1
|
Lucon DR, Rocha CDS, Craveiro RB, Dilloo D, Cardinalli IA, Cavalcanti DP, Aguiar SDS, Maurer-Morelli C, Yunes JA. Downregulation of 14q32 microRNAs in Primary Human Desmoplastic Medulloblastoma. Front Oncol 2013; 3:254. [PMID: 24093088 PMCID: PMC3782711 DOI: 10.3389/fonc.2013.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common pediatric cancers, likely originating from abnormal development of cerebellar progenitor neurons. MicroRNA (miRNA) has been shown to play an important role in the development of the central nervous system. Microarray analysis was used to investigate miRNA expression in desmoplastic MB from patients diagnosed at a young age (1 or 2 years old). Normal fetal or newborn cerebellum was used as control. A total of 84 differentially expressed miRNAs (64 downregulated and 20 upregulated) were found. Most downregulated miRNAs (32/64) were found to belong to the cluster of miRNAs at the 14q32 locus, suggesting that this miRNA locus is regulated as a module in MB. Possible mechanisms of 14q32 miRNAs downregulation were investigated by the analysis of publicly available gene expression data sets. First, expression of estrogen-related receptor-γ (ESRRG), a reported positive transcriptional regulator of some 14q32 miRNAs, was found downregulated in desmoplastic MB. Second, expression of the parentally imprinted gene MEG3 was lower in MB in comparison to normal cerebellum, suggesting a possible epigenetic silencing of the 14q32 locus. miR-129-5p (11p11.2/7q32.1), miR-206 (6p12.2), and miR-323-3p (14q32.2), were chosen for functional studies in DAOY cells. Overexpression of miR-129-5p using mimics decreased DAOY proliferation. No effect was found with miR-206 or miR-323 mimics.
Collapse
|
Journal Article |
12 |
22 |
2
|
Barbalho PG, Carvalho BDS, Lopes-Cendes I, Maurer-Morelli CV. Cyclooxygenase-1 as a Potential Therapeutic Target for Seizure Suppression: Evidences from Zebrafish Pentylenetetrazole-Seizure Model. Front Neurol 2016; 7:200. [PMID: 27895618 PMCID: PMC5108920 DOI: 10.3389/fneur.2016.00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023] Open
Abstract
Cyclooxygenases (COX)-1 and -2 are isoenzymes that catalyze the conversion of arachidonic acid into prostaglandins (PGs). COX-2 and PGs are rapidly increased following seizures and are known to play important roles in the neuroinflammatory process. COX-2 isoform has been predominantly explored as the most suitable target for pharmacological intervention in epilepsy studies, while COX-1 remains poorly investigated. In the present study, we evaluated the effects of selective COX-1 inhibitor or selective COX-2 inhibitor on seizure suppression in the zebrafish pentylenetetrazole (PTZ)-seizure model. Zebrafish larvae were incubated in 5 μM of SC-236 for 24 h or 2.8 μM of SC-560 for 30 min, followed by exposure to 15 mM PTZ for 60 min. Real-time quantitative PCR analysis was carried out to investigate transcription levels of cox1 (ptgs1), as well as to determine cfos levels, used as a marker for neuronal activity. Effects of selective COX-2 or COX-1 inhibitors on locomotor activity response (velocity and distance moved) during PTZ exposure were evaluated using the Danio Vision video-tracking system. Our results showed an inducible expression of the cox1 gene after 60 min of PTZ exposure. Cox1 mRNA levels were upregulated compared with the control group. We found that COX-2 inhibition treatment had no effect on zebrafish PTZ-induced seizures. On the other hand, COX-1 inhibition significantly attenuated PTZ-induced increase of locomotor activity and reduced the c-fos mRNA expression. These findings suggest that COX-1 inhibition rather than COX-2 has positive effects on seizure suppression in the zebrafish PTZ-seizure model.
