1
|
Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999; 98:437-51. [PMID: 10481909 DOI: 10.1016/s0092-8674(00)81973-x] [Citation(s) in RCA: 2129] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.
Collapse
|
Comparative Study |
26 |
2129 |
2
|
Abstract
A series of findings over the past decade has begun to identify the brain circuitry and neurotransmitters that regulate our daily cycles of sleep and wakefulness. The latter depends on a network of cell groups that activate the thalamus and the cerebral cortex. A key switch in the hypothalamus shuts off this arousal system during sleep. Other hypothalamic neurons stabilize the switch, and their absence results in inappropriate switching of behavioural states, such as occurs in narcolepsy. These findings explain how various drugs affect sleep and wakefulness, and provide the basis for a wide range of environmental influences to shape wake-sleep cycles into the optimal pattern for survival.
Collapse
|
|
20 |
1678 |
3
|
Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001; 435:6-25. [PMID: 11370008 DOI: 10.1002/cne.1190] [Citation(s) in RCA: 1240] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Orexins (hypocretins) are neuropeptides synthesized in the central nervous system exclusively by neurons of the lateral hypothalamus. Orexin-containing neurons have widespread projections and have been implicated in complex physiological functions including feeding behavior, sleep states, neuroendocrine function, and autonomic control. Two orexin receptors (OX(1)R and OX(2)R) have been identified, with distinct expression patterns throughout the brain, but a systematic examination of orexin receptor expression in the brain has not appeared. We used in situ hybridization histochemistry to examine the patterns of expression of mRNA for both orexin receptors throughout the brain. OX(1)R mRNA was observed in many brain regions including the prefrontal and infralimbic cortex, hippocampus, paraventricular thalamic nucleus, ventromedial hypothalamic nucleus, dorsal raphe nucleus, and locus coeruleus. OX(2)R mRNA was prominent in a complementary distribution including the cerebral cortex, septal nuclei, hippocampus, medial thalamic groups, raphe nuclei, and many hypothalamic nuclei including the tuberomammillary nucleus, dorsomedial nucleus, paraventricular nucleus, and ventral premammillary nucleus. The differential distribution of orexin receptors is consistent with the proposed multifaceted roles of orexin in regulating homeostasis and may explain the unique role of the OX(2)R receptor in regulating sleep state stability.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
1240 |
4
|
Abstract
More than 70 years ago, von Economo predicted a wake-promoting area in the posterior hypothalamus and a sleep-promoting region in the preoptic area. Recent studies have dramatically confirmed these predictions. The ventrolateral preoptic nucleus contains GABAergic and galaninergic neurons that are active during sleep and are necessary for normal sleep. The posterior lateral hypothalamus contains orexin/hypocretin neurons that are crucial for maintaining normal wakefulness. A model is proposed in which wake- and sleep-promoting neurons inhibit each other, which results in stable wakefulness and sleep. Disruption of wake- or sleep-promoting pathways results in behavioral state instability.
Collapse
|
Review |
24 |
959 |
5
|
Abstract
The efferent connections of the parabrachial nucleus have been analyzed in the rat using the anterograde autoradiographic method. Fibers originating from the lateral parabrachial nucleus (PBl) ascend in the periventricular system, the dorsal tegmental bundle and the central tegmental tract. The PBl projects to the dorsal raphe nucleus, the superior central raphe nucleus, and the Edinger-Westphal nucleus. It also innervates the intralaminar (centromedian, centrolateral, paracentral, parafascicular), the midline (paraventricular, reuniens), and the ventromedial basal (VMb) thalamic nuclei as well as much of the hypothalamus, including the dorsomedial, the ventromedial, the arcuate and the paraventricular nuclei, the lateral hypothalamic and the lateral preoptic areas. The PBl sends fibers via the ansa peduncularis into the amygdala, innervating the anterior, the central, the medial, the basomedial, and the posterior basolateral nuclei. In addition, it projects to the lateral part of the bed nucleus of the stria terminalis. Descending PBl fibers travel mainly through the ventrolateral medulla, passing through the region of the A1 and A5 catecholamine cell groups, the ventrolateral reticular formation and the region that contains parasympathetic preganglionic neurons. A small component travels in Probst's bundle to the ventral part of the nucleus of the solitary tract. Only a few PBl axons continue