1
|
Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine CS, Cruaud C, Dürr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder JM, Prud'homme JF, Brice A, Fontaine B, Heilig B, Weissenbach J. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 1999; 23:296-303. [PMID: 10610178 DOI: 10.1038/15472] [Citation(s) in RCA: 439] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Among the four loci causing AD-HSP identified so far, the SPG4 locus at chromosome 2p2-1p22 has been shown to account for 40-50% of all AD-HSP families. Using a positional cloning strategy based on obtaining sequence of the entire SPG4 interval, we identified a candidate gene encoding a new member of the AAA protein family, which we named spastin. Sequence analysis of this gene in seven SPG4-linked pedigrees revealed several DNA modifications, including missense, nonsense and splice-site mutations. Both SPG4 and its mouse orthologue were shown to be expressed early and ubiquitously in fetal and adult tissues. The sequence homologies and putative subcellular localization of spastin suggest that this ATPase is involved in the assembly or function of nuclear protein complexes.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- DNA Mutational Analysis
- Exons/genetics
- Expressed Sequence Tags
- Humans
- Introns/genetics
- Mice
- Mitochondria, Muscle/metabolism
- Molecular Sequence Data
- Mutation
- Oxidative Phosphorylation
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Spastic Paraplegia, Hereditary/enzymology
- Spastic Paraplegia, Hereditary/genetics
- Spastic Paraplegia, Hereditary/metabolism
- Spastic Paraplegia, Hereditary/pathology
- Spastin
Collapse
|
|
26 |
439 |
2
|
Hansen JJ, Dürr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002; 70:1328-32. [PMID: 11898127 PMCID: PMC447607 DOI: 10.1086/339935] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Accepted: 01/29/2002] [Indexed: 11/03/2022] Open
Abstract
SPG13, an autosomal dominant form of pure hereditary spastic paraplegia, was recently mapped to chromosome 2q24-34 in a French family. Here we present genetic data indicating that SPG13 is associated with a mutation, in the gene encoding the human mitochondrial chaperonin Hsp60, that results in the V72I substitution. A complementation assay showed that wild-type HSP60 (also known as "HSPD1"), but not HSP60 (V72I), together with the co-chaperonin HSP10 (also known as "HSPE1"), can support growth of Escherichia coli cells in which the homologous chromosomal groESgroEL chaperonin genes have been deleted. Taken together, our data strongly indicate that the V72I variation is the first disease-causing mutation that has been identified in HSP60.
Collapse
|
case-report |
23 |
249 |
3
|
Fonknechten N, Mavel D, Byrne P, Davoine CS, Cruaud C, Bönsch D, Boentsch D, Samson D, Coutinho P, Hutchinson M, McMonagle P, Burgunder JM, Tartaglione A, Heinzlef O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud'homme JF, Weissenbach J, Dürr A, Hazan J. Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet 2000; 9:637-44. [PMID: 10699187 DOI: 10.1093/hmg/9.4.637] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a group of genetically heterogeneous neurodegenerative disorders characterized by pro- gressive spasticity of the lower limbs. Five AD-HSP loci have been mapped to chromosomes 14q, 2p, 15q, 8q and 12q. The SPG4 locus at 2p21-p22 has been shown to account for approximately 40% of all AD-HSP families. SPG4 encoding spastin, a putative nuclear AAA protein, has recently been identified. Here, sequence analysis of the 17 exons of SPG4 in 87 unrelated AD-HSP patients has resulted in the detection of 34 novel mutations. These SPG4 mutations are scattered along the coding region of the gene and include all types of DNA modification including missense (28%), nonsense (15%) and splice site point (26.5%) mutations as well as deletions (23%) and insertions (7.5%). The clinical analysis of the 238 mutation carriers revealed a high proportion of both asymptomatic carriers (14/238) and patients unaware of symptoms (45/238), and permitted the redefinition of this frequent form of AD-HSP.
Collapse
|
|
25 |
189 |
4
|
Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, Hamida CB, Hammouda H, Cruaud C, White PS, Samson D, Urtizberea JA, Lehmann-Horn F, Weissenbach J, Hentati F, Fontaine B. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 2000; 26:480-3. [PMID: 11101850 DOI: 10.1038/82638] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Schwartz-Jampel syndrome (SJS1) is a rare autosomal recessive disorder characterized by permanent myotonia (prolonged failure of muscle relaxation) and skeletal dysplasia, resulting in reduced stature, kyphoscoliosis, bowing of the diaphyses and irregular epiphyses. Electromyographic investigations reveal repetitive muscle discharges, which may originate from both neurogenic and myogenic alterations. We previously localized the SJS1 locus to chromosome 1p34-p36.1 and found no evidence of genetic heterogeneity. Here we describe mutations, including missense and splicing mutations, of the gene encoding perlecan (HSPG2) in three SJS1 families. In so doing, we have identified the first human mutations in HSPG2, which underscore the importance of perlecan not only in maintaining cartilage integrity but also in regulating muscle excitability.
