified mica to facilitate AFM studies. The clear background, minimal overstretching, high reproducibility and convenience of this aligning procedure make it useful for physical mapping of genome regions and the studies of DNA-protein complexes.
Collapse
|
research-article |
27 |
72 |
16
|
Bai C, Tolias PP. Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger protein. Mol Cell Biol 1996; 16:6661-7. [PMID: 8943320 PMCID: PMC231668 DOI: 10.1128/mcb.16.12.6661] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Control of RNA turnover is a major, but poorly understood, aspect of gene regulation. In multicellular organisms, progress toward dissecting RNA turnover pathways has been made by defining some cis-acting sequences that function as either regulatory or cleavage targets (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993). However, the identification of genes encoding proteins that regulate or cleave target RNAs has been elusive (C. A. Beelman and R. Parker, Cell 81:79-183, 1995); this gap in knowledge has made it difficult to identify additional components of RNA turnover pathways. We have utilized a modified expression cloning strategy to identify a developmentally regulated gene from Drosophila melanogaster that encodes a RNase that we refer to as Clipper (CLP). Significant sequence matches to open reading frames encoding unknown functions identified from the Caenorhabditis elegans and Saccharomyces cerevisiae genome sequencing projects suggest that all three proteins are members of a new protein family conserved from lower eukaryotes to invertebrates. We demonstrate that a member of this new protein family specifically cleaves RNA hairpins and that this activity resides in a region containing five copies of a previously uncharacterized CCCH zinc finger motif. CLP's endoribonucleolytic activity is distinct from that associated with RNase A (P. Blackburn and S. Moore, p. 317-433, in P. D. Boyer, ed., The Enzymes, vol. XV, part B, 1982) and is unrelated to RNase III processing of rRNAs and tRNAs (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993, and S. A. Elela, H. Igel, and M. Ares, Cell 85:115-124, 1995). Our results suggest that CLP may function directly in RNA metabolism.
Collapse
|
research-article |
29 |
65 |
17
|
Liu Q, Bai C, Chen F, Wang R, MacDonald T, Gu M, Zhang Q, Morsy MA, Caskey CT. Uncoupling protein-3: a muscle-specific gene upregulated by leptin in ob/ob mice. Gene 1998; 207:1-7. [PMID: 9511737 DOI: 10.1016/s0378-1119(97)00596-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We identified and partially characterized another member of the uncoupling protein termed UCP3. Human and mouse UCP3 protein sequences are 86% identical to each other, and 73% and 59% identical to UCP2 and UCP1, respectively. Expression of human UCP3 in yeast resulted in a drastic decrease of mitochondria membrane potential. Northern analysis showed that UCP3 was highly expressed in skeletal muscle in human, rat, and mouse. Mapping of UCP3 placed it to the same chromosomal region of UCP2 in both human and mouse, a region that is linked to obesity and hyperinsulinemia. Furthermore, adenovirus-mediated leptin expression in obese ob/ob mice led to increased expression of UCP3 in skeletal muscle. The data indicate that UCP3 encodes a muscle-specific uncoupling protein that may play an important role in the regulation of energy expenditure and development of obesity.
Collapse
|
|
27 |
64 |
18
|
Chakrabarti SK, Bai C, Subramanian KS. DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids. Toxicol Appl Pharmacol 2001; 170:153-65. [PMID: 11162780 DOI: 10.1006/taap.2000.9097] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolated rat lymphocytes in salts-glucose medium (pH 7.2) were incubated with nickel chloride, nickel acetate, nickel sulfate, and a soluble form of nickel subsulfide (0-2 mM) at 37 degrees C for 2 h. The soluble form of nickel subsulfide induced a significant increase in DNA-protein crosslinks (DPXLs) (111%) beginning at 0.5 mM and a maximum increase of 700% from that of the control value was reached at a 2 mM concentration, whereas nickel sulfate produced only a 65% increase of such crosslinks at the 2 mM concentration only. No significant reduction in viability of rat lymphocytes (as measured by trypan blue exclusion) due to these nickel compounds was observed at any concentration used. Time-course studies of DPXLs and cellular viability due to 2 mM nickel subsulfide indicate that DPXL formation may not be due in part to cellular necrosis. Coincubation of nickel subsulfide (2 mM) with l-histidine (16 mM), l-cysteine (4 or 8 mM), or l-aspartic acid (24 mM) significantly reduced the DPXLs induced by 2 mM nickel subsulfide. But Mg(2+) even at 24 mM failed to antagonize nickel subsulfide-induced increase in DPXLs. High concentrations of these amino acids significantly decreased the accumulation of Ni(2+) from nickel subsulfide in lymphocytes, suggesting that such reduction of cellular uptake of Ni(2+) by these amino acids is partly responsible for the potent protective effects of these amino acids against such genotoxicity of nickel subsulfide. In vitro exposure of lymphocytes to nickel subsulfide (0-2 mM) increased the formation of reactive oxygen species (ROS) in a concentration-dependent manner. Furthermore, coincubation of 2 mM nickel subsulfide with catalase, dimethylthiourea, mannitol, or vitamin C at 37 degrees C for 2 h resulted in a significant decrease of nickel subsulfide-induced formation of DPXLs, suggesting that nickel subsulfide-induced DPXLs formation in isolated rat lymphocytes is caused by the formation of ROS. The amino acid treatment also abrogated Ni(3)S(2)-induced generation of ROS. Deferoxamine (a highly specific iron chelator) treatment prevented nickel subsulfide-induced DNA-protein crosslink formation, suggesting that Ni(2+)-induced DPXL formation in rat lymphocytes is caused by the induction of Fenton/Haber-Weiss reaction, generating hydroxyl radicals. The potent protective effects of these specific amino acids against nickel subsulfide-induced DPXL formation in isolated rat lymphocytes may be due in part to impaired cellular uptake of Ni(2+), inhibition of the binding of Ni(2+) to deproteinized DNA, and a reduction in reactive oxygen species.
