1
|
Schroeder A, Herrmann A, Cherryholmes G, Kowolik C, Buettner R, Pal S, Yu H, Müller-Newen G, Jove R. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res 2013; 74:1227-37. [PMID: 24177177 DOI: 10.1158/0008-5472.can-13-0594] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Androgen receptor (AR) signaling is important for prostate cancer progression. However, androgen-deprivation and/or AR targeting-based therapies often lead to resistance. Here, we demonstrate that loss of AR expression results in STAT3 activation in prostate cancer cells. AR downregulation further leads to development of prostate cancer stem-like cells (CSC), which requires STAT3. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells exhibiting high STAT3 activity and low AR expression. AR downregulation-induced STAT3 activation is mediated through increased interleukin (IL)-6 expression. Treating mice with soluble IL-6 receptor fusion protein or silencing STAT3 in tumor cells significantly reduced prostate tumor growth and CSCs. Together, these findings indicate an opposing role of AR and STAT3 in prostate CSC development.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
155 |
2
|
Vultur A, Buettner R, Kowolik C, Liang W, Smith D, Boschelli F, Jove R. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 2008; 7:1185-94. [PMID: 18483306 DOI: 10.1158/1535-7163.mct-08-0126] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Src family kinase activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective Src family kinase inhibitor, on human cancer cells derived from breast cancer patients to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of approximately 250 nmol/L, which was also the IC50 for inhibition of cellular Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), and Crk-associated substrate (p130Cas), with an IC50 similar to inhibition of cellular Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
129 |
3
|
Herrmann A, Kortylewski M, Kujawski M, Zhang C, Reckamp K, Armstrong B, Wang L, Kowolik C, Deng J, Figlin R, Yu H. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res 2010; 70:7455-64. [PMID: 20841481 DOI: 10.1158/0008-5472.can-10-0736] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improving effector T-cell functions is highly desirable for preventive or therapeutic interventions of diverse diseases. Signal transducer and activator of transcription 3 (Stat3) in the myeloid compartment constrains Th1-type immunity, dampening natural and induced antitumor immune responses. We have recently developed an in vivo small interfering RNA (siRNA) delivery platform by conjugating a Toll-like receptor 9 agonist with siRNA that efficiently targets myeloid and B cells. Here, we show that either CpG triggering combined with the genetic Stat3 ablation in myeloid/B cell compartments or administration of the CpG-Stat3siRNA drastically augments effector functions of adoptively transferred CD8+ T cells. Specifically, we show that both approaches are capable of increasing dendritic cell and CD8(+) T-cell engagement in tumor-draining lymph nodes. Furthermore, both approaches can significantly activate the transferred CD8(+) T cells in vivo, upregulating effector molecules such as perforin, granzyme B, and IFN-γ. Intravital multiphoton microscopy reveals that Stat3 silencing combined with CpG triggering greatly increases killing activity and tumor infiltration of transferred T cells. These results suggest the use of CpG-Stat3siRNA, and possibly other Stat3 inhibitors, as a potent adjuvant to improve T-cell therapies.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
112 |
4
|
Herrmann A, Priceman SJ, Swiderski P, Kujawski M, Xin H, Cherryholmes GA, Zhang W, Zhang C, Lahtz C, Kowolik C, Forman SJ, Kortylewski M, Yu H. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest 2014; 124:2977-87. [PMID: 24892807 DOI: 10.1172/jci73174] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/10/2014] [Indexed: 01/05/2023] Open
Abstract
Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte-associated antigen 4 (CTLA4(apt)) allows gene silencing in exhausted CD8⁺ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8⁺ T cells in the tumor milieu; therefore, CTLA4(apt) fused to a STAT3-targeting siRNA (CTLA4(apt)-STAT3 siRNA) resulted in internalization into tumor-associated CD8⁺ T cells and silencing of STAT3, which activated tumor antigen-specific T cells in murine models. Both local and systemic administration of CTLA4(apt)-STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4(apt)-STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4(apt)-STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4(apt)-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis.