Collapse
|
Comparative Study |
25 |
177 |
5
|
Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, Labauge P, Ewenczyk C, Ding J, Gibbs JR, Hannequin D, Melki J, Toutain A, Laugel V, Forlani S, Charles P, Broussolle E, Thobois S, Afenjar A, Anheim M, Calvas P, Castelnovo G, de Broucker T, Vidailhet M, Moulignier A, Ghnassia RT, Tallaksen C, Mignot C, Goizet C, Le Ber I, Ollagnon-Roman E, Pouget J, Brice A, Singleton A, Durr A. Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes. JAMA Neurol 2019; 75:591-599. [PMID: 29482223 DOI: 10.1001/jamaneurol.2017.5121] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Molecular diagnosis is difficult to achieve in disease groups with a highly heterogeneous genetic background, such as cerebellar ataxia (CA). In many patients, candidate gene sequencing or focused resequencing arrays do not allow investigators to reach a genetic conclusion. Objectives To assess the efficacy of exome-targeted capture sequencing to detect mutations in genes broadly linked to CA in a large cohort of undiagnosed patients and to investigate their prevalence. Design, Setting, and Participants Three hundred nineteen index patients with CA and without a history of dominant transmission were included in the this cohort study by the Spastic Paraplegia and Ataxia Network. Centralized storage was in the DNA and cell bank of the Brain and Spine Institute, Salpetriere Hospital, Paris, France. Patients were classified into 6 clinical groups, with the largest being those with spastic ataxia (ie, CA with pyramidal signs [n = 100]). Sequencing was performed from January 1, 2014, through December 31, 2016. Detected variants were classified as very probably or definitely causative, possibly causative, or of unknown significance based on genetic evidence and genotype-phenotype considerations. Main Outcomes and Measures Identification of variants in genes broadly linked to CA, classified in pathogenicity groups. Results The 319 included patients had equal sex distribution (160 female [50.2%] and 159 male patients [49.8%]; mean [SD] age at onset, 27.9 [18.6] years). The age at onset was younger than 25 years for 131 of 298 patients (44.0%) with complete clinical information. Consanguinity was present in 101 of 298 (33.9%). Very probable or definite diagnoses were achieved for 72 patients (22.6%), with an additional 19 (6.0%) harboring possibly pathogenic variants. The most frequently mutated genes were SPG7 (n = 14), SACS (n = 8), SETX (n = 7), SYNE1 (n = 6), and CACNA1A (n = 6). The highest diagnostic rate was obtained for patients with an autosomal recessive CA with oculomotor apraxia-like phenotype (6 of 17 [35.3%]) or spastic ataxia (35 of 100 [35.0%]) and patients with onset before 25 years of age (41 of 131 [31.3%]). Peculiar phenotypes were reported for patients carrying KCND3 or ERCC5 variants. Conclusions and Relevance Exome capture followed by targeted analysis allows the molecular diagnosis in patients with highly heterogeneous mendelian disorders, such as CA, without prior assumption of the inheritance mode or causative gene. Being commonly available without specific design need, this procedure allows testing of a broader range of genes, consequently describing less classic phenotype-genotype correlations, and post hoc reanalysis of data as new genes are implicated in the disease.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
92 |
6
|
Stum M, Davoine CS, Vicart S, Guillot-Noël L, Topaloglu H, Carod-Artal FJ, Kayserili H, Hentati F, Merlini L, Urtizberea JA, Hammouda EH, Quan PC, Fontaine B, Nicole S. Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz-Jampel syndrome. Hum Mutat 2006; 27:1082-91. [PMID: 16927315 DOI: 10.1002/humu.20388] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia. SJS results from mutations in the HSPG2 gene, which encodes perlecan, a major component of basement membranes. Only eight HSPG2 mutations have been reported in six SJS families. Here, we describe the molecular findings in 23 families (35 patients) with SJS, being one-third of the SJS cases reported in the medical literature. We identified 22 new HSPG2 mutations and unreported polymorphisms. Mutations included nine deletion or insertion (41%), six splice site (27%), five missense (23%), and two nonsense mutations (9%). All but four mutations were private, and we found no evidence for a founder effect. Analyses of HSPG2 messenger RNA (mRNA) and perlecan immunostaining on patients' cells revealed a hypomorphic effect of the studied mutations. They also demonstrated distinct consequences of truncating and missense mutations on perlecan expression as truncating mutations resulted in instability of HSPG2 mRNA through nonsense mRNA-mediated decay, whereas missense mutations involving cysteine residues led to intracellular retention of perlecan, probably due to quality control pathways. Our analyses strengthen the idea that SJS results from hypomorphic mutations of the HSPG2 gene. They also propose tools for its molecular diagnosis and provide new clues for the understanding of its pathophysiology.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