Collapse
|
Comparative Study |
24 |
62 |
19
|
Wu N, Huang Y, Li Q, Bai C, Huang HD, Yao XP. Isolated invasive Aspergillus tracheobronchitis: a clinical study of 19 cases. Clin Microbiol Infect 2010; 16:689-95. [DOI: 10.1111/j.1469-0691.2009.02923.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
15 |
61 |
20
|
Cheng Y, Liu M, Li R, Wang C, Bai C, Wang K. Gadolinium induces domain and pore formation of human erythrocyte membrane: an atomic force microscopic study. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1421:249-60. [PMID: 10518695 DOI: 10.1016/s0005-2736(99)00125-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lanthanide cations bind to human erythrocyte membranes and enhance cell permeability. It was postulated that this effect is due to their likeness with calcium ions, which have been used to induce perforation of cells. However, the nature and mechanism of the perforation are still not clear. In the present work, the change in surface topography of erythrocyte membranes exposed to various gadolinium species was imaged with an atomic force microscope (AFM) in order to get direct evidence of perforation. The images of the whole cell and regions in nanometer scale showed that the normal surface is featured by closely packed nanometer size particles. The AFM images showed that Gd(3+) binding to erythrocytes led to domain structure at low concentration and pore formation at higher concentration. The domain structures that appeared after incubation with 1.0x10(-6)-1.0x10(-5) mol/l Gd(3+) solution for 30 min are featured by the particles aggregated to form ranges and the separations among them enlarged to gorges. With a higher concentration, 2.5x10(-5) mol/l Gd(3+), the further aggregation developed into crater-shaped 'pores'. By washing with EDTA the 'pores' can be resealed but the domain structure remained. The anionic complex of Gd(3+), [Gd(Cit)(2)](3-) of this concentration, can only induce the domain structure formation. The domain and 'pore' structures mediated by Gd(3+) concentrations might be responsible for both enhanced permeability and perforation. The mechanism of Gd-induced domain formation and perforation is discussed on the basis of aggregation of membrane proteins and the coexistence of different phases of membrane lipids resulting from Gd(3+) binding.
Collapse
|
|
26 |
53 |
21
|
|
|
25 |
45 |
22
|
Chen F, Zhang Q, McDonald T, Davidoff MJ, Bailey W, Bai C, Liu Q, Caskey CT. Identification of two hERR2-related novel nuclear receptors utilizing bioinformatics and inverse PCR. Gene 1999; 228:101-9. [PMID: 10072763 DOI: 10.1016/s0378-1119(98)00619-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identification of novel nuclear receptors based on the highly conserved DNA-binding domain (DBD) has previously depended mainly on low stringency hybridization of cDNA libraries and degenerate PCR. Establishment of the expressed sequence tag (EST) database in recent years has provided an alternative approach for the discovery of novel members of gene families. The rate-limiting step is the conversion of ESTs to full-length cDNA. This article describes the identification of two novel nuclear receptors (hERRbeta2 and hERRgamma2) related to human estrogen-receptor-related receptor 2 (hERR2) by mining the EST database and retrieving of full-length cDNA via inverse PCR on subdivided primary cDNA library pools. The deduced protein sequences of hERRbeta2 and hERRgamma2 contain 500 and 458 amino acid (aa) residues respectively. Sequence analysis revealed that hERRbeta2 and hERRgamma2 respectively share 95% and 77% overall aa sequence identity with hERR2. However, the extra C-terminal domain in hERRbeta2 and extra N-terminal domain in hERRgamma2 are not present in the closely related hERR2 or mouse ERR2 (mERR2). Extensive sequence verification revealed that hERR2 previously reported as a human gene is actually a rat gene, whereas hERRbeta2 is the true human ortholog of hERR2 and mERR2. Tissue distribution studies showed that hERRgamma2 was expressed in a broader panel of tissues at a higher level than hERRbeta2. hERRbeta2 was mapped to cytogenetic locus 14q24.3 approximately -14q31, a region containing multiple loci involved in genetic diseases, including Alzheimer and diabetes. hERRgamma2 was mapped to 1q32. Given the high sequence homology between hERRbeta2 and mERR2, the two receptors may have similar biological function in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 14/genetics
