Akter J, Khoury DS, Aogo R, Lansink LIM, SheelaNair A, Thomas BS, Laohamonthonkul P, Pernold CPS, Dixon MWA, Soon MSF, Fogg LG, Engel JA, Elliott T, Sebina I, James KR, Cromer D, Davenport MP, Haque A. Plasmodium-specific antibodies block in vivo parasite growth without clearing infected red blood cells.
PLoS Pathog 2019;
15:e1007599. [PMID:
30811498 PMCID:
PMC6411214 DOI:
10.1371/journal.ppat.1007599]
[Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/11/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
Plasmodium parasites invade and multiply inside red blood cells (RBC). Through a cycle of maturation, asexual replication, rupture and release of multiple infective merozoites, parasitised RBC (pRBC) can reach very high numbers in vivo, a process that correlates with disease severity in humans and experimental animals. Thus, controlling pRBC numbers can prevent or ameliorate malaria. In endemic regions, circulating parasite-specific antibodies associate with immunity to high parasitemia. Although in vitro assays reveal that protective antibodies could control pRBC via multiple mechanisms, in vivo assessment of antibody function remains challenging. Here, we employed two mouse models of antibody-mediated immunity to malaria, P. yoelii 17XNL and P. chabaudi chabaudi AS infection, to study infection-induced, parasite-specific antibody function in vivo. By tracking a single generation of pRBC, we tested the hypothesis that parasite-specific antibodies accelerate pRBC clearance. Though strongly protective against homologous re-challenge, parasite-specific IgG did not alter the rate of pRBC clearance, even in the presence of ongoing, systemic inflammation. Instead, antibodies prevented parasites progressing from one generation of RBC to the next. In vivo depletion studies using clodronate liposomes or cobra venom factor, suggested that optimal antibody function required splenic macrophages and dendritic cells, but not complement C3/C5-mediated killing. Finally, parasite-specific IgG bound poorly to the surface of pRBC, yet strongly to structures likely exposed by the rupture of mature schizonts. Thus, in our models of humoral immunity to malaria, infection-induced antibodies did not accelerate pRBC clearance, and instead co-operated with splenic phagocytes to block subsequent generations of pRBC.
Malaria occurs when Plasmodium parasites replicate inside red blood cells, with the number of parasitised cells (pRBC) correlating with disease severity. Antibodies are highly effective at controlling pRBC numbers in the bloodstream, and yet we know very little about how they function in vivo. Human in vitro studies predict that antibodies may function in a number of ways, including via phagocytes or different complement mechanisms. However, to date it has been challenging to explore how antibodies might control parasite numbers in vivo. Here, we have used a unique method in mice, where clearance and replication of a single cohort of pRBC was closely tracked in the presence of protective antibodies. Surprisingly, antibodies played no role whatsoever in accelerating the removal of pRBC. Instead, antibodies were highly effective at preventing parasites from progressing from one generation of pRBC to the next. This process partly depended on host phagocytes. However, we found no role for complement-mediated direct killing. Together, our in vivo data suggest in mouse models that naturally-acquired antibodies do not clear pRBC, and instead prevent transition from one red blood cell to the next.
Collapse