1
|
de Oliveira EHC, Neusser M, Figueiredo WB, Nagamachi C, Pieczarka JC, Sbalqueiro IJ, Wienberg J, Müller S. The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolor cross-species chromosome painting. Chromosome Res 2003; 10:669-83. [PMID: 12575795 DOI: 10.1023/a:1021520529952] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We performed multidirectional chromosome painting in a comparative cytogenetic study of the three howler monkey species Alouatta fusca, A. caraya and A. seniculus macconnelli (Atelinae, Platyrrhini) in order to reconstruct phylogenetic relationships within this genus. Comparative genome maps between these species were established by multicolor fluorescence in-situ hybridization (FISH) employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. The three species included in this study and previously analyzed howler monkey species were subjected to a phylogenetic analysis on the basis of a data matrix comprised of 98 discrete molecular cytogenetic characters. The results revealed that howler monkeys represent the genus with the most extensive karyotype diversity within Platyrrhini so far analyzed with high levels of intraspecific chromosomal variability. Two different multiple sex chromosome systems were identified. The phylogenetic analysis indicated that Alouatta is a monophyletic clade which can be derived from a proposed ancestral Atelinae karyotype of 2n = 62 chromosomes by a chromosome fusion, a fission, a Y-autosomal translocation and a pericentric inversion. Following these suggestions, the genus Alouatta can be divided into two distinct species groups: the first includes A. caraya and A. belzebul, the second A. s. macconnelli, A. sara, A. s. arctoidea and A. fusca.
Collapse
|
Comparative Study |
22 |
83 |
2
|
Melo KM, Oliveira R, Grisolia CK, Domingues I, Pieczarka JC, de Souza Filho J, Nagamachi CY. Short-term exposure to low doses of rotenone induces developmental, biochemical, behavioral, and histological changes in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13926-13938. [PMID: 25948382 DOI: 10.1007/s11356-015-4596-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Rotenone, a natural compound derived from plants of the genera Derris and Lonchocarpus, is used worldwide as a pesticide and piscicide. This study aims to assess short-term toxicity of rotenone to early-life stages of the fish Danio rerio and Poecilia reticulata using a wide and integrative range of biomarkers (developmental, biochemical, behavioral, and histopathological). Moreover, the species sensitivity distribution (SSD) approach was used to compare rotenone acute toxicity to fish species. Toxicity tests were based on the OECD protocols, fish embryo toxicity test (for D. rerio embryos), and fish acute toxicity test (for P. reticulata juveniles). D. rerio embryos were used to estimate lethal concentrations and analyze embryonic and enzymatic alterations (activity of catalase, glutathione-S-transferase, and cholinesterase), while P. reticulata juveniles were used for the assessment of histological damage in the gills and liver. Rotenone induced significant mortality in zebrafish embryos with a 96-h lethal concentration 50% (LC50) = 12.2 μg/L. Rotenone was embryotoxic, affecting the development of D. rerio embryos, which showed cardiac edema; tail deformities; loss of equilibrium; and a general delay characterized by lack of tail detachment, delayed somite formation, yolk sac absorption, and lack of pigmentation. Biochemical biomarker inhibition was observed for concentrations ≥1 μg/L for CAT and glutathione-S-transferase (GST) and for cholinesterase (ChE) in concentration from 10 μg/L. Behavioral changes were observed for P. reticulata juveniles exposed to concentrations equal to or above 25 μg/L of rotenone; moreover, histological damage in the liver and gills of fish exposed to concentrations equal to or above 2.5 μg/L could be observed. A hazard concentration 5% (HC5) of 3.2 μg/L was estimated considering the acute toxicity data for different fish species (n = 49). Lethal and sublethal effects of rotenone raise a concern about its effects on nontarget fish species, especially because rotenone and its metabolite rotenolone are frequently reported in the microgram range in natural environments for several days after field applications. Rotenone should be used with caution. Given the high toxicity and wide range of sublethal effects here reported, further studies in a chronic exposure scenario are recommended.
