1
|
Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Rüterjans H, Glaubitz C, Bernhard F. High level cell-free expression and specific labeling of integral membrane proteins. ACTA ACUST UNITED AC 2004; 271:568-80. [PMID: 14728684 DOI: 10.1111/j.1432-1033.2003.03959.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate the high level expression of integral membrane proteins (IMPs) in a cell-free coupled transcription/translation system using a modified Escherichia coli S30 extract preparation and an optimized protocol. The expression of the E. coli small multidrug transporters EmrE and SugE containing four transmembrane segments (TMS), the multidrug transporter TehA with 10 putative TMS, and the cysteine transporter YfiK with six putative TMS, were analysed. All IMPs were produced at high levels yielding up to 2.7 mg of protein per mL of reaction volume. Whilst the vast majority of the synthesized IMPs were precipitated in the reaction mixture, the expression of a fluorescent EmrE-sgGFP fusion construct showed evidence that a small part of the synthesized protein 'remained soluble and this amount could be significantly increased by the addition of E. coli lipids into the cell-free reaction. Alternatively, the majority of the precipitated IMPs could be solubilized in detergent micelles, and modifications to the solubilization procedures yielded proteins that were almost pure. The folding induced by formation of the proposed alpha-helical secondary structures of the IMPs after solubilization in various micelles was monitored by CD spectroscopy. Furthermore, the reconstitution of EmrE, SugE and TehA into proteoliposomes was demonstrated by freeze-fracture electron microscopy, and the function of EmrE was additionally analysed by the specific transport of ethidium. The cell-free expression technique allowed efficient amino acid specific labeling of the IMPs with 15N isotopes, and the recording of solution NMR spectra of the solubilized EmrE, SugE and YfiK proteins further indicated a correctly folded conformation of the proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
191 |
2
|
Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V. Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 2011; 50:11942-6. [PMID: 22034093 PMCID: PMC4234116 DOI: 10.1002/anie.201105648] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 11/06/2022]
|
Research Support, N.I.H., Extramural |
14 |
150 |
3
|
Gröbner G, Burnett IJ, Glaubitz C, Choi G, Mason AJ, Watts A. Observations of light-induced structural changes of retinal within rhodopsin. Nature 2000; 405:810-3. [PMID: 10866205 DOI: 10.1038/35015604] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photo-isomerization of the 11-cis retinal chromophore activates the mammalian light-receptor rhodopsin, a representative member of a major superfamily of transmembrane G-protein-coupled receptor proteins (GPCRs) responsible for many cell signal communication pathways. Although low-resolution (5 A) electron microscopy studies confirm a seven transmembrane helix bundle as a principal structural component of rhodopsin, the structure of the retinal within this helical bundle is not known in detail. Such information is essential for any theoretical or functional understanding of one of the fastest occurring photoactivation processes in nature, as well as the general mechanism behind GPCR activation. Here we determine the three-dimensional structure of 11-cis retinal bound to bovine rhodopsin in the ground state at atomic level using a new high-resolution solid-state NMR method. Significant structural changes are observed in the retinal following activation by light to the photo-activated M(I) state of rhodopsin giving the all-trans isomer of the chromophore. These changes are linked directly to the activation of the receptor, providing an insight into the activation mechanism of this class of receptors at a molecular level.