Collapse
MESH Headings
- Animals
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/genetics
- Cell Line, Tumor
- Gene Silencing
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
107 |
5
|
Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, Wang Y, Loh T, Kowolik C, Jamsen J, Zhou M, Truong K, Chen Y, Zheng L, Shen B. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 2012; 47:444-56. [PMID: 22749529 DOI: 10.1016/j.molcel.2012.05.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/14/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
We propose that cell-cycle-dependent timing of FEN1 nuclease activity is essential for cell-cycle progression and the maintenance of genome stability. After DNA replication is complete at the exit point of the S phase, removal of excess FEN1 may be crucial. Here, we report a mechanism that controls the programmed degradation of FEN1 via a sequential cascade of posttranslational modifications. We found that FEN1 phosphorylation stimulated its SUMOylation, which in turn stimulated its ubiquitination and ultimately led to its degradation via the proteasome pathway. Mutations or inhibitors that blocked the modification at any step in this pathway suppressed FEN1 degradation. Critically, the presence of SUMOylation- or ubiquitination-defective, nondegradable FEN1 mutant protein caused accumulation of Cyclin B, delays in the G1 and G2/M phases, and polyploidy. These findings may represent a newly identified regulatory mechanism used by cells to ensure precise cell-cycle progression and to prevent transformation.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
84 |
6
|
Scuto A, Kujawski M, Kowolik C, Krymskaya L, Wang L, Weiss LM, Digiusto D, Yu H, Forman S, Jove R. STAT3 inhibition is a therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Res 2011; 71:3182-8. [PMID: 21521803 DOI: 10.1158/0008-5472.can-10-2380] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Persistent STAT3 signaling contributes to malignant progression in many diverse types of human cancer. STAT3 is constitutively active in activated B-cell (ABC)-like diffuse large B-cell lymphomas (DLBCL), a class of nongerminal center derived DLBCL cells for which existing therapy is weakly effective. In this report, we provide a preclinical proof of concept that STAT3 is an effective molecular target for ABC-like DLBCL therapy. Direct inhibition of STAT3 with short hairpin RNA suppressed the growth of human ABC-like DLBCL in mouse models in a manner associated with apoptosis, repression of STAT3 target genes, and inhibition of a tumor-promoting microenvironment. Together, these results suggest that STAT3 is essential to maintain the pathophysiology of ABC-like DLBCL and therefore that STAT3 inhibition may offer a promising approach in its therapy.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
81 |
7
|
Castanotto D, Lin M, Kowolik C, Wang L, Ren XQ, Soifer HS, Koch T, Hansen BR, Oerum H, Armstrong B, Wang Z, Bauer P, Rossi J, Stein CA. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells. Nucleic Acids Res 2015; 43:9350-61. [PMID: 26433227 PMCID: PMC4627093 DOI: 10.1093/nar/gkv964] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/04/2015] [Indexed: 11/18/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
64 |
8
|
Herrmann A, Cherryholmes G, Schroeder A, Phallen J, Alizadeh D, Xin H, Wang T, Lee H, Lahtz C, Swiderski P, Armstrong B, Kowolik C, Gallia GL, Lim M, Brown C, Badie B, Forman S, Kortylewski M, Jove R, Yu H. TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res 2014; 74:5218-28. [PMID: 25047528 DOI: 10.1158/0008-5472.can-14-1151] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding supports for cancer stem-like cells in malignant glioma may suggest therapeutic strategies for their elimination. Here, we show that the Toll-like receptor TLR9 is elevated in glioma stem-like cells (GSC) in which it contributes to glioma growth. TLR9 overexpression is regulated by STAT3, which is required for GSC maintenance. Stimulation of TLR9 with a CpG ligand (CpG ODN) promoted GSC growth, whereas silencing TLR9 expression abrogated GSC development. CpG-ODN treatment induced Frizzled4-dependent activation of JAK2, thereby activating STAT3. Targeted delivery of siRNA into GSC was achieved via TLR9 using CpG-siRNA conjugates. Through local or systemic treatment, administration of CpG-Stat3 siRNA to silence STAT3 in vivo reduced GSC along with glioma growth. Our findings identify TLR9 as a functional marker for GSC and a target for the delivery of efficacious therapeutics for glioma treatment. Cancer Res; 74(18); 5218-28. ©2014 AACR.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
56 |
9
|