Collapse
|
|
10 |
40 |
3
|
Pereira TV, Salzano FM, Mostowska A, Trzeciak WH, Ruiz-Linares A, Chies JAB, Saavedra C, Nagamachi C, Hurtado AM, Hill K, Castro-de-Guerra D, Silva-Júnior WA, Bortolini MC. Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development. Proc Natl Acad Sci U S A 2006; 103:5676-81. [PMID: 16585527 PMCID: PMC1458632 DOI: 10.1073/pnas.0509562103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Large differences in relation to dental size, number, and morphology among and within modern human populations and between modern humans and other primate species have been observed. Molecular studies have demonstrated that tooth development is under strict genetic control, but, the genetic basis of primate tooth variation remains unknown. The PAX9 gene, which codes for a paired domain-containing transcription factor that plays an essential role in the development of mammal dentition, has been associated with selective tooth agenesis in humans and mice, which mainly involves the posterior teeth. To determine whether this gene is polymorphic in humans, we sequenced approximately 2.1 kb of the entire four-exon region (exons 1, 2, 3 and 4; 1,026 bp) and exon-intron (1.1 kb) boundaries of 86 individuals sampled from Asian, European, and Native American populations. We provided evidence that human PAX9 polymorphisms are limited to exon 3 only and furnished details about the distribution of a mutation there in 350 Polish subjects. To investigate the pattern of selective pressure on exon 3, we sequenced ortholog regions of this exon in four species of New World monkeys and one gorilla. In addition, orthologous sequences of PAX9 available in public databases were also analyzed. Although several differences were identified between humans and other species, our findings support the view that strong purifying selection is acting on PAX9. New World and Old World primate lineages may, however, have different degrees of restriction for changes in this DNA region.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
37 |
4
|
de Santana CD, Crampton WGR, Dillman CB, Frederico RG, Sabaj MH, Covain R, Ready J, Zuanon J, de Oliveira RR, Mendes-Júnior RN, Bastos DA, Teixeira TF, Mol J, Ohara W, Castro NCE, Peixoto LA, Nagamachi C, Sousa L, Montag LFA, Ribeiro F, Waddell JC, Piorsky NM, Vari RP, Wosiacki WB. Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nat Commun 2019; 10:4000. [PMID: 31506444 PMCID: PMC6736962 DOI: 10.1038/s41467-019-11690-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
Is there only one electric eel species? For two and a half centuries since its description by Linnaeus, Electrophorus electricus has captivated humankind by its capacity to generate strong electric discharges. Despite the importance of Electrophorus in multiple fields of science, the possibility of additional species-level diversity in the genus, which could also reveal a hidden variety of substances and bioelectrogenic functions, has hitherto not been explored. Here, based on overwhelming patterns of genetic, morphological, and ecological data, we reject the hypothesis of a single species broadly distributed throughout Greater Amazonia. Our analyses readily identify three major lineages that diverged during the Miocene and Pliocene-two of which warrant recognition as new species. For one of the new species, we recorded a discharge of 860 V, well above 650 V previously cited for Electrophorus, making it the strongest living bioelectricity generator.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
34 |
5
|
Pieczarka JC, Nagamachi CY, O'Brien PCM, Yang F, Rens W, Barros RMS, Noronha RCR, Rissino J, de Oliveira EHC, Ferguson-Smith MA. Reciprocal chromosome painting between two South American bats: Carollia brevicauda and Phyllostomus hastatus (Phyllostomidae, Chiroptera). Chromosome Res 2005; 13:339-47. [PMID: 15973499 DOI: 10.1007/s10577-005-2886-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
The Neotropical Phyllostomidae family is the third largest in the order Chiroptera, with 56 genera and 140 species. Most researchers accept this family as monophyletic but its species are anatomically diverse and complex, leading to disagreement on its systematics and evolutionary relationships. Most of the genera of Phyllostomidae have highly conserved karyotypes but with intense intergeneric variability, which makes any comparative analysis using classical banding difficult. The use of chromosome painting is a modern way of genomic comparison on the cytological level, and will clarify the intense intergenus chromosomal variability in Phyllostomidae. Whole chromosome probes of species were produced as a tool for evolutionary studies in this family from two species from different subfamilies, Phyllostomus hastatus and Carollia brevicauda, which have large morphological and chromosomal differences, and these probes were used in reciprocal chromosome painting. The hybridization of the Phyllostomus probes on the Carollia genome revealed 24 conserved segments, while the Carollia probes on the Phyllostomus genome detected 26 segments. Many chromosome rearrangements have occurred during the divergence of these two genera. The sequence of events suggested a large number of rearrangements during the differentiation of the genera followed by high chromosomal stability within each genus.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
33 |
6
|
de Oliveira EHC, Neusser M, Pieczarka JC, Nagamachi C, Sbalqueiro IJ, Müller S. Phylogenetic inferences of Atelinae (Platyrrhini) based on multi-directional chromosome painting in Brachyteles arachnoides, Ateles paniscus paniscus and Ateles b. marginatus. Cytogenet Genome Res 2005; 108:183-90. [PMID: 15545728 DOI: 10.1159/000080814] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 12/24/2003] [Indexed: 11/19/2022] Open
Abstract
We performed multi-directional chromosome painting in a comparative cytogenetic study of the three Atelinae species Brachyteles arachnoides, Ateles paniscus paniscus and Ateles belzebuth marginatus, in order to reconstruct phylogenetic relationships within this Platyrrhini subfamily. Comparative chromosome maps between these species were established by multi-color fluorescence in situ hybridization (FISH) employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. The three species included in this study and four previously analyzed species from all four Atelinae genera were subjected to a phylogenetic analysis on the basis of a data matrix comprised of 82 discrete chromosome characters. The results confirmed that Atelinae represent a monophyletic clade with a putative ancestral karyotype of 2n = 62 chromosomes. Phylogenetic analysis revealed an evolutionary branching sequence [Alouatta [Brachyteles [Lagothrix and Ateles]]] in Atelinae and [Ateles belzebuth marginatus [Ateles paniscus paniscus [Ateles belzebuth hybridus and Ateles geoffroyi]]] in genus Ateles. The chromosomal data support a re-evaluation of the taxonomic status of Ateles b. hybridus.