Collapse
|
|
25 |
87 |
4
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
|
Review |
12 |
85 |
5
|
Hempelmann F, Hölper S, Verhoefen MK, Woerner AC, Köhler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C. His75−Asp97 Cluster in Green Proteorhodopsin. J Am Chem Soc 2011; 133:4645-54. [DOI: 10.1021/ja111116a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
|
14 |
76 |
6
|
Mason AJ, Martinez A, Glaubitz C, Danos O, Kichler A, Bechinger B. The antibiotic and DNA-transfecting peptide LAH4 selectively associates with, and disorders, anionic lipids in mixed membranes. FASEB J 2005; 20:320-2. [PMID: 16352649 DOI: 10.1096/fj.05-4293fje] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The histidine-rich amphipathic peptide LAH4 has antibiotic and DNA delivery capabilities. The peptide has a strong affinity for anionic lipids found in the outer membrane of bacterial membranes. A role for anionic lipids in release of cationic plasmid-containing complexes has been proposed previously, and disruption of membrane asymmetry and presentation of phosphatidylserine (PS) in the membrane outer leaflet is a general feature observed in diseased mammalian cells. Therefore, to understand the peptide-lipid interactions in more detail, solid-state NMR experiments on model membranes have been performed. 31P MAS NMR on mixed phosphatidylcholine (PC)/PS and PC/phosphatidylglycerol (PG) membranes has been used to demonstrate a strong interaction between LAH4 and anionic lipids. By using deuterated lipids and wide-line 2H NMR when probing lipid chain order, it is demonstrated that LAH4 preferentially interacts with PS over PC and effectively disorders the anionic PS lipid fatty acyl chains. In addition, we demonstrate that the efficiency of gene transfer in vitro to different cell lines is closely related to the degree of disruption of PS acyl chains for four isomers of LAH4. This work suggests a mechanism of selective destabilization by LAH4 of anionic lipids in the membranes of cells during transfection with implications for nucleic acid delivery in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
74 |
7
|
Lopez JJ, Shukla AK, Reinhart C, Schwalbe H, Michel H, Glaubitz C. The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2008; 47:1668-71. [PMID: 18236494 DOI: 10.1002/anie.200704282] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
Research Support, Non-U.S. Gov't |
17 |
73 |
8
|
Yang J, Aslimovska L, Glaubitz C. Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR. J Am Chem Soc 2011; 133:4874-81. [DOI: 10.1021/ja109766n] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
14 |
73 |
9
|
Reggie L, Lopez JJ, Collinson I, Glaubitz C, Lorch M. Dynamic nuclear polarization-enhanced solid-state NMR of a 13C-labeled signal peptide bound to lipid-reconstituted Sec translocon. J Am Chem Soc 2011; 133:19084-6. [PMID: 22040139 DOI: 10.1021/ja209378h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic nuclear polarization (DNP) has made it possible to record 2D double-quantum-filtered (DQF) solid-state NMR (ssNMR) spectra of a signal peptide bound to a lipid-reconstituted SecYEG translocon complex. The small quantity of peptide in the sample (~40 nmol) normally prohibits multidimensional ssNMR experiments. Such small amounts are not the exception, because for samples involving membrane proteins, most of the limited sample space is occupied by lipids. As a consequence, a conventional 2D DQF ssNMR spectrum with the sample used here would require many weeks if not months of measurement time. With the help of DNP, however, we were able to acquire such a 2D spectrum within 20 h. This development opens up new possibilities for membrane protein studies, particularly in the exploitation of high-resolution spectroscopy and the assignment of individual amino acid signals, in this case for a signal peptide bound to the translocon complex.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
68 |
10
|
Siarheyeva A, Lopez JJ, Glaubitz C. Localization of Multidrug Transporter Substrates within Model Membranes†. Biochemistry 2006; 45:6203-11. [PMID: 16681393 DOI: 10.1021/bi0524870] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Active extrusion of drugs from the cell interior by primary and secondary efflux pumps is an essential mechanism underlying the phenomenon of multidrug resistance. The first discovered and best characterized primary efflux pump found in humans is the ABC transporter P-glycoprotein (PGP), which shows very broad substrate specificity. Many of these molecules are lipophilic, and binding most likely takes place within the membrane. PGP could either translocate them from the inner to the outer leaflet (flippase) or extrude them from the membrane into the extracellular environment (hydrophobic vacuum cleaner). Recognition and binding of such a diverse set of substrates must be associated with a preferred membrane location, determined by molecular properties and lipid interactions. Therefore, a systematic study of the interaction among seven PGP substrates (phenazine, doxorubicin, cephalexin, ampicillin, chloramphenicol, penicillin G, and quercetin) and two modulators (quinidine and nicardipine) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) model membranes is reported here. The location profile of these molecules across the membrane was determined by (1)H NOESY MAS NMR based on (1)H-(1)H cross-peaks between their aromatic fingerprint region and lipid resonances. Although structurally rather diverse, all tested substances are found to have their highest concentration between the phosphate of the lipid headgroup and the upper segments of the lipid hydrocarbon chains. Our findings are consistent with PGP substrate and modulator binding from the membrane interface region.