71 |
7
|
Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, Valter R, Anheim M, Behin A, Castelnovo G, Charles P, David A, Ewenczyk C, Fradin M, Goizet C, Hannequin D, Labauge P, Riant F, Sarda P, Sznajer Y, Tison F, Ullmann U, Van Maldergem L, Mochel F, Brice A, Stevanin G, Durr A. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain 2017; 140:1579-1594. [PMID: 28444220 DOI: 10.1093/brain/awx081] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/05/2017] [Indexed: 12/21/2022] Open
Abstract
Autosomal dominant cerebellar ataxias have a marked heterogeneous genetic background, with mutations in 34 genes identified so far. This large amount of implicated genes accounts for heterogeneous clinical presentations, making genotype-phenotype correlations a major challenge in the field. While polyglutamine ataxias, linked to CAG repeat expansions in genes such as ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A and TBP, have been extensively characterized in large cohorts, there is a need for comprehensive assessment of frequency and phenotype of more 'conventional' ataxias. After exclusion of CAG/polyglutamine expansions in spinocerebellar ataxia genes in 412 index cases with dominantly inherited cerebellar ataxias, we aimed to establish the relative frequencies of mutations in other genes, with an approach combining panel sequencing and TaqMan® polymerase chain reaction assay. We found relevant genetic variants in 59 patients (14.3%). The most frequently mutated were channel genes [CACNA1A (n = 16), KCND3 (n = 4), KCNC3 (n = 2) and KCNA1 (n = 2)]. Deletions in ITPR1 (n = 11) were followed by biallelic variants in SPG7 (n = 9). Variants in AFG3L2 (n = 7) came next in frequency, and variants were rarely found in STBN2 (n = 2), ELOVL5, FGF14, STUB1 and TTBK2 (n = 1 each). Interestingly, possible risk factor variants were detected in SPG7 and POLG. Clinical comparisons showed that ataxias due to channelopathies had a significantly earlier age at onset with an average of 24.6 years, versus 40.9 years for polyglutamine expansion spinocerebellar ataxias and 37.8 years for SPG7-related forms (P = 0.001). In contrast, disease duration was significantly longer in the former (20.5 years versus 9.3 and 13.7, P=0.001), though for similar functional stages, indicating slower progression of the disease. Of interest, intellectual deficiency was more frequent in channel spinocerebellar ataxias, while cognitive impairment in adulthood was similar among the three groups. Similar differences were found among a single gene group, comparing 23 patients with CACNA1A expansions (spinocerebellar ataxia 6) to 22 patients with CACNA1A point mutations, which had lower average age at onset (25.2 versus 47.3 years) with longer disease duration (18.7 versus 10.9), but lower severity indexes (0.39 versus 0.44), indicating slower progression of the disease. In conclusion, we identified relevant genetic variations in up to 15% of cases after exclusion of polyglutamine expansion spinocerebellar ataxias, and confirmed CACNA1A and SPG7 as major ataxia genes. We could delineate firm genotype-phenotype correlations that are important for genetic counselling and of possible prognostic value.
Collapse
|
Journal Article |
8 |
69 |
8
|
Fontaine B, Davoine CS, Dürr A, Paternotte C, Feki I, Weissenbach J, Hazan J, Brice A. A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 2000; 66:702-7. [PMID: 10677329 PMCID: PMC1288122 DOI: 10.1086/302776] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) comprises a group of clinically and genetically heterogeneous disorders causing progressive spasticity and weakness of the lower limbs. We report a large family of French descent with autosomal dominant pure HSP. We excluded genetic linkage to the known loci causing HSP and performed a genomewide search. We found evidence for linkage of the disorder to polymorphic markers on chromosome 2q24-q34: a maximum LOD score of 3. 03 was obtained for marker D2S2318. By comparison with families having linkage to the major locus of pure autosomal dominant HSP (SPG4 on chromosome 2p), there were significantly more patients without Babinski signs, with increased reflexes in the upper limbs, and with severe functional handicaps.