Collapse
|
Journal Article |
20 |
30 |
7
|
Nagamachi CY, Pieczarka JC, O'Brien PCM, Pinto JA, Malcher SM, Pereira AL, Rissino JDD, Mendes-Oliveira AC, Rossi RV, Ferguson-Smith MA. FISH with whole chromosome and telomeric probes demonstrates huge karyotypic reorganization with ITS between two species of Oryzomyini (Sigmodontinae, Rodentia): Hylaeamys megacephalus probes on Cerradomys langguthi karyotype. Chromosome Res 2013; 21:107-19. [PMID: 23494775 DOI: 10.1007/s10577-013-9341-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Rodentia comprises 42 % of living mammalian species. The taxonomic identification can be difficult, the number of species currently known probably being underestimated, since many species show only slight morphological variations. Few studies surveyed the biodiversity of species, especially in the Amazon region. Cytogenetic studies show great chromosomal variability in rodents, with diploid numbers ranging from 10 to 102, making it difficult to find chromosomal homologies by comparative G banding. Chromosome painting is useful, but only a few species of rodents have been studied by this technique. In this study, we sorted whole chromosome probes by fluorescence-activated cell sorting from two Hylaeamys megacephalus individuals, an adult female (2n = 54) and a fetus (2n = 50). We made reciprocal chromosome painting between these karyotypes and cross-species hybridization on Cerradomys langguthi (2n = 46). Both species belong to the tribe Oryzomyini (Sigmodontinae), which is restricted to South America and were collected in the Amazon region. Twenty-four chromosome-specific probes from the female and 25 from the fetus were sorted. Reciprocal chromosome painting shows that the karyotype of the fetus does not represent a new cytotype, but an unbalanced karyotype with multiple rearrangements. Cross-species hybridization of H. megacephalus probes on metaphases of C. langguthi shows that 11 chromosomes of H. megacephalus revealed conserved synteny, 10 H. megacephalus probes hybridized to two chromosomal regions and three hybridized to three regions. Associations were observed on chromosomes pairs 1-4 and 11. Fluorescence in situ hybridization with a telomeric probe revealed interstitial regions in three pairs (1, 3, and 4) of C. langguthi chromosomes. We discuss the genomic reorganization of the C. langguthi karyotype.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
28 |
8
|
Amaral PJS, Finotelo LFM, De Oliveira EHC, Pissinatti A, Nagamachi CY, Pieczarka JC. Phylogenetic studies of the genus Cebus (Cebidae-Primates) using chromosome painting and G-banding. BMC Evol Biol 2008; 8:169. [PMID: 18534011 PMCID: PMC2435554 DOI: 10.1186/1471-2148-8-169] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 06/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosomal painting, using whole chromosome probes from humans and Saguinus oedipus, was used to establish karyotypic divergence among species of the genus Cebus, including C. olivaceus, C. albifrons, C. apella robustus and C. apella paraguayanus. Cytogenetic studies suggested that the species of this genus have conservative karyotypes, with diploid numbers ranging from 2n = 52 to 2n = 54. RESULTS Banding studies revealed morphological divergence among some chromosomes, owing to variations in the size of heterochromatic blocks. This analysis demonstrated that Cebus species have five conserved human associations (i.e., 5/7, 2/16, 10/16, 14/15, 8/18 and 3/21) when compared with the putative ancestral Platyrrhini karyotype. CONCLUSION The autapomorphies 8/15/8 in C. albifrons and 12/15 in C. olivaceus explain the changes in chromosome number from 54 to 52. The association 5/16/7, which has not previously been reported in Platyrrhini, was also found in C. olivaceus. These data corroborate previous FISH results, suggesting that the genus Cebus has a very similar karyotype to the putative ancestral Platyrrhini.