Collapse
|
|
19 |
68 |
11
|
Klyszejko AL, Shastri S, Mari SA, Grubmüller H, Muller DJ, Glaubitz C. Folding and Assembly of Proteorhodopsin. J Mol Biol 2008; 376:35-41. [DOI: 10.1016/j.jmb.2007.11.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
|
17 |
67 |
12
|
Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C. Visualizing Specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR. J Am Chem Soc 2015; 137:9032-43. [DOI: 10.1021/jacs.5b03606] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
|
10 |
65 |
13
|
Glaubitz C, Watts A. Magic angle-oriented sample spinning (MAOSS): A new approach toward biomembrane studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1998; 130:305-316. [PMID: 9500913 DOI: 10.1006/jmre.1997.1344] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The application of magic angle sample spinning (MAS) NMR to uniformly aligned biomembrane samples is demonstrated as a new general approach toward structural studies of membrane proteins, peptides, and lipids. The spectral linewidth from a multilamellar lipid dispersion is dominated, in the case of protons, by the dipolar coupling. For low-gamma or dilute spins, however, the chemical shift anisotropy dominates the spectral linewidth, which is reduced by the two-dimensional order in a uniformly aligned lipid membrane. The remaining line broadening, which is due to orientational defects ("mosaic spread") can be easily removed at low spinning speeds. This orientational order in the sample also allows the anisotropic intermolecular motions of membrane components (such as rotational diffusion, tauc = 10(-10) s) for averaging dipolar interactions to be utilized, e.g., by placing the membrane normal parallel to the rotor axis. The dramatic resolution improvement for protons which are achieved in a lipid sample at only 220 Hz spinning speed in a 9.4 T field is slightly better than any data published to date using ultra-high fields (up to 17.6 T) and high-speed spinning (14 kHz). Additionally, the analysis of spinning sidebands provides valuable orientational information. We present the first 1H, 31P, and 13C MAS spectra of uniformly aligned dimyristoylphosphatidylcholine (DMPC) bilayers. Also, 1H resolution enhancement for the aromatic region of the M13 coat protein reconstituted into DMPC bilayers is presented. This new method combines the high resolution usually achieved by MAS with the advantages of orientational constraints obtained by working with macroscopically oriented samples. We describe the general potential and possible perspectives of this technique.
Collapse
|
Comparative Study |
27 |
60 |
14
|
Mörs K, Roos C, Scholz F, Wachtveitl J, Dötsch V, Bernhard F, Glaubitz C. Modified lipid and protein dynamics in nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1222-9. [DOI: 10.1016/j.bbamem.2012.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 02/09/2023]
|
|
12 |
54 |
15
|
Diller A, Roy E, Gast P, van Gorkom HJ, de Groot HJM, Glaubitz C, Jeschke G, Matysik J, Alia A. 15N photochemically induced dynamic nuclear polarization magic-angle spinning NMR analysis of the electron donor of photosystem II. Proc Natl Acad Sci U S A 2007; 104:12767-71. [PMID: 17652174 PMCID: PMC1937541 DOI: 10.1073/pnas.0701763104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In natural photosynthesis, the two photosystems that operate in series to drive electron transport from water to carbon dioxide are quite similar in structure and function, but operate at widely different potentials. In both systems photochemistry begins by photo-oxidation of a chlorophyll a, but that in photosystem II (PS2) has a 0.7 eV higher midpoint potential than that in photosystem I (PS1), so their electronic structures must be very different. Using reaction centers from (15)N-labeled spinach, these electronic structures are compared by their photochemically induced dynamic nuclear polarization (photo-CIDNP) in magic-angle spinning (MAS) NMR measurements. The results show that the electron spin distribution in PS1, apart from its known delocalization over 2 chlorophyll molecules, reveals no marked disturbance, whereas the pattern of electron spin density distribution in PS2 is inverted in the oxidized radical state. A model for the donor of PS2 is presented explaining the inversion of electron spin density based on a tilt of the axial histidine toward pyrrole ring IV causing pi-pi overlap of both aromatic systems.