Kalbitzer HR, Görler A, Li H, Dubovskii PV, Hengstenberg W, Kowolik C, Yamada H, Akasaka K. 15N and 1H NMR study of histidine containing protein (HPr) from Staphylococcus carnosus at high pressure. Protein Sci 2000; 9:693-703. [PMID: 10794411 PMCID: PMC2144620 DOI: 10.1110/ps.9.4.693] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pressure-induced changes in 15N enriched HPr from Staphylococcus carnosus were investigated by two-dimensional (2D) heteronuclear NMR spectroscopy at pressures ranging from atmospheric pressure up to 200 MPa. The NMR experiments allowed the simultaneous observation of the backbone and side-chain amide protons and nitrogens. Most of the resonances shift downfield with increasing pressure indicating generalized pressure-induced conformational changes. The average pressure-induced shifts for amide protons and nitrogens are 0.285 ppm GPa(-1) at 278 K and 2.20 ppm GPa(-1), respectively. At 298 K the corresponding values are 0.275 and 2.41 ppm GPa(-1). Proton and nitrogen pressure coefficients show a significant but rather small correlation (0.31) if determined for all amide resonances. When restricting the analysis to amide groups in the beta-pleated sheet, the correlation between these coefficients is with 0.59 significantly higher. As already described for other proteins, the amide proton pressure coefficients are strongly correlated to the corresponding hydrogen bond distances, and thus are indicators for the pressure-induced changes of the hydrogen bond lengths. The nitrogen shift changes appear to sense other physical phenomena such as changes of the local backbone conformation as well. Interpretation of the pressure-induced shifts in terms of structural changes in the HPr protein suggests the following picture: the four-stranded beta-pleated sheet of HPr protein is the least compressible part of the structure showing only small pressure effects. The two long helices a and c show intermediary effects that could be explained by a higher compressibility and a concomitant bending of the helices. The largest pressure coefficients are found in the active center region around His15 and in the regulatory helix b which includes the phosphorylation site Ser46 for the HPr kinase. This suggests that this part of the structure occurs in a number of different structural states whose equilibrium populations are shifted by pressure. In contrast to the surrounding residues of the active center loop that show large pressure effects, Ile14 has a very small proton and nitrogen pressure coefficient. It could represent some kind of anchoring point of the active center loop that holds it in the right place in space, whereas other parts of the loop adapt themselves to changing external conditions.
Collapse
|
research-article |
25 |
41 |
10
|
Meng Y, Liu C, Shen L, Zhou M, Liu W, Kowolik C, Campbell JL, Zheng L, Shen B. TRAF6 mediates human DNA2 polyubiquitination and nuclear localization to maintain nuclear genome integrity. Nucleic Acids Res 2019; 47:7564-7579. [PMID: 31216032 PMCID: PMC6698806 DOI: 10.1093/nar/gkz537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
The multifunctional human DNA2 (hDNA2) nuclease/helicase is required to process DNA ends for homology-directed recombination repair (HDR) and to counteract replication stress. To participate in these processes, hDNA2 must localize to the nucleus and be recruited to the replication or repair sites. However, because hDNA2 lacks the nuclear localization signal that is found in its yeast homolog, it is unclear how its migration into the nucleus is regulated during replication or in response to DNA damage. Here, we report that the E3 ligase TRAF6 binds to and mediates the K63-linked polyubiquitination of hDNA2, increasing the stability of hDNA2 and promoting its nuclear localization. Inhibiting TRAF6-mediated polyubiquitination abolishes the nuclear localization of hDNA2, consequently impairing DNA end resection and HDR. Thus, the current study reveals a mechanism for the regulation of hDNA2 localization and establishes that TRAF6-mediated hDNA2 ubiquitination activates DNA repair pathways to maintain nuclear genome integrity.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
19 |
11
|
Neman J, Duenas V, Kowolik C, Hambrecht A, Chen M, Jandial R. Lineage mapping and characterization of the native progenitor population in cellular allograft. Spine J 2013; 13:162-174. [PMID: 23305812 PMCID: PMC3893135 DOI: 10.1016/j.spinee.2012.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/19/2012] [Accepted: 11/08/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The gold standard for bone grafting remains the autograft. However, the attractiveness of autograft is counterbalanced by donor site morbidity. To mimic autograft-and its fundamental properties of osteoconductivity, osteoinductivity, and osteogenicity-novel bone grafting materials such as cellular allograft (Osteocel Plus) are composed of allograft in which the progenitor cells are preserved. However, the true identity of these cells remains obscure largely due to the lack of specific bona fide antigenic markers for stem versus progenitor cells. PURPOSE To characterize the stem and progenitor population in cellular allograft, Osteocel Plus. STUDY DESIGN To determine whether cells endogenous to a cellular allograft undergo extensive self-renewal (a functional hallmark of stem cells), we employed a novel use of lineage mapping using a modern and refined replication incompetent lentiviral library with high complexity to uniquely label single cells with indelible genetic tags faithfully passed on to all progeny, allowing identification of highly proliferative clones. We used genetic and proteomic profiling as well as functional assays to show that these cells are capable of multipotential differentiation (the second functional hallmark of stem cells). Use of these two functional hallmarks enabled us to establish the existence of a stem and progenitor