Collapse
|
Comparative Study |
17 |
28 |
9
|
Barros RMS, Nagamachi CY, Pieczarka JC, Rodrigues LRR, Neusser M, de Oliveira EH, Wienberg J, Muniz JAPC, Rissino JD, Muller S. Chromosomal studies in Callicebus donacophilus pallescens, with classic and molecular cytogenetic approaches: multicolour FISH using human and Saguinus oedipus painting probes. Chromosome Res 2004; 11:327-34. [PMID: 12906129 DOI: 10.1023/a:1024039907101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper presents the karyotype of Callicebus donacophilus pallescens for the first time. The analysis included G-, C-, NOR-banding techniques and FISH with chromosome painting probes from Saguinus oedipus and Homo sapiens. The results were compared with the karyotypes of Callicebus moloch donacophilus and C. moloch previously published. These three karyotypes display the same diploid number (2n = 50) but diverge about the number of biarmed and acrocentric chromosomes. The acrocentrics 14 and 15 from C. m. donacophilus and C. moloch have undergone an in-tandem fusion originating a large acrocentric (pair 10) in C. d. pallescens. The major submetacentric pair (pair 1) from C. d. donacophilus and C. moloch have undergone fission originating two acrocentric pairs in C. d. pallescens (pairs 15 and 22). Herein was evidence that, in spite of the high interspecific variation among Callicebus, most of the chromosomes remained conserved.
Collapse
|
Comparative Study |
21 |
27 |
10
|
Suárez P, Cardozo D, Baldo D, Pereyra MO, Faivovich J, Orrico VGD, Catroli GF, Grabiele M, Bernarde PS, Nagamachi CY, Haddad CFB, Pieczarka JC. Chromosome evolution in dendropsophini (Amphibia, Anura, Hylinae). Cytogenet Genome Res 2013; 141:295-308. [PMID: 24107475 DOI: 10.1159/000354997] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
Dendropsophini is the most species-rich tribe within Hylidae with 234 described species. Although cytogenetic information is sparse, chromosome numbers and morphology have been considered as an important character system for systematic inferences in this group. Using a diversity of standard and molecular techniques, we describe the previously unknown karyotypes of the genera Xenohyla, Scarthyla and Sphaenorhynchus and provide new information on Dendropsophus and Lysapsus. Our results reveal significant karyotype diversity among Dendropsophini, with diploid chromosome numbers ranging from 2n = 22 in S. goinorum, 2n = 24 in Lysapsus, Scinax, Xenohyla, and almost all species of Sphaenorhynchus and Pseudis, 2n = 26 in S. carneus, 2n = 28 in P. cardosoi, to 2n = 30 in all known Dendropsophus species. Although nucleolar organizer regions (NORs) and C-banding patterns show a high degree of variability, NOR positions in 2n = 22, 24 and 28 karyotypes and C-banding patterns in Lysapsus and Pseudis are informative cytological markers. Interstitial telomeric sequences reveal a diploid number reduction from 24 to 22 in Scarthyla by a chromosome fusion event. The diploid number of X. truncata corroborates the character state of 2n = 30 as a synapomorphy of Dendropsophus.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |
11
|
Pieczarka JC, Nagamachi CY. Cytogenetic studies ofAotus from Eastern Amazonia. Y/Autosome rearrangement. Am J Primatol 1988; 14:255-263. [DOI: 10.1002/ajp.1350140306] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1986] [Revised: 11/23/1987] [Indexed: 11/06/2022]
|
|
37 |
24 |
12
|
Almeida BRRD, Milhomem-Paixão SSR, Noronha RCR, Nagamachi CY, Costa MJRD, Pardal PPDO, Coelho JS, Pieczarka JC. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae). BMC Genet 2017; 18:35. [PMID: 28412934 PMCID: PMC5392961 DOI: 10.1186/s12863-017-0494-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/25/2017] [Indexed: 01/22/2023] Open
Abstract
Background Holocentric chromosomes occur in approximately 750 species of eukaryotes. Among them, the genus Tityus (Scorpiones, Buthidae) has a labile karyotype that shows complex multivalent associations during male meiosis. Thus, taking advantage of the excellent model provided by the Buthidae scorpions, here we analyzed the chromosomal distribution of several repetitive DNA classes on the holocentric chromosomes of different populations of the species Tityus obscurus Gervais, 1843, highlighting their involvement in the karyotypic differences found among them. Results This species shows inter- and intrapopulational karyotype variation, with seven distinct cytotypes: A (2n = 16), B (2n = 14), C (2n = 13), D (2n = 13), E (2n = 12), F (2n = 12) and G (2n = 11). Furthermore, exhibits achiasmatic male meiosis and lacks heteromorphic sex chromosomes. Trivalent and quadrivalent meiotic associations were found in some cytotypes. In them, 45S rDNAs were