caudally into the lateral funiculus of the spinal cord, but these could not be followed beyond the first few cervical segments. The projections of the medial parabrachial nucleus (PBm) are similar to those of PBl, but two major differences have been noted. One difference is that the PBm provides a direct input to 4 regions of cerebral cortex: (1) the granular insular cortex; (2) the deep layers of the frontal cortex; (3) the septo-olfactory area; and (4) the infralimbic cortex. The other difference is that unlike the PBl, the PBm appears to provide almost no input to the medial hypothalamic nuclei (dorsomedial, ventromedial, arcuate nuclei) nor to the medial amygdaloid nucleus. The PBm projects heavily to the nucleus ambiguus and there was no evidence for an input to the nucleus of the solitary tract. The projections of the Kölliker-Fuse nucleus (KF) are distinct from those of either PBm or PBl. The KF projects via the central tegmental tract to the lateral hypothalamic area, the lateral preoptic area, and the central nucleus of the amygdala. The contralateral projection to the zona incerta, the lateral hypothalamic area, and the lateral preoptic areas is more prominent than the ipsilateral projections. Descending KF fibers travel mainly through the ventrolateral medullary reticular formation passing through regions which give rise to parasympathetic preganglionic fibers of the VIIth, IXth and Xth cranial nerves and the A1 and A5 catecholamine cell groups. In one experiment, fibers could be followed to the intermediolateral cell column of the upper thoracic spinal cord.
Collapse
|
|
45 |
927 |
6
|
|
|
49 |
924 |
7
|
Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2011; 68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Citation(s) in RCA: 889] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2010] [Indexed: 12/27/2022]
Abstract
We take for granted the ability to fall asleep or to snap out of sleep into wakefulness, but these changes in behavioral state require specific switching mechanisms in the brain that allow well-defined state transitions. In this review, we examine the basic circuitry underlying the regulation of sleep and wakefulness and discuss a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid and complete state transitions. We also review how homeostatic, circadian, and allostatic drives help regulate sleep state switching and discuss how breakdown of the switching mechanism may contribute to sleep disorders such as narcolepsy.
Collapse
|
Review |
14 |
889 |
8
|
Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999; 22:221-32. [PMID: 10069329 DOI: 10.1016/s0896-6273(00)81084-3] [Citation(s) in RCA: 855] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
Review |
26 |
855 |
9
|
Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 1983; 216:53-68. [PMID: 6345598 DOI: 10.1002/cne.902160106] [Citation(s) in RCA: 802] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The neuroanatomical location and cytological features of cholinergic neurons in the rat brain were determined by the immunocytochemical localization of the biosynthetic enzyme, choline acetyltransferase (ChAT). Perikarya labeled with ChAT were detected in four major cell groups: (1) the striatum, (2) the magnocellular basal nucleus, (3) the pontine tegmentum, and (4) the cranial nerve motor nuclei. Labeled neurons in the striatum were observed scattered throughout the neostriatum (caudate, putamen) and associated areas (nucleus accumbens, olfactory tubercle). Larger ChAT-labeled neurons were seen in an extensive cell system which comprises the magnocellular basal nucleus. This more or less continuous set of neuronal clusters consists of labeled neurons in the nucleus of the diagonal band (horizontal and vertical limbs), the magnocellular preoptic nucleus, the substantia innominata, and the globus pallidus. Labeled neurons in the pontine tegmentum were seen as a group of large neurons in the caudal midbrain, dorsolateral to the most caudal part of the substantia nigra, and extended in a caudodorsal direction through the midbrain reticular formation into the area surrounding the superior cerebellar peduncle. The neurons in this latter group constitute the pedunculopontine tegmental nucleus (PPT). An additional cluster of cells was observed medially adjacent to the PPT, in the lateral part of the central gray matter at the rostral end of the fourth ventricle. This group corresponds to the laterodorsal tegmental nucleus. Large ChAT-labeled neurons were also observed in all somatic and visceral motor nerve nuclei. The correspondence of the distribution of ChAT-labeled neurons identified by our methods to earlier immunocytochemical and acetylcholinesterase histochemical studies and to connectional studies of these groups argues for the specificity of the ChAT antibody used.