cell population in cellular allografts. METHODS Specifically, we employed (1) cellular dissociation and (2) in vitro expansion and differentiation capacity of cells released from cellular allograft. We determined differential gene expression profiling of a bona fide human mesenchymal stem cell line and cells from cellular allograft using focused PCR arrays mesenchymal stem cell (MSC) and osteogenesis associated. Proteomic profiling of cells from cellular allograft was performed using (1) immunofluorescence for BMP-2, Runx2 SMADs, CD44, Stro-1, Collagen, RANKL, Osterix Osteocalcin, and Ki67; (2) flow cytometry for Ki67, CD44, Stro-1, Thy1, CD146, and Osteocalcin; and (3) enzyme-linked immunosorbent assays (ELISA) for BMP-2, Osteocalcin, RANKL, Osteoprotegrin, and Osteocalcin. Clonal analysis of cells from cellular allograft was performed utilizing advance lentivirus lineage mapping techniques and massive parallel sequencing. Alizarin Red, Alcian Blue, and Oil red O staining assessed tripotential differentiation capacity. RESULTS Serial trypsinization of allograft cellular bone matrix yielded approximately 1×105 cells per mL with viability greater than 90%. Cells expressed a panel of 84 MSC-associated genes in a pattern similar to but not identical to pure MSCs; specifically, 59 of 84 genes showed less than a 2.5-fold change in both cell types. Protein analysis showed that cellular allograft -derived cells maintained in nondifferentiation media expressed the early osteo-progenitor markers BMP-2, SMADs, and Runx2. Corresponding flow cytometry data for MSC markers revealed the presence of Stro-1 (49%), CD44 (99%), CD90 (42%), and CD146 (97%). Lineage mapping indicated that 62% of clones persisted and generated progeny through 10 passages, strongly suggesting the presence of bona fide stem cells. Passage 10 clones also exhibited tri-lineage differentiation capacity into osteogenic (Alizarin Red with H&E counterstain), chondrogenic (Alcian Blue), and adipogenic (Oil red O). Cells that did not proliferate through 10 passages presumably differentiated along an osteo-progenitor lineage. CONCLUSION These data indicate that cellular allograft (Osteocel Plus) contains a heterogeneous population of cells with most cells demonstrating the capacity for extensive self-renewal and multipotential differentiation, which are hallmarks of stem cells. Whether stem cell-enriched allografts function comparably to autograft will require further studies, and their efficacy in facilitating arthrodesis will depend on randomized clinical studies.
Collapse
|
research-article |
12 |
18 |
12
|
Geletu M, Chaize C, Arulanandam R, Vultur A, Kowolik C, Anagnostopoulou A, Jove R, Raptis L. Stat3 activity is required for gap junctional permeability in normal rat liver epithelial cells. DNA Cell Biol 2009; 28:319-27. [PMID: 19456249 DOI: 10.1089/dna.2008.0833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neoplastic transformation by oncogenes such as activated Src is known to suppress gap junctional, intercellular communication (GJIC). One of the Src effector pathways leading to GJIC suppression and transformation is the Ras/Raf/Mek/Erk, so that inhibition of this pathway in vSrc-transformed cells restores GJIC. A distinct Src downstream effector required for neoplasia is the signal transducer and activator of transcription-3 (Stat3). To examine the role of Stat3 upon the Src-mediated, GJIC suppression, Stat3 was downregulated in rat liver epithelial cells expressing activated Src through treatment with the CPA7, Stat3 inhibitor, or through infection with a retroviral vector expressing a Stat3-specific shRNA. GJIC was examined by electroporating the fluorescent dye, Lucifer yellow, into cells grown on two coplanar electrodes of electrically conductive, optically transparent, indium-tin oxide, followed by observation of the migration of the dye to the adjacent, nonelectroporated cells under fluorescence illumination. The results demonstrate that, contrary to inhibition of the Ras pathway, Stat3 inhibition in cells expressing activated Src does not restore GJIC. On the contrary, Stat3 inhibition in normal cells with high GJIC levels eliminated junctional permeability. Therefore, Stat3's function is actually required for the maintenance of junctional permeability, although Stat3 generally promotes growth and in an activated form can act as an oncogene.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
12 |
13
|
Herrmann A, Priceman SJ, Swiderski P, Kujawski M, Xin H, Cherryholmes GA, Zhang W, Zhang C, Lahtz C, Kowolik C, Forman SJ, Kortylewski M, Yu H. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest 2015; 125:2547. [PMID: 26030229 DOI: 10.1172/jci82555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
Published Erratum |
10 |
11 |
14
|
Buettner R, Nguyen LXT, Kumar B, Morales C, Liu C, Chen LS, Pemovska T, Synold TW, Palmer J, Thompson R, Li L, Hoang DH, Zhang B, Ghoda L, Kowolik C, Kontro M, Leitch C, Wennerberg K, Xu X, Chen CC, Horne D, Gandhi V, Pullarkat V, Marcucci G, Rosen ST. 8-chloro-adenosine activity in FLT3-ITD acute myeloid leukemia. J Cell Physiol 2019; 234:16295-16303. [PMID: 30770553 PMCID: PMC6697246 DOI: 10.1002/jcp.28294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/25/2023]
Abstract
Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.