found in the terminal portions of two pairs, while TTAGG repeats were found only at the end of the chromosomes. In the cytotype A (2n = 16), the U2 snRNA gene mapped to pair 1, while the H3 histone cluster and C0t-1 DNA fraction was terminally distributed on all pairs. Mariner transposons were found throughout the chromosomes, with the exception of one individual of cytotype A (2n = 16), in which it was concentrated in heterochromatic regions. Conclusions Chromosomal variability found in T. obscurus are due to rearrangements of the type fusion/fission and reciprocal translocations in heterozygous. These karyotype differences follow a geographical pattern and may be contributing to reproductive isolation between populations analyzed. Our results also demonstrate high mobility of histone H3 genes. In contrast, other multigene families (45S rDNA and U2 snRNA) have conserved distribution among individuals. The accumulation of repetitive sequences in distal regions of T. obscurus chromosomes, suggests that end of chromosome are not covered by the kinetochore.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
23 |
13
|
Pieczarka JC, Gomes AJB, Nagamachi CY, Rocha DCC, Rissino JD, O'Brien PCM, Yang F, Ferguson-Smith MA. A phylogenetic analysis using multidirectional chromosome painting of three species (Uroderma magnirostrum, U. bilobatum and Artibeus obscurus) of subfamily Stenodermatinae (Chiroptera-Phyllostomidae). Chromosome Res 2013; 21:383-92. [PMID: 23775139 DOI: 10.1007/s10577-013-9365-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/18/2013] [Accepted: 05/28/2013] [Indexed: 11/30/2022]
Abstract
The species of genera Uroderma and Artibeus are medium-sized bats belonging to the family Phyllostomidae and subfamily Stenodermatinae (Mammalia, Chiroptera) from South America. They have a wide distribution in the Neotropical region, with two currently recognized species in Uroderma and approximately 20 species in Artibeus. These two genera have different rates of chromosome evolution, with Artibeus probably having retained the ancestral karyotype for the subfamily. We used whole chromosome paint probe sets from Carollia brevicauda and Phyllostomus hastatus on Uroderma magnirostrum, Uroderma bilobatum, and Artibeus obscurus. With the aim of testing the previous phylogenies of these bats using cytogenetics, we compared these results with published painting maps on Phyllostomidae. The genome-wide comparative maps based on chromosome painting and chromosome banding reveal the chromosome forms that characterize each taxonomic level within the Phyllostomidae and show the chromosome evolution of this family. Based on this, we are able to suggest an ancestral karyotype for Phyllostomidae. Our cladistic analysis is an independent confirmation using multidirectional chromosome painting of the previous Phyllostomidae phylogenies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
21 |
14
|
Milhomem SSR, Crampton WGR, Pieczarka JC, Shetka GH, Silva DS, Nagamachi CY. Gymnotus capanema, a new species of electric knife fish (Gymnotiformes, Gymnotidae) from eastern Amazonia, with comments on an unusual karyotype. JOURNAL OF FISH BIOLOGY 2012; 80:802-815. [PMID: 22471800 DOI: 10.1111/j.1095-8649.2012.03219.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gymnotus capanema n. sp. is described on the basis of cytogenetic, morphometric, meristic and osteological data from nine specimens (one male and eight females) from the municipality of Capanema, Pará, in the eastern Amazon of Brazil. Later, three additional specimens were found in museums and regarded as nontypes (not cytogenetically analysed). Gymnotus capanema, which occurs in sympatry with Gymnotus cf. carapo cytotype 2n = 42 (30m/sm + 12st/a) exhibits a novel karyotype for the genus, with 2n = 34 (20m/sm + 14st/a). Gymnotus capanema can be unambiguously diagnosed from all congeners on the basis of a combination of characters from external anatomy, pigmentation and osteology. The constitutive heterochromatin, rich in adenine-thymine (A-T) base pairs [4',6 diamidino-2-phenylindole dihydrochloride (DAPI) positive], occurs in the centromeric region of all of the chromosomes, and in the pericentromeric and the entire short arm of some chromosomes. The nucleolar organizing region (NOR), stained by silver nitrate, chromomycin A(3) (CMA(3)) and 18S ribosomal (r)DNA fluorescence in situ hybridization (FISH), occurs in the short arm of pair 15. FISH, with telomeric probes did not show interstitial telomeric sequences (ITS), despite the reduced 2n in comparison to the karyotypes of other species of Gymnotus. The karyotype of G. capanema, with a reduced 2n, is strikingly different from all other previously studied congeners.