Collapse
|
|
42 |
802 |
10
|
Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 1984; 319:229-59. [PMID: 6478256 DOI: 10.1016/0165-0173(84)90012-2] [Citation(s) in RCA: 799] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In summary, we have demonstrated the subnuclear organization of PB, and correlated this with the origins of its efferent connections. In general, PBm projects primarily to the insular, infralimbic and lateral frontal cortex, and to associated areas in the thalamus, hypothalamus and amygdala. PBl chiefly innervates the autonomic nuclei of the hypothalamus and related portions of the amygdala and the bed nucleus of the stria terminalis. KF is the main source of descending projections from PB to the region of the nucleus of the solitary tract, the ventrolateral medulla and the intermediolateral cell column in the thoracic spinal cord. Further subnuclear organization of the origins of these projections within the major PB subdivisions has been described in detail. While PB afferents tend to terminate in specific subnuclei, one cannot reliably predict from the functional properties of the major inputs to a subnucleus what information will be carried in its efferents. Further anatomical and physiological studies of the input-output relationships of single PB neurons will be necessary to help resolve this enigma. However, recent immunohistochemical observations suggest that the subnuclear organization of PB afferent and efferent connections may reflect, at least in part, their biochemical specificity.
Collapse
|
|
41 |
799 |
11
|
Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 2006; 494:528-48. [PMID: 16320257 PMCID: PMC4524499 DOI: 10.1002/cne.20823] [Citation(s) in RCA: 799] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ghrelin is a hormone that stimulates growth hormone secretion and signals energy insufficiency via interaction with its receptor, the growth hormone secretagogue receptor (GHSR). The GHSR is located in both the central nervous system and the periphery. Its distribution in the CNS, as assessed by in situ hybridization histochemistry (ISHH), has been described previously in a few mammalian species, although these studies were limited by either the detail provided or the extent of the regions examined. In the present study, we systematically examined the distribution of GHSR mRNA in the adult rat and mouse brains and cervical spinal cords by using ISHH with novel cRNA probes specific for the mRNA encoding functional GHSR (the type 1a variant). We confirmed GHSR mRNA expression in several hypothalamic nuclei, many of which have long been recognized as playing roles in body weight and food intake. GHSR also was found in several other regions previously unknown to express GHSR mRNA, including many parasympathetic preganglionic neurons. Additionally, we found GHSR mRNA within all three components of the dorsal vagal complex, including the area postrema, the nucleus of the solitary tract, and the dorsal motor nucleus of the vagus. Finally, we examined the coexpression of GHSR with tyrosine hydroxylase and cholecystokinin and demonstrate a high degree of GHSR mRNA expression within dopaminergic, cholecystokinin-containing neurons of the substantia nigra and ventral tegmental area.
Collapse
|
Comparative Study |
19 |
799 |
12
|
Abstract
Feeding provides substrate for energy metabolism, which is vital to the survival of every living animal and therefore is subject to intense regulation by brain homeostatic and hedonic systems. Over the last decade, our understanding of the circuits and molecules involved in this process has changed dramatically, in large part due to the availability of animal models with genetic lesions. In this review, we examine the role played in homeostatic regulation of feeding by systemic mediators such as leptin and ghrelin, which act on brain systems utilizing neuropeptide Y, agouti-related peptide, melanocortins, orexins, and melanin concentrating hormone, among other mediators. We also examine the mechanisms for taste and reward systems that provide food with its intrinsically reinforcing properties and explore the links between the homeostatic and hedonic systems that ensure intake of adequate nutrition.