Collapse
|
case-report |
25 |
55 |
9
|
Dürr A, Davoine CS, Paternotte C, von Fellenberg J, Cogilinicean S, Coutinho P, Lamy C, Bourgeois S, Prud'homme JF, Penet C, Mas JL, Burgunder JM, Hazan J, Weissenbach J, Brice A, Fontaine B. Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. Brain 1996; 119 ( Pt 5):1487-96. [PMID: 8931574 DOI: 10.1093/brain/119.5.1487] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the clinical features of 12 families with autosomal dominant spastic paraplegia (ADSP) linked to the SPG4 locus on chromosome 2p, the major locus for this disorder that accounts for approximately 40% of the families. Among 93 gene carriers, 32 (34%) were unaware of symptoms but were clinically affected. Haplotype reconstruction showed that 90% of the asymptomatic gene carriers presented increased reflexes and/or extensor plantar responses independent of age at examination. The mean age at onset was 29 years, ranging from 1 to 63 years. Intra- as well as inter-familial variability of age at onset was important, but did not result from anticipation. Phenotype-genotype correlations and comparison with SPG3 and SPG5 families indicated that despite the variability of age at onset, SPG4 is a single genetic entity but no clinical features distinguish individual SPG4 patients from those with SPG3 or SPG5 mutations.
Collapse
|
|
29 |
50 |
10
|
Stum M, Girard E, Bangratz M, Bernard V, Herbin M, Vignaud A, Ferry A, Davoine CS, Echaniz-Laguna A, René F, Marcel C, Molgó J, Fontaine B, Krejci E, Nicole S. Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz-Jampel syndrome neuromyotonia. Hum Mol Genet 2008; 17:3166-79. [PMID: 18647752 DOI: 10.1093/hmg/ddn213] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Schwartz-Jampel syndrome (SJS) is a recessive neuromyotonia with chondrodysplasia. It results from hypomorphic mutations of the gene encoding perlecan, leading to a decrease in the levels of this heparan sulphate proteoglycan in basement membranes (BMs). It has been suggested that SJS neuromyotonia may result from endplate acetylcholinesterase (AChE) deficiency, but this hypothesis has never been investigated in vivo due to the lack of an animal model for neuromyotonia. We used homologous recombination to generate a knock-in mouse strain with one missense substitution, corresponding to a human familial SJS mutation (p.C1532Y), in the perlecan gene. We derived two lines, one with the p.C1532Y substitution alone and one with p.C1532Y and the selectable marker Neo, to down-regulate perlecan gene activity and to test for a dosage effect of perlecan in mammals. These two lines mimicked SJS neuromyotonia with spontaneous activity on electromyogramm (EMG). An inverse correlation between disease severity and perlecan secretion in the BMs was observed at the macroscopic and microscopic levels, consistent with a dosage effect. Endplate AChE levels were low in both lines, due to synaptic perlecan deficiency rather than major myofibre or neuromuscular junction disorganization. Studies of muscle contractile properties showed muscle fatigability at low frequencies of nerve stimulation and suggested that partial endplate AChE deficiency might contribute to SJS muscle stiffness by potentiating muscle force. However, physiological endplate AChE deficiency was not associated with spontaneous activity at rest on EMG in the diaphragm, suggesting that additional changes are required to generate such activity characteristic of SJS.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
48 |
11
|
Coarelli G, Schule R, van de Warrenburg BPC, De Jonghe P, Ewenczyk C, Martinuzzi A, Synofzik M, Hamer EG, Baets J, Anheim M, Schöls L, Deconinck T, Masrori P, Fontaine B, Klockgether T, D'Angelo MG, Monin ML, De Bleecker J, Migeotte I, Charles P, Bassi MT, Klopstock T, Mochel F, Ollagnon-Roman E, D'Hooghe M, Kamm C, Kurzwelly D, Papin M, Davoine CS, Banneau G, Tezenas du Montcel S, Seilhean D, Brice A, Duyckaerts C, Stevanin G, Durr A. Loss of paraplegin drives spasticity rather than ataxia in a cohort of 241 patients with SPG7. Neurology 2019; 92:e2679-e2690. [PMID: 31068484 DOI: 10.1212/wnl.0000000000007606] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE We took advantage of a large multinational recruitment to delineate genotype-phenotype correlations in a large, trans-European multicenter cohort of patients with spastic paraplegia gene 7 (SPG7). METHODS We analyzed clinical and genetic data from 241 patients with SPG7, integrating neurologic follow-up data. One case was examined neuropathologically. RESULTS Patients with SPG7 had a mean age of 35.5 ± 14.3 years (n = 233) at onset and presented with spasticity (n = 89), ataxia (n = 74), or both (n = 45). At the first visit, patients with a longer disease duration (>20 years, n = 62) showed more cerebellar dysarthria (p < 0.05), deep