Collapse
|
|
13 |
21 |
15
|
Medeiros MA, Barros RM, Pieczarka JC, Nagamachi CY, Ponsa M, Garcia M, Garcia F, Egozcue J. Radiation and speciation of spider monkeys, genus Ateles, from the cytogenetic viewpoint. Am J Primatol 2000; 42:167-78. [PMID: 9209583 DOI: 10.1002/(sici)1098-2345(1997)42:3<167::aid-ajp1>3.0.co;2-v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chromosomes of 22 animals of four subspecies of the genes Ateles (A. paniscus paniscus, A. p. chamek, A. belzebuth hybridus, and A. b. marginatus) were compared using G/C banding and NOR (nucleolar organizer region) staining methods. The cytogenetic data of Ateles in the literature were also used to clarify the phylogenetic relationships of the species and subspecies and to infer the routes of radiation and speciation of these taxa. Chromosomes 6 and 7 that showed more informative geographic variation and the apomorphic form 4/12, exclusively in A. p. paniscus, are the keys for understanding the evolution, radiation, and specification of the Ateles taxa. The ancestral populations of the genus originated in the southwestern Amazon Basin (the occurrence area of A. paniscus chamek) and spread in the Amazon Basin and westward, crossing the Andes and colonizing Central America and northwesternmost regions of South America. The evolutionary history of the northern South American taxa is interpreted using the model of biogeographical evolution postulated by Haffer [Science 185:131-137, 1969]. Ateles paniscus paniscus is the genetically most differentiated form and probably derives from A. belzebuth hybridus. Based on the karyotype differences, the populations of Ateles can be divided into four different groups. These findings indicate the necessity of a more coherent taxonomic arrangement for the taxa of Ateles.
Collapse
|
Comparative Study |
25 |
20 |
16
|
Rosa CC, Flores T, Pieczarka JC, Rossi RV, Sampaio MIC, Rissino JD, Amaral PJS, Nagamachi CY. Genetic and morphological variability in South American rodent Oecomys (Sigmodontinae, Rodentia): evidence for a complex of species. J Genet 2013; 91:265-77. [PMID: 23271012 DOI: 10.1007/s12041-012-0182-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rodent genus Oecomys (Sigmodontinae) comprises ~16 species that inhabit tropical and subtropical forests in Central America and South America. In this study specimens of Oecomys paricola Thomas, 1904 from Belém and Marajó island, northern Brazil, were investigated using cytogenetic, molecular and morphological analyses. Three karyotypes were found, two from Belém (2n = 68, fundamental number (FN) = 72 and 2n = 70, FN = 76) and a third from Marajó island (2n = 70, FN = 72). No molecular or morphological differences were found between the individuals with differing cytotypes from Belém, but differences were evident between the individuals from Belém and Marajó island. Specimens from Belém city region may represent two cryptic species because two different karyotypes are present in the absence of significant differences in morphology and molecular characteristics. The Marajó island and Belém populations may represent distinct species that have been separated for some time, and are in the process of morphological and molecular differentiation as a consequence of reproductive isolation at the geographic and chromosomal levels. Thus, the results suggest that O. paricola may be a complex of species.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
20 |
17
|
de Oliveira EHC, de Moura SP, dos Anjos LJS, Nagamachi CY, Pieczarka JC, O'Brien PCM, Ferguson-Smith MA. Comparative chromosome painting between chicken and spectacled owl (Pulsatrix perspicillata): implications for chromosomal evolution in the Strigidae (Aves, Strigiformes). Cytogenet Genome Res 2008; 122:157-62. [PMID: 19096211 DOI: 10.1159/000163093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2008] [Indexed: 11/19/2022] Open
Abstract
The spectacled owl (Pulsatrix perspicillata), a species found in the Neotropical region, has 76 chromosomes, with a high number of biarmed chromosomes. In order to define homologies between Gallus gallus and Pulsatrixperspicillata (Strigiformes, Strigidae), we used chromosome painting with chicken DNA probes of chromosomes 1-10 and Z and telomeric sequences. This approach allowed a comparison between Pulsatrixperspicillata and other species of Strigidae already analyzed by chromosome painting (Strix nebulosa and Bubo bubo, both with 2n = 80). The results show that centric fusions and fissions have occurred in different chromosomal pairs and are responsible for the karyotypic variation observed in this group. No interstitial telomeric sequences were found. Although the largest pair of chromosomes in P. perspicillata and Bubo bubo are submetacentric, they are homologous to different chicken chromosomes: GGA1/GGA2 in P. perspicillata and GGA2/GGA4 in B. bubo.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
19 |
18
|
Oliveira Da Silva W, Pieczarka JC, Ferguson-Smith MA, O’Brien PCM, Mendes-Oliveira AC, Sampaio I, Carneiro J, Nagamachi CY. Chromosomal diversity and molecular divergence among three undescribed species of Neacomys (Rodentia, Sigmodontinae) separated by Amazonian rivers. PLoS One 2017; 12:e0182218. [PMID: 28763510 PMCID: PMC5538659 DOI: 10.1371/journal.pone.0182218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/15/2017] [Indexed: 01/28/2023] Open
Abstract
The Neacomys genus (Rodentia, Sigmodontinae) is distributed in the Amazon region, with some species limited to a single endemic area, while others may occur more widely. The number of species within the genus and their geographical boundaries are not known accurately, due to their high genetic diversity and difficulties in taxonomic identification. In this work we collected Neacomys specimens from both banks of the Tapajós River in eastern Amazon, and studied them using chromosome painting with whole chromosome probes of Hylaeamys megacephalus (HME; Rodentia, Sigmodontinae), and molecular analysis using haplotypes of mitochondrial genes COI and Cytb. Chromosome painting shows that Neacomys sp. A (NSP-A, 2n = 58/FN = 68) and Neacomys sp. B (NSP-B, 2n = 54/FN = 66) differ by 11 fusion/fission events, one translocation, four pericentric inversions and four heterochromatin amplification events. Using haplotypes of the concatenated mitochondrial genes COI and Cyt b, Neacomys sp. (2n = 58/FN = 64 and 70) shows a mean divergence of 6.2% for Neacomys sp. A and 9.1% for Neacomys sp. B, while Neacomys sp. A and Neacomys sp. B presents a medium nucleotide divergence of 7.4%. Comparisons were made with other published Neacomys data. The Tapajós and Xingu Rivers act as geographic barriers that define the distribution of these Neacomys species. Furthermore, our HME probes reveal four synapomorphies for the Neacomys genus (associations HME 20/[13,22]/4, 6a/21, [9,10]/7b/[9,10] and 12/[16,17]) and demonstrate ancestral traits of the Oryzomyini tribe (HME 8a and 8b, 18 and 25) and Sigmodontinae subfamily (HME 15 and 24), which can be used as taxonomic markers for these groups.