Collapse
|
Review |
23 |
792 |
13
|
|
|
27 |
764 |
14
|
Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 1990; 293:540-80. [PMID: 1691748 DOI: 10.1002/cne.902930404] [Citation(s) in RCA: 763] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the subnuclear organization of projections to the parabrachial nucleus (PB) from the nucleus of the solitary tract (NTS), area postrema, and medullary reticular formation in the rat by using the anterograde and retrograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and anterograde tracing with Phaseolus vulgaris-leucoagglutinin. Different functional regions of the NTS/area postrema complex and medullary reticular formation were found to innervate largely nonoverlapping zones in the PB. The general visceral part of the NTS, including the medial, parvicellular, intermediate, and commissural NTS subnuclei and the core of the area postrema, projects to restricted terminal zones in the inner portion of the external lateral PB, the central and dorsal lateral PB subnuclei, and the "waist" area. The dorsomedial NTS subnucleus and the rim of the area postrema specifically innervate the outer portion of the external lateral PB subnucleus. In addition, the medial NTS innervates the caudal lateral part of the external medial PB subnucleus. The respiratory part of the NTS, comprising the ventrolateral, intermediate, and caudal commissural subnuclei, is reciprocally connected with the Kölliker-Fuse nucleus, and with the far lateral parts of the dorsal and central lateral PB subnuclei. There is also a patchy projection to the caudal lateral part of the external medial PB subnucleus from the ventrolateral NTS. The rostral, gustatory part of the NTS projects mainly to the caudal medial parts of the PB complex, including the "waist" area, as well as more rostrally to parts of the medial, external medial, ventral, and central lateral PB subnuclei. The connections of different portions of the medullary reticular formation with the PB complex reflect the same patterns of organization, but are reciprocal. The periambiguus region is reciprocally connected with the same PB subnuclei as the ventrolateral NTS; the rostral ventrolateral reticular nucleus with the same PB subnuclei as both the ventrolateral (respiratory) and medial (general visceral) NTS; and the parvicellular reticular area, adjacent to the rostral NTS, with parts of the central and ventral lateral and the medial PB subnuclei that also receive rostral (gustatory) NTS input. In addition, the rostral ventrolateral reticular nucleus and the parvicellular reticular formation have more extensive connections with parts of the rostral PB and the subjacent reticular formation that receive little if any NTS input. The PB contains a series of topographically complex terminal domains reflecting the functional organization of its afferent sources in the NTS and medullary reticular formation.
Collapse
|
|
35 |
763 |
15
|
Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature 2006; 441:589-94. [PMID: 16688184 DOI: 10.1038/nature04767] [Citation(s) in RCA: 750] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Accepted: 03/20/2006] [Indexed: 11/08/2022]
Abstract
Rapid eye movement (REM) sleep consists of a dreaming state in which there is activation of the cortical and hippocampal electroencephalogram (EEG), rapid eye movements, and loss of muscle tone. Although REM sleep was discovered more than 50 years ago, the neuronal circuits responsible for switching between REM and non-REM (NREM) sleep remain poorly understood. Here we propose a brainstem flip-flop switch, consisting of mutually inhibitory REM-off and REM-on areas in the mesopontine tegmentum. Each side contains GABA (gamma-aminobutyric acid)-ergic neurons that heavily innervate the other. The REM-on area also contains two populations of glutamatergic neurons. One set projects to the basal forebrain and regulates EEG components of REM sleep, whereas the other projects to the medulla and spinal cord and regulates atonia during REM sleep. The mutually inhibitory interactions of the REM-on and REM-off areas may form a flip-flop switch that sharpens state transitions and makes them vulnerable to sudden, unwanted transitions-for example, in narcolepsy.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
19 |
750 |
16
|
Abstract
The rostral hypothalamus and adjacent basal forebrain participate in the generation of sleep, but the neuronal circuitry involved in this process remains poorly characterized. Immunocytochemistry was used to identify the FOS protein, an immediate-early gene product, in a group of ventrolateral preoptic neurons that is specifically activated during sleep. The retrograde tracer cholera toxin B, in combination with FOS immunocytochemistry, was used to show that sleep-activated ventrolateral preoptic neurons innervate the tuberomammillary nucleus, a posterior hypothalamic cell group thought to participate in the modulation of arousal. This monosynaptic pathway in the hypothalamus may play a key role in determining sleep-wake states.
Collapse
|
|
29 |
666 |
17
|
Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 1999; 23:775-86. [PMID: 10482243 DOI: 10.1016/s0896-6273(01)80035-0] [Citation(s) in RCA: 658] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have reinforced the view that the lateral hypothalamic area (LHA) regulates food intake and body weight. We identified leptin-sensitive neurons in the arcuate nucleus of the hypothalamus (Arc) that innervate the LHA using retrograde tracing with leptin administration. We found that retrogradely labeled cells in the Arc contained neuropeptide Y (NPY) mRNA or proopiomelanocortin (POMC) mRNA. Following leptin administration, NPY cells in the Arc did not express Fos but expressed suppressor of cytokine signaling-3 (SOCS-3) mRNA. In contrast, leptin induced both Fos and SOCS-3 expression in POMC neurons, many of which also innervated the LHA. These findings suggest that leptin directly and differentially engages NPY and POMC neurons that project to the LHA, linking circulating leptin and neurons that regulate feeding behavior and body weight homeostasis.