Collapse
|
|
18 |
51 |
16
|
Lehner I, Basting D, Meyer B, Haase W, Manolikas T, Kaiser C, Karas M, Glaubitz C. The Key Residue for Substrate Transport (Glu14) in the EmrE Dimer Is Asymmetric. J Biol Chem 2008; 283:3281-3288. [DOI: 10.1074/jbc.m707899200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
|
17 |
49 |
17
|
Zutz A, Hoffmann J, Hellmich UA, Glaubitz C, Ludwig B, Brutschy B, Tampé R. Asymmetric ATP hydrolysis cycle of the heterodimeric multidrug ABC transport complex TmrAB from Thermus thermophilus. J Biol Chem 2010; 286:7104-15. [PMID: 21190941 DOI: 10.1074/jbc.m110.201178] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) systems translocate a wide range of solutes across cellular membranes. The thermophilic gram-negative eubacterium Thermus thermophilus, a model organism for structural genomics and systems biology, discloses ∼46 ABC proteins, which are largely uncharacterized. Here, we functionally analyzed the first two and only ABC half-transporters of the hyperthermophilic bacterium, TmrA and TmrB. The ABC system mediates uptake of the drug Hoechst 33342 in inside-out oriented vesicles that is inhibited by verapamil. TmrA and TmrB form a stable heterodimeric complex hydrolyzing ATP with a K(m) of 0.9 mm and k(cat) of 9 s(-1) at 68 °C. Two nucleotides can be trapped in the heterodimeric ABC complex either by vanadate or by mutation inhibiting ATP hydrolysis. Nucleotide trapping requires permissive temperatures, at which a conformational ATP switch is possible. We further demonstrate that the canonic glutamate 523 of TmrA is essential for rapid conversion of the ATP/ATP-bound complex into its ADP/ATP state, whereas the corresponding aspartate in TmrB (Asp-500) has only a regulatory role. Notably, exchange of this single noncanonic residue into a catalytic glutamate cannot rescue the function of the E523Q/D500E complex, implicating a built-in asymmetry of the complex. However, slow ATP hydrolysis in the newly generated canonic site (D500E) strictly depends on the formation of a posthydrolysis state in the consensus site, indicating an allosteric coupling of both active sites.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
49 |
18
|
Reckel S, Lopez JJ, Löhr F, Glaubitz C, Dötsch V. In-Cell Solid-State NMR as a Tool to Study Proteins in Large Complexes. Chembiochem 2012; 13:534-7. [DOI: 10.1002/cbic.201100721] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Indexed: 11/06/2022]
|
|
13 |
48 |
19
|
Mao J, Do NN, Scholz F, Reggie L, Mehler M, Lakatos A, Ong YS, Ullrich SJ, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy. J Am Chem Soc 2014; 136:17578-90. [PMID: 25415762 DOI: 10.1021/ja5097946] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteorhodopsins (PRs) found in marine microbes are the most abundant retinal-based photoreceptors on this planet. PR variants show high levels of environmental adaptation, as their colors are tuned to the optimal wavelength of available light. The two major green and blue subfamilies can be interconverted through a L/Q point mutation at position 105. Here we reveal the structural basis behind this intriguing color-tuning effect. High-field solid-state NMR spectroscopy was used to visualize structural changes within green PR directly within the lipid bilayer upon introduction of the green-blue L105Q mutation. The observed effects are localized within the binding pocket and close to retinal carbons C14 and C15. Subsequently, magic-angle spinning (MAS) NMR spectroscopy with sensitivity enhancement by dynamic nuclear polarization (DNP) was applied to determine precisely the retinal structure around C14-C15. Upon mutation, a significantly stretched C14-C15 bond, deshielding of C15, and a slight alteration of the retinal chain's out-of-plane twist was observed. The L105Q blue switch therefore acts locally on the retinal itself and induces a conjugation defect between the isomerization region and the imine linkage. Consequently, the S0-S1 energy gap increases, resulting in the observed blue shift. The distortion of the chromophore structure also offers an explanation for the elongated primary reaction detected by pump-probe spectroscopy, while chemical shift perturbations within the protein can be linked to the elongation of late-photocycle intermediates studied by flash photolysis. Besides resolving a long-standing problem, this study also demonstrates that the combination of data obtained from high-field and DNP-enhanced MAS NMR spectroscopy together with time-resolved optical spectroscopy enables powerful synergies for in-depth functional studies of membrane proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
48 |
20
|
Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, Glaubitz C, Tzakos AG, Viras K, Chatzigeorgiou P, Tzimas S, Kefala E, Valsami G, Archontaki H, Papadopoulos MG, Mavromoustakos T. Investigation of the Interactions of Silibinin with 2-Hydroxypropyl-β-cyclodextrin through Biophysical Techniques and Computational Methods. Mol Pharm 2015; 12:954-65. [DOI: 10.1021/mp5008053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
|
10 |
47 |
21
|