Collapse
|
Journal Article |
8 |
18 |
19
|
Nagamachi CY, Pieczarka JC, Barros RM, Schwarz M, Muniz JA, Mattevi MS. Chromosomal relationships and phylogenetic and clustering analyses on genes Callithrix group argentata (Callitrichidae, Primates). CYTOGENETICS AND CELL GENETICS 1996; 72:331-8. [PMID: 8641142 DOI: 10.1159/000134216] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The karyotypes of three species of marmosets of the Callithrix argentata group (C. argentata, C. humeralifera and C. chrysoleuca) were studied. Comparisons were made among species and with the previously described karyotypes of C. emiliae, C. mauesi (argentata group) and C. jacchus (jacchus group). Two chromosomes rearrangements differentiate the argentata (2n=44) and jacchus (2n=46) groups: fusion or fission and a paracentric invasion. The argentata group is also characterized by the addition of large amounts of distal constitutive heterochromatin (CH) in some chromosomes, while the jacchus group shows mainly centromeric heterochromatin. The five species of the argentata group differ in the amount or location of the distal CH. Interspecific differences were converted to a Basic Data Matrix (BDM), that was submitted to phenetic and cladistic analyses. For cladistic analyses C. jacchus was the outgroup. The results agree with morphological and geographical data.
Collapse
|
Comparative Study |
29 |
18 |
20
|
Nagamachi CY, Pieczarka JC, Muniz JA, Barros RM, Mattevi MS. Proposed chromosomal phylogeny for the South American primates of the Callitrichidae family (Platyrrhini). Am J Primatol 1999; 49:133-52. [PMID: 10466573 DOI: 10.1002/(sici)1098-2345(199910)49:2<133::aid-ajp5>3.0.co;2-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytogenetic and cytotaxonomic studies (G, C, sequential G/C, and NOR banding) were performed on 110 specimens representing the four genera of South American primates of the family Callitrichidae: Cebuella (C. pygmaea), Callithrix, groups argentata (C. argentata, C. emiliae, C. chrysoleuca, C. humeralifera, C. mauesi), and jacchus (C. aurita, C. geoffroyi, C. jacchus, C. kuhli, C. penicillata), Leontopithecus (L. chrysomelas, L. rosalia), and Saguinus (S. midas midas, S. m. niger). Mitotic chromosomes are characterized, and the rearrangements distinguishing the karyotypes of the taxa are inferred from arm homologies. The results were then converted into numerical data and submitted to cladistic analysis. The following conclusions were achieved: 1) Five karyotypic classes were observed, which correspond to the five taxa studied. Differences between them are as follows: a) Cebuella (2n = 44, 10 acrocentrics, A + 32 bi-armed autosomes, bi) and the argentata group (2n = 44, 10A + 32bi) are different from each other due to a reciprocal translocation; b) both can be distinguished from the jacchus group (2n = 46, 14A + 30bi) by a centric fusion/fission rearrangement and a paracentric inversion; c) Leontopithecus (2n = 46, 14A + 30bi) and Saguinus (2n = 46, 14A + 30bi) differ from the jacchus group by a reciprocal translocation and three paracentric inversions; and d) Saguinus is different from the others by one paracentric inversion and pericentric inversions in at least four pairs of acrocentric autosomes. 2) The cladistic analysis separates Cebus (used as an outgroup) from the Callitrichidae groups, which forms a clade. Among the Callitrichidae, marmosets (Cebuella and Callithrix) form a sub-clade, Cebuella and the argentata group being more closely related to each other than both are to the jacchus group. Tamarins (Leontopithecus and Saguinus) are also quite close, so that if one was not derived from the other, they with the marmosets share a common ancestor. Among the tamarins, Leontopithecus is karyotypically closest to the marmosets, specifically to the jacchus group. 3) Based on the chromosome information and considering the possible direction of the evolutionary changes (primitivity or phyletic dwarfism hypothesis, previously advanced by other authors), it was possible to propose the ancestral karyotypes and to develop two alternatives for the origin, differentiation and dispersion of the callitrichid. Both proposals are plausible, but when the geographical distribution is considered, the phyletic dwarfism hypothesis seems to be the most probable.