sensory loss (p < 0.01), muscle wasting (p < 0.01), ophthalmoplegia (p < 0.05), and sphincter dysfunction (p < 0.05) than those with a shorter duration (<10 years, n = 93). Progression, measured by Scale for the Assessment and Rating of Ataxia evaluations, showed a mean annual increase of 1.0 ± 1.4 points in a subgroup of 30 patients. Patients homozygous for loss of function (LOF) variants (n = 65) presented significantly more often with pyramidal signs (p < 0.05), diminished visual acuity due to optic atrophy (p < 0.0001), and deep sensory loss (p < 0.0001) than those with at least 1 missense variant (n = 176). Patients with at least 1 Ala510Val variant (58%) were older (age 37.6 ± 13.7 vs 32.8 ± 14.6 years, p < 0.05) and showed ataxia at onset (p < 0.05). Neuropathologic examination revealed reduction of the pyramidal tract in the medulla oblongata and moderate loss of Purkinje cells and substantia nigra neurons. CONCLUSIONS This is the largest SPG7 cohort study to date and shows a spasticity-predominant phenotype of LOF variants and more frequent cerebellar ataxia and later onset in patients carrying at least 1 Ala510Val variant.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
41 |
12
|
Bouhours M, Sternberg D, Davoine CS, Ferrer X, Willer JC, Fontaine B, Tabti N. Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans. J Physiol 2003; 554:635-47. [PMID: 14617673 PMCID: PMC1664790 DOI: 10.1113/jphysiol.2003.053082] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Paramyotonia congenita (PC) is a dominantly inherited skeletal muscle disorder caused by missense mutations in the SCN4A gene encoding the pore-forming alpha subunit (hSkM1) of the skeletal muscle Na+ channel. Muscle stiffness is the predominant clinical symptom. It is usually induced by exposure to cold and is aggravated by exercise. The most prevalent PC mutations occur at T1313 on DIII-DIV linker, and at R1448 on DIV-S4 of the alpha subunit. Only one substitution has been described at T1313 (T1313M), whereas four distinct amino-acid substitutions were found at R1448 (R1448C/H/P/S). We report herein a novel mutation at position 1313 (T1313A) associated with a typical phenotype of PC. We stably expressed T1313A or wild-type (hSkM1) channels in HEK293 cells, and performed a detailed study on mutant channel gating defects using the whole-cell configuration of the patch-clamp technique. T1313A mutation impaired Na+ channel fast inactivation: it slowed and reduced the voltage sensitivity of the kinetics, accelerated the recovery, and decreased the voltage-dependence of the steady state. Slow inactivation was slightly enhanced by the T1313A mutation: the voltage dependence was shifted toward hyperpolarization and its steepness was reduced compared to wild-type. Deactivation from the open state assessed by the tail current decay was only slowed at positive potentials. This may be an indirect consequence of disrupted fast inactivation. Deactivation from the inactivation state was hastened. The T1313A mutation did not modify the temperature sensitivity of the Na+ channel per se. However, gating kinetics of the mutant channels were further slowed with cooling, and reached levels that may represent the threshold for myotonia. In conclusion, our results confirm the role of T1313 residue in Na+ channel fast inactivation, and unveil subtle changes in other gating processes that may influence the clinical phenotype.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
38 |
13
|
Bangratz M, Sarrazin N, Devaux J, Zambroni D, Echaniz-Laguna A, René F, Boërio D, Davoine CS, Fontaine B, Feltri ML, Benoit E, Nicole S. A mouse model of Schwartz-Jampel syndrome reveals myelinating Schwann cell dysfunction with persistent axonal depolarization in vitro and distal peripheral nerve hyperexcitability when perlecan is lacking. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2040-55. [PMID: 22449950 DOI: 10.1016/j.ajpath.2012.01.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022]
Abstract
Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
26 |
14
|
Méreaux JL, Davoine CS, Pellerin D, Coarelli G, Coutelier M, Ewenczyk C, Monin ML, Anheim M, Le Ber I, Thobois S, Gobert F, Guillot-Noël L, Forlani S, Jornea L, Heinzmann A, Sangare A, Gaymard B, Guyant-Maréchal L, Charles P, Marelli C, Honnorat J, Degos B, Tison F, Sangla S, Simonetta-Moreau M, Salachas F, Tchikviladzé M, Castelnovo G, Mochel F, Klebe S, Castrioto A, Fenu S, Méneret A, Bourdain F, Wandzel M, Roth V, Bonnet C, Riant F, Stevanin G, Noël S, Fauret-Amsellem AL, Bahlo M, Lockhart PJ, Brais B, Renaud M, Brice A, Durr A. Clinical and genetic keys to cerebellar ataxia due to FGF14 GAA expansions. EBioMedicine 2024; 99:104931. [PMID: 38150853 PMCID: PMC10784672 DOI: 10.1016/j.ebiom.2023.104931] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.