Hoffmann J, Aslimovska L, Bamann C, Glaubitz C, Bamberg E, Brutschy B. Studying the stoichiometries of membrane proteins by mass spectrometry: microbial rhodopsins and a potassium ion channel. Phys Chem Chem Phys 2010; 12:3480-5. [PMID: 20355288 DOI: 10.1039/b924630d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work we demonstrate the advantages of LILBID mass spectrometry in the mass analysis of membrane proteins with emphasis on ion-pumps and channels. Due to their hydrophobic nature, membrane proteins have to be solubilized by detergents. However, these molecules tend to complicate the analysis by mass spectrometry. In LILBID, detergent molecules are readily tolerated which allows for the study of solution phase quaternary structures of membrane proteins. This is shown for the proton-pump bacteriorhodospin and the potassium channel KcsA where in both cases the stoichiometries found by LILBID reflect the known structures from 2D or 3D crystals. With proteorhodopsin we demonstrate a preliminary detergent screening showing different structures in different detergents and the implications for the functionality of this protein. We show that Triton-X 100 prevents the formation of the pentamer of proteorhodopsin. Furthermore, the quaternary structures of proteorhodopsin cloned without the signal peptide and of the cation channel channelrhodopsin-2 were studied. The intrinsic properties of channelrhodopsin-2 allow for mass spectrometric analysis in very high salt concentrations up to 100 mM of NaCl. In summary we demonstrate that LILBID is an alternative mass spectrometric method for the analysis of membrane proteins from solution phase.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
47 |
22
|
Gröbner G, Choi G, Burnett IJ, Glaubitz C, Verdegem PJ, Lugtenburg J, Watts A. Photoreceptor rhodopsin: structural and conformational study of its chromophore 11-cis retinal in oriented membranes by deuterium solid state NMR. FEBS Lett 1998; 422:201-4. [PMID: 9490006 DOI: 10.1016/s0014-5793(97)01591-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rhodopsin is the retinal photoreceptor responsible for visual signal transduction. To determine the orientation and conformation of retinal within the binding pocket of this membrane bound receptor, an ab initio solid state 2H NMR approach was used. Bovine rhodopsin containing 11-cis retinal, specifically deuterated at its methyl groups at the C19 or C20 position, was uniaxially oriented in DMPC bilayers. Integrity of the membranes and quality of alignment were monitored by 31P NMR. Analysis of the obtained 2H NMR spectra provided angles for the individual labelled chemical bond vectors leading to an overall picture for the three dimensional structure of the polyene chain of the chromophore in the protein binding pocket around the Schiff base attachment site.
Collapse
|
|
27 |
46 |
23
|
Ong YS, Lakatos A, Becker-Baldus J, Pos KM, Glaubitz C. Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR. J Am Chem Soc 2013; 135:15754-62. [PMID: 24047229 DOI: 10.1021/ja402605s] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli EmrE, a homodimeric multidrug antiporter, has been suggested to offer a convenient paradigm for secondary transporters due to its small size. It contains four transmembrane helices and forms a functional dimer. We have probed the specific binding of substrates TPP(+) and MTP(+) to EmrE reconstituted into 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes by (31)P MAS NMR. Our NMR data show that both substrates occupy the same binding pocket but also indicate some degree of heterogeneity of the bound ligand population, reflecting the promiscuous nature of ligand binding by multidrug efflux pumps. Direct interaction between (13)C-labeled TPP(+) and key residues within the EmrE dimer has been probed by through-space (13)C-(13)C correlation spectroscopy. This was made possible by the use of solid-state NMR enhanced by dynamic nuclear polarization (DNP) through which a 19-fold signal enhancement was achieved. Our data provide clear evidence for the long assumed direct interaction between substrates such as TPP(+) and the essential residue E14 in transmembrane helix 1. Our work also demonstrates the power of DNP-enhanced solid-state NMR at low temperatures for the study for secondary transporters, which are highly challenging for conventional NMR detection.
Collapse
|
|
12 |
45 |
24
|
Lörinczi É, Verhoefen MK, Wachtveitl J, Woerner AC, Glaubitz C, Engelhard M, Bamberg E, Friedrich T. Voltage- and pH-Dependent Changes in Vectoriality of Photocurrents Mediated by Wild-type and Mutant Proteorhodopsins upon Expression in Xenopus Oocytes. J Mol Biol 2009; 393:320-41. [DOI: 10.1016/j.jmb.2009.07.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/15/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
|
16 |
44 |
25
|
Kaur H, Lakatos-Karoly A, Vogel R, Nöll A, Tampé R, Glaubitz C. Coupled ATPase-adenylate kinase activity in ABC transporters. Nat Commun 2016; 7:13864. [PMID: 28004795 PMCID: PMC5192220 DOI: 10.1038/ncomms13864] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022] Open
Abstract
ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
44 |