Collapse
|
|
26 |
18 |
21
|
Nagamachi CY, Pieczarka JC, Schwarz M, Barros RM, Mattevi MS. Comparative chromosomal study of five taxa of genus Callithrix, group jacchus (Platyrrhini, Primates). Am J Primatol 2000; 41:53-60. [PMID: 9064198 DOI: 10.1002/(sici)1098-2345(1997)41:1<53::aid-ajp5>3.0.co;2-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The karyotypes of four marmoset species of the Callithrix jacchus group (C. aurita, C. kuhlii, C. geoffroyi, and C. penicillata) were investigated. The patterns of G-, C-, and NOR-bands of these karyotypes were compared with those of C. jacchus, previously described, in order to clarify the taxonomic relationships of this species group. All species present 2n = 46, 14 uni- and 30 biarmed autosomes, a median size submetacentric X chromosome, and the same NOR-band patterns. No rearrangement or constitutive heterochromatic variation differentiate these species, which differ only in the morphology of the Y chromosome. The data obtained indicate that, from the chromosomal point stand, the marmoset species of C. jacchus group constitute a homogeneous clade.
Collapse
|
Comparative Study |
25 |
17 |
22
|
Sotero-Caio CG, Pieczarka JC, Nagamachi CY, Gomes AJB, Lira TC, O'Brien PCM, Ferguson-Smith MA, Souza MJ, Santos N. Chromosomal homologies among vampire bats revealed by chromosome painting (phyllostomidae, chiroptera). Cytogenet Genome Res 2010; 132:156-64. [PMID: 21178354 DOI: 10.1159/000321574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
Substantial effort has been made to elucidate karyotypic evolution of phyllostomid bats, mostly through comparisons of G-banding patterns. However, due to the limited number of G-bands in respective karyotypes and to the similarity of non-homologous bands, an accurate evolutionary history of chromosome segments remains questionable. This is the case for vampire bats (Desmodontinae). Despite several proposed homologies, banding data have not yet provided a detailed understanding of the chromosomal changes within vampire genera. We examined karyotype differentiation of the 3 species within this subfamily using whole chromosomal probes from Phyllostomus hastatus (Phyllostominae) and Carollia brevicauda (Carolliinae). Painting probes of P. hastatus respectively detected 22, 21 and 23 conserved segments in Diphylla ecaudata, Diaemus youngi, and Desmodus rotundus karyotypes, whereas 27, 27 and 28 were respectively detectedwith C. brevicauda paints. Based on the evolutionary relationships proposed by morphological and molecular data, we present probable chromosomal synapomorphies for vampire bats and propose chromosomes that were present in the common ancestor of the 5 genera analyzed. Karyotype comparisons allowed us to relate a number of conserved chromosomal segments among the 5 species, providing a broader database for understanding karyotype evolution in the family.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
17 |
23
|
Milhomem SSR, Souza ACPD, Nascimento ALD, Carvalho Jr. JR, Feldberg E, Pieczarka JC, Nagamachi CY. Cytogenetic studies in fishes of the genera Hassar, Platydoras and Opsodoras (Doradidae, Siluriformes) from Jarí and Xingú Rivers, Brazil. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000200017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
|
17 |
16 |
24
|
Cavalcante MG, Bastos CEMC, Nagamachi CY, Pieczarka JC, Vicari MR, Noronha RCR. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae). PLoS One 2018; 13:e0197536. [PMID: 29813087 PMCID: PMC5973585 DOI: 10.1371/journal.pone.0197536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26-68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26-28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae.
Collapse
|
research-article |
7 |
16 |
25
|
Abstract
We studied the karyotype of specimens of Callithrix emiliae (Callithricidae, Primates) from Rondonia, Brazil. Comparison with the karyotype of Callithrix jacchus showed that, even though these two species show many karyotypic similarities, they differ by a Robertsonian translocation, a paracentric inversion and large-scale addition of heterochromatin. The C. emiliae species appears to be in an active phase of chromosome evolution by the addition of constitutive heterochromatin.
Collapse
|
|
35 |
15 |