Collapse
|
Journal Article |
9 |
13 |
3
|
Scherrer DZ, Baptista MB, Matos AHB, Maurer-Morelli CV, Steiner CE. Mutations in PYCR1 gene in three families with autosomal recessive cutis laxa, type 2. Eur J Med Genet 2013; 56:336-9. [PMID: 23531708 DOI: 10.1016/j.ejmg.2013.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/11/2013] [Indexed: 12/15/2022]
|
Case Reports |
12 |
10 |
4
|
Clemente Z, Silva GH, de Souza Nunes MC, Martinez DST, Maurer-Morelli CV, Thomaz AA, Castro VLSS. Exploring the mechanisms of graphene oxide behavioral and morphological changes in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30508-30523. [PMID: 31463743 DOI: 10.1007/s11356-019-05870-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
The presence of natural organic matter such as humic acid (HA) can influence the behavior of graphene oxide (GO) in the aquatic environment. In this study, zebrafish embryos were analyzed after 5 and 7 days of exposure to GO (100 mg L-1) and HA (20 mg L-1) alone or together. The results indicated that, regardless of the presence of HA, larvae exposed to GO for 5 days showed an increase in locomotor activity, reduction in the yolk sac size, and total length and inhibition of AChE activity, but there was no difference in enzyme expression. The statistical analysis indicated that the reductions in total larval length, yolk sac size, and AChE activity in larvae exposed to GO persisted in relation to the control group, but there was a recovery of these parameters in groups also exposed to HA. Larvae exposed to GO for 7 days did not show significant differences in locomotor activity, but the RT-PCR gene expression analysis evidenced an increase in the AChE expression. Since the embryos exposed to GO showed a reduction in overall length, they were submitted to confocal microscopy and their muscle tissue configuration investigated. No changes were observed in the muscle tissue. The results indicated that HA is associated with the toxicity risk modulation by GO and that some compensatory homeostasis mechanisms may be involved in the developmental effects observed in zebrafish.
Collapse
|
|
6 |
10 |
5
|
Jeremias F, Bussaneli DG, Restrepo M, Pierri RAG, Souza JFD, Fragelli CMB, Secolin R, Maurer-Morelli CV, Cordeiro RDCL, Scarel-Caminaga RM, Santos-Pinto L. Inheritance pattern of molar-incisor hypomineralization. Braz Oral Res 2021; 35:e035. [PMID: 33759971 DOI: 10.1590/1807-3107bor-2021.vol35.0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate the segregation patterns of molar incisor hypomineralization (MIH) in families, given the evidence that its etiology is influenced by genetics. Clinically, MIH may be detected in parents and/or siblings of MIH-affected children. Our study included children with at least one first permanent molar affected by MIH (proband) and their first-degree relatives (parents and siblings). The participants were examined clinically to detect MIH, according to the European Academy of Paediatric Dentistry criteria (2003). A total of 101 nuclear families (391 individuals) were studied. Proband diagnosis was followed by MIH classification of the subject, his parents and siblings, as affected, unaffected, or unknown. Segregation analysis was performed using the multivariate logistic regression model of the Statistical Analysis for Genetic Epidemiology package, and segregation models (general transmission, environmental, major gene, dominant, codominant and recessive models). The Akaike information criterion (AIC) was used to evaluate the most parsimonious model. In all, 130 affected individuals, 165 unaffected individuals, and 96 unknown individuals were studied. Severe MIH was found in 50.7% of the cases. A segregation analysis performed for MIH revealed the following different models: environmental and dominance (p = 0.05), major gene (p = 0.04), codominant (p = 0.15) and recessive models (p = 0.03). According to the AIC values, the codominant model was the most parsimonious (AIC = 308.36). Our results suggest that the codominant model could be the most likely for inheriting MIH. This result strengthens the evidence that genetic factors, such as multifactorial complex defect, influence MIH.