Collapse
|
|
26 |
658 |
18
|
Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981228)402:4<442::aid-cne2>3.0.co;2-r] [Citation(s) in RCA: 630] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
|
27 |
630 |
19
|
Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, Benarroch EE, Ahlskog JE, Smith GE, Caselli RC, Tippman-Peikert M, Olson EJ, Lin SC, Young T, Wszolek Z, Schenck CH, Mahowald MW, Castillo PR, Del Tredici K, Braak H. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 2007; 130:2770-88. [PMID: 17412731 DOI: 10.1093/brain/awm056] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of normal skeletal muscle atonia during REM sleep with prominent motor activity accompanying dreaming. The terminology relating to RBD, and mechanisms underlying REM sleep without atonia and RBD based on data in cat and rat are presented. Neuroimaging data from the few published human cases with RBD associated with structural lesions in the brainstem are presented, in which the dorsal midbrain and pons are implicated. Pharmacological manipulations which alter RBD frequency and severity are reviewed, and the data from human neuropathological studies are presented. An anatomic framework and new schema for the pathophysiology of RBD are proposed based on recent data in rat regarding the putative flip-flop switch for REM sleep control. The structure in man analogous to the subcoeruleus region in cat and sublaterodorsal nucleus in rat is proposed as the nucleus (and its associated efferent and afferent pathways) crucial to RBD pathophysiology. The association of RBD with neurological disease ('secondary RBD') is presented, with emphasis on RBD associated with neurodegenerative disease, particularly the synucleinopathies. The hypothesized pathophysiology of RBD is presented in relation to the Braak staging system for Parkinson's disease, in which the topography and temporal sequence of synuclein pathology in the brain could explain the evolution of parkinsonism and/or dementia well after the onset of RBD. These data suggest that many patients with 'idiopathic' RBD are actually exhibiting an early clinical manifestation of an evolving neurodegenerative disorder. Such patients may be appropriate for future drug therapies that affect synuclein pathophysiology, in which the development of parkinsonism and/or dementia could be delayed or prevented. We suggest that additional clinicopathological studies be performed in patients with dementia or parkinsonism, with and without RBD, as well as in patients with idiopathic RBD, to further elucidate the pathophysiology and also characterize the clinical and pathophysiological relevance of RBD in neurodegenerative disease. Furthermore, longitudinal studies in patients with idiopathic RBD are warranted to characterize the natural history of such patients and prepare for future therapeutic trials.
Collapse
|
Review |
18 |
590 |
20
|
Hurley KM, Herbert H, Moga MM, Saper CB. Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 1991; 308:249-76. [PMID: 1716270 DOI: 10.1002/cne.903080210] [Citation(s) in RCA: 582] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
On the basis of stimulation studies, it has been proposed that the infralimbic cortex (ILC), Brodmann area 25, may serve as an autonomic motor cortex. To explore this hypothesis, we have combined anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and retrograde tracing with wheat germ aggutinin conjugated to horseradish peroxidase (WGA-HRP) to determine the efferent projections from the ILC. Axons exit the ILC in one of three efferent pathways. The dorsal pathway ascends through layers III and V to innervate the prelimbic and anterior cingulate cortices. The lateral pathway courses through the nucleus accumbens to innervate the insular cortex, the perirhinal cortex, and parts of the piriform cortex. In addition, some fibers from the lateral pathway enter the corticospinal tract. The ventral pathway is by far the largest and innervates the thalamus (including the paraventricular nucleus of the thalamus, the border zone between the paraventricular and medial dorsal nuclei, and the paratenial, reuniens, ventromedial, parafasicular, and subparafasicular nuclei), the hypothalamus (including the lateral hypothalamic and medial preoptic areas, and the suprachiasmatic, dorsomedial, and supramammillary nuclei), the amygdala (including the central, medial, and basomedial nuclei, and the periamygdaloid cortex) and the bed nucleus of the stria terminalis. The ventral efferent pathway also provides descending projections to autonomic cell groups of the brainstem and spinal cord including the periaqueductal gray matter, the parabrachial nucleus, the nucleus of the solitary tract, the dorsal motor vagal nucleus, the nucleus ambiguus, and the ventrolateral medulla, as well as lamina I and the intermediolateral column of the spinal cord. The ILC has extensive projections to central autonomic nuclei that may subserve a role in modulating visceral responses to emotional stimuli, such as stress.