- Cloning, Molecular
- Computational Biology
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Databases, Factual
- Expressed Sequence Tags
- Gene Expression
- Gene Expression Regulation
- Humans
- Hybrid Cells
- Mice
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA/genetics
- RNA/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Estrogen/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
Collapse
|
|
26 |
44 |
23
|
Bai C, Biwersi J, Verkman AS, Matthay MA. A mouse model to test the in vivo efficacy of chemical chaperones. J Pharmacol Toxicol Methods 1998; 40:39-45. [PMID: 9920533 DOI: 10.1016/s1056-8719(98)00034-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro studies in transfected cells have indicated that chemical chaperones including glycerol (0.5-1.2 M) and trimethylamine oxide (TMAO, 50-100 mM) can correct defective trafficking of some proteins, including deltaF508 CFTR in cystic fibrosis and AQP2 mutants in nephrogenic diabetes insipidus. To develop a mouse model to test the efficacy of chemical chaperones in vivo, glycerol and TMAO were administered by intraperitoneal (i.p.), subcutaneous (s.c.), and oral routes. Glycerol and TMAO assays that utilized 1-5 microL of tail vein blood were developed. Administration by the i.p. and s.c. routes gave maximum serum glycerol concentrations of approximately 100 mM, levels that were well below the effective in vitro concentrations. Single i.p. or s.c. doses of TMAO (7 g/kg, 8% solution in water) resulted in serum [TMAO] greater than 50 mM, with a long half-life (t1/2 approximately equal to 18-21 h). Sustained high serum and tissue [TMAO] > 52 mM for 3 days was achieved by s.c. administration of TMAO (7 g/kg) in water every 8 h. Although approximately 50% of the mice died with this multiple-dose regimen, the remaining mice had nearly normal liver, renal, and pancreatic function. A lower dose of TMAO (5 g/kg) given by the s.c. route every 8 h resulted in serum [TMAO] concentration of 22 mM, a level that was well tolerated by all mice for 72 h. These mice also had high [TMAO] in urine, 400 mM. These results demonstrate that potentially therapeutic concentrations of TMAO can be sustained in mice in vivo, permitting the testing of chemical chaperones in transgenic mouse models of diseases caused by defective protein trafficking.
Collapse
|
|
27 |
44 |
24
|
Wang D, Li H, Yuan H, Zheng M, Bai C, Chen L, Pei X. Humanin delays apoptosis in K562 cells by downregulation of P38 MAP kinase. Apoptosis 2006; 10:963-71. [PMID: 16151632 DOI: 10.1007/s10495-005-1191-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Humanin (HN) is a newly identified neuroprotective peptide. In this study, we investigated its antiapoptotic effect and the potential mechanisms in K562 cells. Upon serum deprivation, expression of HN in K562 cells decreased and its intracellular distribution changed from cytoplasm to cell membrane. In HN stably transfected K562 cells, apoptosis was delayed compared with control vector transfected cells as measured by flow cytometry. Furthermore, analysis of different mitogen-activated protein (MAP) kinases activity revealed that extracellular signal-regulated kinase (ERK) pathway was inhibited while p38 signaling was activated following serum deprivation in K562 cells. And in HN transfected K562 cells, ERK downregulation was not affected, but p38 activation was suppressed, which may responsible for the delayed apoptosis in these cells. Activation of the ERK signaling pathway by phorbol myristate 13-acetate (PMA) and sorbitol protected K562 cells from serum deprivation induced apoptosis. Additionally, overexpression of HN reduced megakaryocytic differentiation of K562 cells. The present data outline the role of ERK and p38 MAP kinases in serum deprivation induced apoptosis in K562 cells and figure out p38 signaling pathway as molecular target for HN delaying apoptosis in K562 cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
43 |
25
|
Weimer M, Kramar J, Bai C, Baldeschwieler JD. Tunneling microscopy of 2H-MoS2: A compound semiconductor surface. PHYSICAL REVIEW. B, CONDENSED MATTER 1988; 37:4292-4295. [PMID: 9945076 DOI: 10.1103/physrevb.37.4292] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
|
37 |
42 |