Collapse
|
|
4 |
8 |
6
|
Xing Q, Huynh V, Parolari TG, Maurer-Morelli CV, Peixoto N, Wei Q. Zebrafish larvae heartbeat detection from body deformation in low resolution and low frequency video. Med Biol Eng Comput 2018; 56:2353-2365. [PMID: 29967932 DOI: 10.1007/s11517-018-1863-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/17/2018] [Indexed: 12/23/2022]
Abstract
Zebrafish (Danio rerio) is a powerful animal model used in many areas of genetics and disease research. Despite its advantages for cardiac research, the heartbeat pattern of zebrafish larvae under different stress conditions is not well documented quantitatively. Several effective automated heartbeat detection methods have been developed to reduce the workload for larva heartbeat analysis. However, most require complex experimental setups and necessitate direct observation of the larva heart. In this paper, we propose the Zebrafish Heart Rate Automatic Method (Z-HRAM), which detects and tracks the heartbeats of immobilized, ventrally positioned zebrafish larvae without direct larva heart observation. Z-HRAM tracks localized larva body deformation that is highly correlated with heart movement. Multiresolution dense optical flow-based motion tracking and principal component analysis are used to identify heartbeats. Here, we present results of Z-HRAM on estimating heart rate from video recordings of seizure-induced larvae, which were of low resolution (1024 × 760) and low frame rate (3 to 4 fps). Heartbeats detected from Z-HRAM were shown to correlate reliably with those determined through corresponding electrocardiogram and manual video inspection. We conclude that Z-HRAM is a robust, computationally efficient, and easily applicable tool for studying larva cardiac function in general laboratory conditions. Graphical abstract Flowchart of the automatic zebrafish heartbeat detection.
Collapse
|
|
7 |
6 |
7
|
Secolin R, Maurer-Morelli C, Cendes F, Lopes-Cendes I. Segregation analysis in mesial temporal lobe epilepsy with hippocampal atrophy. Epilepsia 2010; 51 Suppl 1:47-50. [PMID: 20331715 DOI: 10.1111/j.1528-1167.2009.02445.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
Research Support, Non-U.S. Gov't |
15 |
4 |
8
|
Cintra L, Yanicostas C, Soussi-Yanicostas N, Vianna Maurer-Morelli C. Effects of baicalin pre-treatment on pentylenetetrazole-induced seizures: Insights from zebrafish larvae locomotor behavior and neuronal calcium imaging. Epilepsy Behav 2024; 157:109866. [PMID: 38820680 DOI: 10.1016/j.yebeh.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Natural compounds are increasingly being studied for their potential neuroprotective effects against inflammatory neurological diseases. Epilepsy is a common neurological disease associated with inflammatory processes, and around 30% of people with epilepsy do not respond to traditional treatments. Some flavonoids, when taken along with antiseizure medications can help reduce the likelihood of drug-resistant epilepsy. Baicalin, a plant-based compound, has been shown to possess pharmacological properties such as anti-inflammatory, neuroprotective, anticonvulsant, and antioxidant activities. In this study, we tested the effect of baicalin on an established model of pharmacologically induced seizure in zebrafish using measures of both locomotor behavior and calcium imaging of neuronal activity. The results of our study showed that, at the tested concentration, and contrary to other studies in rodents, baicalin did not have an anti-seizure effect in zebrafish larvae. However, given its known properties, other concentrations and approaches should be explored to determine if it could potentially have other beneficial effects, either alone or when administered in combination with classic antiseizure medications.