Collapse
|
|
34 |
582 |
21
|
Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB. Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 1984; 13:627-43. [PMID: 6527769 DOI: 10.1016/0306-4522(84)90083-6] [Citation(s) in RCA: 576] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neurochemical identity of ascending putative cholinergic pathways from the rat basal forebrain was investigated employing a method for simultaneously visualizing choline acetyltransferase immunoreactivity and retrogradely transported horseradish peroxidase-conjugated wheatgerm agglutinin. This histochemical procedure revealed three distinct populations of neurons: (1) cells which stained only for choline acetyltransferase immunoreactivity; (2) cells which stained only for retrograde tracer and (3) cells which stained simultaneously for choline acetyltransferase immunoreactivity and retrograde tracer. The results demonstrated that this projection is topographically organized and consists of both cholinergic and noncholinergic components. The relative contribution of each component varied with the telencephalic target area as follows: the olfactory bulb receives a projection from cells of the horizontal limb nucleus, 10-20% of which are cholinergic (Ch3); the hippocampal formation receives afferents from cells of the medial septal and vertical limb nuclei, 35-45% of which are cholinergic (Ch1 and Ch2); and the cortical mantle receives afferents primarily from cells within the substantia innominata-nucleus basalis complex, 80-90% of which are cholinergic (Ch4). The topographical organization of Ch4 projections is not as completely differentiated as we have previously observed in the primate.
Collapse
|
|
41 |
576 |
22
|
Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98:428-36. [PMID: 12552203 DOI: 10.1097/00000542-200302000-00024] [Citation(s) in RCA: 565] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The authors investigated whether the sedative, or hypnotic, action of the general anesthetic dexmedetomidine (a selective alpha -adrenoceptor agonist) activates endogenous nonrapid eye movement (NREM) sleep-promoting pathways. METHODS c-Fos expression in sleep-promoting brain nuclei was assessed in rats using immunohistochemistry and hybridization. Next, the authors perturbed these pathways using (1) discrete lesions induced by ibotenic acid, (2) local and systemic administration of gamma-aminobutyric acid receptor type A (GABA ) receptor antagonist gabazine, or (3) alpha2-adrenoceptor antagonist atipamezole in rats, and (4) genetic mutation of the alpha -adrenoceptor in mice. RESULTS Dexmedetomidine induced a qualitatively similar pattern of c-Fos expression in rats as seen during normal NREM sleep, a decrease in the locus ceruleus (LC) and tuberomammillary nucleus (TMN) and an increase in the ventrolateral preoptic nucleus (VLPO). These changes were attenuated by atipamezole and were not seen in mice lacking functional alpha2a-adrenoceptors, which do not show a sedative response to dexmedetomidine. Bilateral VLPO lesions attenuated the sedative response to dexmedetomidine, and the dose-response curve to dexmedetomidine was shifted right by gabazine administered systemically or directly into the TMN. VLPO lesions and gabazine pretreatment altered c-Fos expression in the TMN but in not the LC after dexmedetomidine administration, indicating a hierarchical sequence of changes. CONCLUSIONS The authors propose that endogenous sleep pathways are causally involved in dexmedetomidine-induced sedation; dexmedetomidine's sedative mechanism involves inhibition of the LC, which disinhibits VLPO firing. The increased release of GABA at the terminals of the VLPO inhibits TMN firing, which is required for the sedative response.