Collapse
|
research-article |
6 |
11 |
15
|
Chen S, Masri S, Chan H, Petrossian K, Phung S, Yuan Y, Li H, Kowolik C. Molecular Characterization of Endocrine Resistance. Cancer Res 2009. [DOI: 10.1158/0008-5472.sabcs-09-407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Background. Tamoxifen (TAM), anastrozole (ANA), letrozole (LET), and exemestane (EXE) are major drugs to treat estrogen (E)-dependent breast cancer. Although they are effective, disease recurrence often occurs as a result of acquired resistance to them. To unravel the mechanisms involved, MCF-7aro cell lines resistant to each of the 4 drugs or undergone long-term E deprivation (i.e., LTEDaro) were generated. LET-R, ANA-R, and LTEDaro cells contain a constitutively active ERa. TAM-R cells are thought to have hypersensitive ERa. Furthermore, EXE has weak E-like properties, leading to an ER-dependent crosstalk with EGFR signaling. Thus, our results indicate that resistance mechanisms of the 4 drugs are not identical, activation of ERa is critical for endocrine resistance, and our cell lines are valuable for studying the resistance mechanisms to these drugs. Results. Genome-wide gene expression microarray analysis of these lines was carried out. Hierarchical clustering identified many E-responsive genes with varied expression in our cell lines. At least 3 types of E-responsive genes were observed: up-regulated in all cell lines, up-regulated in all lines except LTEDaro, and up-regulated in all lines but LTEDaro and TAM-R. To better understand the roles of ERa, we initiated ChIP-sequencing experiments for a genome-wide analysis of ERa-binding sites in MCF-7aro and LTEDaro, and plan to correlate the ERa-binding data and the gene expression data. There was a significant overlap of ERa-binding sites identified in the two lines. Furthermore, a substantial number of ERa-binding sites were identified in LTEDaro without E. To study the post-transcriptional regulatory mechanisms, miRNA microarray profiling analysis of resistant lines was also initiated. Global miRNA expression was correlated with a similarity matrix analysis which revealed 4 miRNA clusters, with 2 having E-driven miRNAs. We identified expression of 9 miRNAs as down-regulated in AI resistant cells but up-regulated in TAM-R and LTEDaro, expression of 16 miRNAs as up-regulated in LET-R and ANA-R, and expression of 24 miRNAs as up-regulated in EXE-R. Functional analysis also revealed that miRNA-128a down-regulated the TGFb response in LET-R. Finally, to determine the ER-Signal Transduction cross-talk mechanisms, we initiated an unbiased screen of kinases that participate in the development of resistance to the 4 drugs. Our cell lines were screened against a focused dicer substrate siRNA library that targets 544 kinases. The kinomic approach revealed that hits from MCF-7aro and LTEDaro were different. Twenty hits were identified using LTEDaro, as indicated by more than 40% suppression of cell proliferation with 3 or 4 siRNAs/target. These hits included several kinases known for their roles in endocrine resistance as well as several novel kinases. Discussion. We anticipate that these bioinformatics studies will produce valuable molecular information regarding the mechanisms of endocrine resistance, and the information will help design approaches to reduce disease recurrence and improve the efficacy of endocrine treatments of breast cancer.
Citation Information: Cancer Res 2009;69(24 Suppl):Abstract nr 407.
Collapse
|
|
16 |
|