Collapse
|
|
1 |
|
9
|
Rodrigues LC, Godoi ABD, Fais VC, Peterson RT, Maurer-Morelli CV, Costa JL. Zebrafish embryo-larval testing reveals differential toxicity of new psychoactive substances. Toxicol Rep 2025; 14:102018. [PMID: 40235715 PMCID: PMC11999215 DOI: 10.1016/j.toxrep.2025.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/03/2025] [Accepted: 03/29/2025] [Indexed: 04/17/2025] Open
Abstract
New psychoactive substances (NPS) have emerged as a significant public health concern, with synthetic cannabinoid receptor agonists (SCRAs) and ketamine derivatives being among the most frequently detected compounds in the forensic context worldwide. The Fish Embryo Acute Toxicity (FET) and Maximum Tolerated Concentration (MTC) tests are used to evaluate the acute toxicity of chemicals. In this study, we used these assays to evaluate the acute toxicity of three NPS in zebrafish embryos and larvae: the SCRA MDMB-4en-PINACA and the ketamine derivatives deschloroketamine (DCK) and 2-fluorodeschloroketamine (2F-DCK). Our findings demonstrated that MDMB-4en-PINACA induced severe developmental abnormalities, including pericardial edema and yolk edema, along with high embryo mortality (10 µM), characterized by endpoints such as coagulation, lack of heartbeat, and lack of somite formation. In contrast, DCK and 2F-DCK exhibited low embryo mortality even at higher concentrations. In larval stages, MDMB-4en-PINACA presented 8 % larvae mortality (10 µM) at eight days post-fertilization (dpf), whereas ketamine derivatives led to 100 % mortality at 2000 µM in the MTC test at eight dpf. The LC50 was calculated for the FET test with MDMB-4en-PINACA, and MTC test for both DCK and 2F-DCK. Additionally, our results support the absence of N-methyl-D-aspartate (NMDA) receptors in the early life stages of zebrafish described in previous studies and highlight the significance of ketamine derivatives intoxications when the NMDA receptor is expressed. Notably, MDMB-4en-PINACA exhibited significantly higher toxicity, with an LC50 of approximately 26 times lower than that of the ketamine derivatives. These results are particularly relevant given the increasing global prevalence of NPS-related intoxications and fatalities. Using zebrafish as an in vivo model for toxicological research provides an efficient approach for screening the acute effects of emerging compounds such as NPS.
Collapse
|
research-article |
1 |
|
10
|
Fernández JAA, de Moura TC, Vila SF, Gaytán JAR, López-Díaz I, Learte-Aymamí S, Vázquez ME, Mayán MD, Sánchez L, Maurer-Morelli CV. Effects of two different peptides on pentylenetetrazole-induced seizures in larval zebrafish. PLoS One 2025; 20:e0308581. [PMID: 40279339 PMCID: PMC12026968 DOI: 10.1371/journal.pone.0308581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/17/2025] [Indexed: 04/27/2025] Open
Abstract
Epilepsy is a common and severe neurological disease characterized by spontaneous and recurrent seizures. Although anti-seizure treatments are effective for most patients, approximately 30% remain pharmacoresistant. Moreover, uncontrolled seizures are associated with increased health risks and shortened life expectancy in individuals with refractory epilepsy. Preclinical studies play a crucial role in drug discovery, and the zebrafish (Danio rerio) have been successfully employed for this purpose. In this study, we utilized the zebrafish PTZ-induced seizure model to evaluate the effects of two peptides on seizure responses: Tripeptide (p-BTX-I) and the CX2 (a Cx43derivated peptide). Zebrafish larvae at 6 days post-fertilization were pre-treated with these peptides at various concentrations, depending on their experimental groups, 24h prior to seizure induction. We assessed seizure frequency, quantified swimming activity, measured transcript levels of genes related to inflammation and apoptosis (il1b, tnfa, cox1, cox2a, il6, casp3a, casp9, baxa, bcl2a, and c-fos), and analyzed the biodistribution of both peptides. Our results indicate that the Tripeptide exhibited anti-inflammatory and anti-apoptotic effects, particularly through reducing the expression of il1b and casp9. CX2 pre-treatment significantly downregulated inflammatory markers (il1b, il6, tnfa, and cox1). Biodistribution analysis confirmed that the CX2 peptide reached the zebrafish brain, suggesting a direct role in modulating seizure-related pathways. Our findings demonstrate that Tripeptide and CX2 peptides can modulate gene expression and mitigate molecular response associated with epileptic seizures in the zebrafish brain. These peptides thus represent promising candidates for future research aimed at developing novel anti-epileptic therapies. However, additional studies are required to evaluate their long-term efficacy, elucidate underlying mechanisms of action, and explore potential translational applications.
Collapse
|
research-article |
1 |
|