Collapse
|
research-article |
1 |
17 |
15
|
Paternotte C, Rudnicki D, Fizames C, Davoine CS, Mavel D, Dürr A, Samson D, Marquette C, Muselet D, Vega-Czarny N, Drouot N, Voit T, Fontaine B, Gyapay G, Auburger G, Weissenbach J, Hazan J. Quality assessment of whole genome mapping data in the refined familial spastic paraplegia interval on chromosome 14q. Genome Res 1998; 8:1216-27. [PMID: 9847083 PMCID: PMC310792 DOI: 10.1101/gr.8.11.1216] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Autosomal dominant familial spastic paraplegia (AD-FSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Three loci on chromosome 14q (SPG3), 2p (SPG4), and 15q (SPG6) were shown to be responsible for AD-FSP. Analysis of recombination events in three SPG3-linked families allowed us to narrow the critical interval from 9 to 5 cM. An approximately 5-Mb YAC contig comprising 32 clones and 90 STSs was built from D14S301 to D14S991, encompassing this region of 14q21. Fifty-six ESTs assigned previously to this region with radiation hybrid (RH) panels Genebridge 4 and G3 were precisely localized on the YAC contig. The 90 STSs positioned on the contig were tested on the TNG RH panel to compare our YAC-based map with an RH map at a high level of resolution. Comparison between our map and the whole genome mapping data on this interval of chromosome 14q is discussed.
Collapse
|
|
27 |
14 |
16
|
Méreaux JL, Davoine CS, Coutelier M, Guillot-Noël L, Castrioto A, Charles P, Coarelli G, Ewenczyk C, Klebe S, Heinzmann A, Méneret A, Fauret-Amsellem AL, de Sainte Agathe JM, Brice A, Durr A. Fast and reliable detection of repeat expansions in spinocerebellar ataxia using exomes. J Med Genet 2023:jmg-2022-108924. [PMID: 36599645 DOI: 10.1136/jmg-2022-108924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/20/2022] [Indexed: 01/06/2023]
Abstract
Usually, molecular diagnosis of spinocerebellar ataxia is based on a step-by-step approach with targeted sizing of four repeat expansions accounting for most dominant cases, then targeted sequencing of other genes. Nowadays, genome sequencing allows detection of most pathogenic variants in a single step. The ExpansionHunter tool can detect expansions in short-read genome sequencing data. Recent studies have shown that ExpansionHunter can also be used to identify repeat expansions in exome sequencing data. We tested ExpansionHunter on spinocerebellar ataxia exomes in a research context as a second-line analysis, after exclusion of main CAG repeat expansions in half of the probands. First, we confirmed the detection of expansions in seven known expansion carriers and then, after targeted analysis of ATXN1, 2, 3 and 7, CACNA1A, TBP, ATN1, NOP56, AR and HTT in 498 exomes, we found 22 additional pathogenic expansions. Comparison with capillary migration sizing in 247 individuals and confirmation of all expanded alleles detected by ExpansionHunter demonstrated that for these loci, sensitivity and specificity reached 100%. ExpansionHunter detected but underestimated the repeat size for larger expansions, and the normal alleles distribution at each locus should be taken into account to detect expansions. Exome combined with ExpansionHunter is reliable to detect repeat expansions in selected loci as first-line analysis in spinocerebellar ataxia.
Collapse
|
|
2 |
9 |
17
|
Hazan J, Davoine CS, Mavel D, Fonknechten N, Paternotte C, Fizames C, Cruaud C, Samson D, Muselet D, Vega-Czarny N, Brice A, Gyapay G, Heilig R, Fontaine B, Weissenbach J. A fine integrated map of the SPG4 locus excludes an expanded CAG repeat in chromosome 2p-linked autosomal dominant spastic paraplegia. Genomics 1999; 60:309-19. [PMID: 10493830 DOI: 10.1006/geno.1999.5932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous disorder characterized by progressive spasticity of the lower limbs. A major locus (SPG4) causing AD-HSP in about 40% of the families was mapped to chromosome 2p. The analysis of six SPG4-linked AD-HSP families using the RED procedure previously showed the expansion of a CAG repeat in affected individuals. To identify the gene responsible for this form of HSP, we have constructed a 3.5-Mb YAC contig flanked by loci D2S400 and D2S367, have subcloned five of these YACs spanning the candidate region into cosmids, and screened these cosmid libraries for the presence of CAG repeat sequences. Four CAG repeats have been identified but none of them is expanded in 26 patients from 13 SPG4-linked AD-HSP families. A gene map comprising 21 transcripts was established using expressed sequence tags (ESTs) assigned previously to this region of 2p21-p22 with radiation hybrid panels GeneBridge 4 and G3. Full-length cDNAs corresponding to the 14 ESTs mapping to the SPG4 interval flanked by loci D2S352 and D2S2347 were isolated and sequenced. None contains a CAG repeat in its coding sequence. Finally, we have assembled a BAC contig composed of 37 clones that were also screened for the presence of CAG repeats; this failed to detect additional repeats to those identified on YACs.