Collapse
|
|
22 |
565 |
23
|
Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, Kuhar MJ, Saper CB, Elmquist JK. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998; 21:1375-85. [PMID: 9883730 DOI: 10.1016/s0896-6273(00)80656-x] [Citation(s) in RCA: 562] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The adipocyte-derived hormone leptin decreases body weight in part by activating the sympathetic nervous system, resulting in increased thermogenesis and energy expenditure. We investigated hypothalamic pathways underlying leptin's effects on stimulating the sympathetic nervous system. We found that leptin activates neurons in the retrochiasmatic area (RCA) and lateral arcuate nucleus (Arc) that innervate the thoracic spinal cord and also contain cocaine- and amphetamine-regulated transcript (CART). We also found that most CART-containing neurons in the RCA and Arc of the hypothalamus also contain proopiomelanocortin (POMC) mRNA. The finding that leptin activates CART/POMC neurons innervating sympathetic preganglionic neurons in the thoracic spinal cord suggests that this pathway may contribute to the increased thermogenesis and energy expenditure and decreased body weight observed following leptin administration.
Collapse
|
|
27 |
562 |
24
|
Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 2002; 25:433-69. [PMID: 12052916 DOI: 10.1146/annurev.neuro.25.032502.111311] [Citation(s) in RCA: 547] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The overall organization of the peripheral autonomic nervous system has been known for many decades, but the mechanisms by which it is controlled by the central nervous system are just now coming to light. In particular, two major issues have seen considerable progress in the past decade. First, the pathways that provide visceral sensation to conscious perception at a cortical level have been elucidated in both animals and humans. The nociceptive system runs in parallel to the pathways carrying visceral sensation from the cranial nerves and may be considered in itself a component of visceral sensation. Second, structures in the central nervous system that generate patterns of autonomic response have been identified. These pattern generators are located at multiple levels of the central nervous system, and they can be combined in temporal and spatial patterns to subserve a wide range of behavioral needs.
Collapse
|
Review |
23 |
547 |
25
|
Saper CB. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J Comp Neurol 1984; 222:313-42. [PMID: 6699210 DOI: 10.1002/cne.902220302] [Citation(s) in RCA: 541] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The organization of the magnocellular basal nucleus (MBN) projection to cerebral cortex in the rat has been studied by using cytoarchitectonic, immunohistochemical, and retrograde and anterograde transport methods. The distribution of retrogradely labeled basal forebrain neurons after cortical injections of wheat germ agglutinin-horseradish peroxidase conjugate was essentially identical to that of neurons staining immunohistochemically for choline acetyltransferase. These large (20-30 micrometers perikaryon diameter) multipolar neurons were found scattered through a number of basal forebrain cell groups: medial septal nucleus, nucleus of the diagonal band of Broca, magnocellular preoptic nucleus, substantia innominata, and globus pallidus. This peculiar distribution mimics the locations of pathways by which descending cortical fibers enter the diencephalon. Each cortical area was innervated by a characteristic subset of MBN neurons, always located in close association with descending cortical fibers. In many instances anterogradely labeled descending cortical fibers appeared to ramify into diffuse terminal fields among MBN neurons which were retrogradely labeled by the same cortical injection. Double label experiments using retrograde transport of fluorescent dyes confirmed that MBN neurons innervate restricted cortical fields. Anterograde autoradiographic transport studies after injections of 3H-amino acids into MBN revealed that MBN axons reach cerebral cortex primarily via two pathways: (1) The medial pathway, arising from the medial septal nucleus, nucleus of the diagonal band, and medial substantia innominata and globus pallidus MBN neurons, curves dorsally rostral to the diagonal band nucleus, up to the genu of the corpus callosum. Most of the fibers either directly enter medial frontal cortex or turn back over the genu of the corpus callosum into the superficial medial cingulate bundle. Many of these fibers enter anterior cigulate or retrosplenial cortex, but some can be traced back to the splenium of the corpus callosum, where a few enter visual cortex but most turn ventrally and sweep into the hippocampal formation. Here they are joined by other fibers which, at the genu of the corpus callosum, remain ventrally located and run caudally through the dorsal fornix into the hippocampus. (2) The lateral pathway arises in part from medial septal, diagonal band, and magnocellular preoptic neurons whose axons sweep laterally through the substantia innominata to innervate primarily piriform, perirhinal, and endorhinal cortex. Some of these fibers may also enter the hippocampal formation from the entorhinal cortex via the ventral subiculum.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
41 |
541 |