Collapse
|
|
26 |
8 |
18
|
Zander C, Yuan QP, Lindblad K, Stevanin G, Dürr A, Davoine CS, Hazan J, Fontaine B, Brice A, Schalling M. No evidence for long CAG/CTG repeats in families with spastic paraplegia linked to chromosome 2p21-24. Neurosci Lett 2000; 279:41-4. [PMID: 10670783 DOI: 10.1016/s0304-3940(99)00946-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autosomal dominant familial spastic paraplegia (AD-FSP) is a genetically heterogeneous, neurodegenerative disorder characterized by spasticity and progressive weakness in the lower limbs. Anticipation has been suggested to occur and an association between expanded CAG/CTG repeats and AD-FSP linked to the SPG4 locus (2p21-p24) has been described. In this study, 42 affected individuals from six SPG4 families were screened for expanded CAG/CTG repeats using the repeat expansion detection (RED) method. Large RED products (range 180-240 nucleotides) corresponding in size to repeats at the ERDA1 locus were detected in eight patients and at the CTG 18.1 locus in one patient. The large ERDA1 repeats did not segregate with the disorder within families. Mean age at onset and index of severity were not significantly different between patients with or without expanded RED products. Furthermore, no abnormal proteins were found by Western blot in 15 selected patient samples as compared with controls, using the 1C2 antibody, which detects long polyglutamine stretches. Thus, in contrast to previous reports, our study provides evidence against the hypothesis that a large translated CAG repeat expansion is the basis of SPG4. We propose that mechanisms other than large pathogenic CAG/CTG repeats may account for the disease in the SPG4 families tested here.
Collapse
|
|
25 |
4 |
19
|
Roux T, Barbier M, Papin M, Davoine CS, Sayah S, Coarelli G, Charles P, Marelli C, Parodi L, Tranchant C, Goizet C, Klebe S, Lohmann E, Van Maldergem L, van Broeckhoven C, Coutelier M, Tesson C, Stevanin G, Duyckaerts C, Brice A, Durr A. Correction: Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment. Genet Med 2020; 23:2021. [PMID: 33353973 DOI: 10.1038/s41436-020-01064-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
Published Erratum |
5 |
2 |
20
|
Davoine C, Fillet M, Pochet L. Capillary electrophoresis as a fragment screening tool to cross-validate hits from chromogenic assay: Application to FXIIa. Talanta 2021; 226:122163. [PMID: 33676706 DOI: 10.1016/j.talanta.2021.122163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
In this study, a partial-filling affinity capillary electrophoresis (pf-ACE) method was developed for the cross-validation of fragment hits revealed by chromogenic factor XIIa (FXIIa) assay. Chromogenic assay produces false positives, mainly due to spectrophotometric interferences and sample purity issues. pf-ACE was selected as counter-screening technology because of its separative character and the fact that the target does not have to be attached or tagged. The effects of protein plug length, applied voltage and composition of the running buffer were examined and optimized. Detection limit in terms of dissociation constant was estimated at 400 μM. The affinity evaluation was performed close to physiological conditions (pH 7.4, ionic strength 0.13 mol L-1) in a poly (ethylene oxide)-coated capillary of 75 μm internal diameter x 33 cm length with an applied voltage of 3 kV. This method uncovered chromogenic assay's false positives due to zinc contamination. Moreover, pf-ACE supported the evaluation of compounds absorbing at 405 nm.
Collapse
|
|
4 |
2 |
21
|
Fonknechten N, Mavel D, Byrne P, Davoine CS, Cruaud C, Bönsch D, Samson D, Coutinho P, Hutchinson M, McMonagle P, Burgunder JM, Tartaglione A, Heinzlef O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud'homme JF, Weissenbach J, Dürr A, Hazan J. Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet 2005. [DOI: 10.1093/hmg/ddi044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
20 |
|
22
|
Heide S, Davoine CS, Cunha P, Scherer-Gagou C, Keren B, Stevanin G, Charles P, Heron D, Brice A, Durr A. IRF2BPL Causes Mild Intellectual Disability Followed by Late-Onset Ataxia. Neurol Genet 2023; 9:e200096. [PMID: 38235039 PMCID: PMC10586800 DOI: 10.1212/nxg.0000000000200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/04/2023] [Indexed: 01/19/2024]
Abstract
Background and Objectives Neurodevelopmental and neurodegenerative disorders have long been considered as different clinical and molecular entities, and only a few genes are known to be involved in both processes. The IRF2BPL (interferon regulatory factor 2 binding protein like) gene was implicated in a severe pediatric phenotype characterized by developmental and epileptic encephalopathy and early regression. In parallel, inherited IRF2BPL variants have been reported in cohorts of patients with late-onset progressive dystonic and ataxic syndrome with few information about the neurodevelopment of these patients. This study aimed to describe both neurodevelopmental and neurodegenerative aspects of the phenotype in adults with IRF2BPL pathogenic variant. Methods We report here the clinical and molecular data of 18 individuals carrying truncating IRF2BPL variants (identified by either exome or genome sequencing), including a large pedigree of 16 patients presenting with a neurodevelopmental disorder (NDD) associated with late-onset cerebellar ataxia and atrophy. Results Genome sequencing identified the p.(Gln117*) variant in a large family first assessed for familial ataxia, with multiple individuals presenting with NDD. The p.(Ser313*) variant was identified by exome sequencing in a second family with a young adult patient with NDD without ataxia which was inherited from her asymptomatic mother, suggesting incomplete penetrance of IRF2BPL-linked disorders. Discussion This study illustrates the importance of neurologic evaluation of adult patients initially diagnosed with NDD to detect a late-onset neurodegenerative condition. Two different disorders may be clinically diagnosed in the same family, when not considering that NDD and late cerebellar changes may be part of the same molecular spectrum such as for IRF2BPL.
Collapse
|
research-article |
2 |
|
23
|
Pellerin D, Méreaux JL, Boluda S, Danzi MC, Dicaire MJ, Davoine CS, Genis D, Spurdens G, Ashton C, Hammond JM, Gerhart BJ, Chelban V, Le PU, Safisamghabadi M, Yanick C, Lee H, Nageshwaran SK, Matos-Rodrigues G, Jaunmuktane Z, Petrecca K, Akbarian S, Nussenzweig A, Usdin K, Renaud M, Bonnet C, Ravenscroft G, Saporta MA, Napierala JS, Houlden H, Deveson IW, Napierala M, Brice A, Molina Porcel L, Seilhean D, Zuchner S, Durr A, Brais B. Somatic instability of the FGF14-SCA27B GAA•TTC repeat reveals a marked expansion bias in the cerebellum. Brain 2025; 148:1258-1270. [PMID: 39378335 PMCID: PMC11969470 DOI: 10.1093/brain/awae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Spinocerebellar ataxia 27B (SCA27B) is a common autosomal dominant ataxia caused by an intronic GAA•TTC repeat expansion in FGF14. Neuropathological studies have shown that neuronal loss is largely restricted to the cerebellum. Although the repeat locus is highly unstable during intergenerational transmission, it remains unknown whether it exhibits cerebral mosaicism and progressive instability throughout life. We conducted an analysis of the FGF14 GAA•TTC repeat somatic instability across 156 serial blood samples from 69 individuals, fibroblasts, induced pluripotent stem cells and post-mortem brain tissues from six controls and six patients with SCA27B, alongside methylation profiling using targeted long-read sequencing. Peripheral tissues exhibited minimal somatic instability, which did not significantly change over periods of more than 20 years. In post-mortem brains, the GAA•TTC repeat was remarkably stable across all regions, except in the cerebellar hemispheres and vermis. The levels of somatic expansion in the cerebellar hemispheres and vermis were, on average, 3.15 and 2.72 times greater relative to other examined brain regions, respectively. Additionally, levels of somatic expansion in the brain increased with repeat length and tissue expression of FGF14. We found no significant difference in methylation of wild-type and expanded FGF14 alleles in post-mortem cerebellar hemispheres between patients and controls. In conclusion, our study revealed that the FGF14 GAA•TTC repeat exhibits a cerebellar-specific expansion bias, which may explain the pure cerebellar involvement in SCA27B.
Collapse
|
research-article |
1 |
|
24
|
Davoine C, Guibert A, Marchand X, Durand A. OHP-013 Coronary stents in a regional hospital: Evolution and analysis from 2011 to 2015. Eur J Hosp Pharm 2016. [DOI: 10.1136/ejhpharm-2016-000875.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
|
9 |
|
25
|
Bauché S, Boerio D, Davoine CS, Bernard V, Stum M, Bureau C, Fardeau M, Romero NB, Fontaine B, Koenig J, Hantaï D, Gueguen A, Fournier E, Eymard B, Nicole S. Corrigendum to ‘Peripheral nerve hyperexcitability with preterminal nerve and neuromuscular junction remodeling is a hallmark of Schwartz-Jampel syndrome’ [Neuromuscul Disord 23 (2013) 998–1009]. Neuromuscul Disord 2014. [DOI: 10.1016/j.nmd.2014.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
11 |
|