1
|
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schlüter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio' M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, Çölkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela ŞN, Rodríguez-Gallego C, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouénan C, Snow AL, Dalgard CL, Milner JD, Vinh DC, et alZhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schlüter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio' M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, Çölkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela ŞN, Rodríguez-Gallego C, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouénan C, Snow AL, Dalgard CL, Milner JD, Vinh DC, Mogensen TH, Marr N, Spaan AN, Boisson B, Boisson-Dupuis S, Bustamante J, Puel A, Ciancanelli MJ, Meyts I, Maniatis T, Soumelis V, Amara A, Nussenzweig M, García-Sastre A, Krammer F, Pujol A, Duffy D, Lifton RP, Zhang SY, Gorochov G, Béziat V, Jouanguy E, Sancho-Shimizu V, Rice CM, Abel L, Notarangelo LD, Cobat A, Su HC, Casanova JL. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370:eabd4570. [PMID: 32972995 PMCID: PMC7857407 DOI: 10.1126/science.abd4570] [Show More Authors] [Citation(s) in RCA: 1625] [Impact Index Per Article: 325.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
Collapse
|
research-article |
5 |
1625 |
2
|
Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 2005; 280:41928-39. [PMID: 16223732 DOI: 10.1074/jbc.m508718200] [Citation(s) in RCA: 312] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Continuous hydroxylation of the HIF-1 transcription factor alpha subunit by oxygen and 2-oxoglutarate-dependent dioxygenases promotes decay of this protein and thus prevents the transcriptional activation of many genes involved in energy metabolism, angiogenesis, cell survival, and matrix modification. Hypoxia blocks HIF-1alpha hydroxylation and thus activates HIF-1alpha-mediated gene expression. Several nonhypoxic stimuli can also activate HIF-1, although the mechanisms involved are not well known. Here we show that the glucose metabolites pyruvate and oxaloacetate inactivate HIF-1alpha decay in a manner selectively reversible by ascorbate, cysteine, histidine, and ferrous iron but not by 2-oxoglutarate or oxygen. Pyruvate and oxaloacetate bind to the 2-oxoglutarate site of HIF-1alpha prolyl hydroxylases, but their effects on HIF-1 are not mimicked by other Krebs cycle intermediates, including succinate and fumarate. We show that inactivation of HIF-1 hydroxylation by glucose-derived 2-oxoacids underlies the prominent basal HIF-1 activity commonly seen in many highly glycolytic cancer cells. Since HIF-1 itself promotes glycolytic metabolism, enhancement of HIF-1 by glucose metabolites may constitute a novel feed-forward signaling mechanism involved in malignant progression.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
312 |
3
|
Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, et alAsano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, Su HC, Jouanguy E, Amara A, Soumelis V, Cobat A, Zhang Q, Casanova JL. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol 2021; 6:eabl4348. [PMID: 34413140 PMCID: PMC8532080 DOI: 10.1126/sciimmunol.abl4348] [Show More Authors] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023]
Abstract
Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.
Collapse
|
Observational Study |
4 |
289 |
4
|
Chia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, Walton RL, Ahmed S, Viollet C, Ding J, Makarious MB, Diez-Fairen M, Portley MK, Shah Z, Abramzon Y, Hernandez DG, Blauwendraat C, Stone DJ, Eicher J, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, St George-Hyslop P, Londos E, Morgan K, Lashley T, Warner TT, Jaunmuktane Z, Galasko D, Santana I, Tienari PJ, Myllykangas L, Oinas M, Cairns NJ, Morris JC, Halliday GM, Van Deerlin VM, Trojanowski JQ, Grassano M, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Brett F, Gan-Or Z, Geiger JT, Moore A, May P, Krüger R, Goldstein DS, Lopez G, Tayebi N, Sidransky E, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Shakkottai VG, Perkins M, Newell KL, Gasser T, Schulte C, Landi F, Salvi E, Cusi D, Masliah E, Kim RC, Caraway CA, Monuki ES, Brunetti M, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Flanagan ME, Mao Q, Bigio EH, Rodríguez-Rodríguez E, Infante J, Lage C, González-Aramburu I, Sanchez-Juan P, Ghetti B, Keith J, Black SE, Masellis M, Rogaeva E, Duyckaerts C, Brice A, Lesage S, Xiromerisiou G, Barrett MJ, Tilley BS, Gentleman S, Logroscino G, Serrano GE, et alChia R, Sabir MS, Bandres-Ciga S, Saez-Atienzar S, Reynolds RH, Gustavsson E, Walton RL, Ahmed S, Viollet C, Ding J, Makarious MB, Diez-Fairen M, Portley MK, Shah Z, Abramzon Y, Hernandez DG, Blauwendraat C, Stone DJ, Eicher J, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, St George-Hyslop P, Londos E, Morgan K, Lashley T, Warner TT, Jaunmuktane Z, Galasko D, Santana I, Tienari PJ, Myllykangas L, Oinas M, Cairns NJ, Morris JC, Halliday GM, Van Deerlin VM, Trojanowski JQ, Grassano M, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Brett F, Gan-Or Z, Geiger JT, Moore A, May P, Krüger R, Goldstein DS, Lopez G, Tayebi N, Sidransky E, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Shakkottai VG, Perkins M, Newell KL, Gasser T, Schulte C, Landi F, Salvi E, Cusi D, Masliah E, Kim RC, Caraway CA, Monuki ES, Brunetti M, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Flanagan ME, Mao Q, Bigio EH, Rodríguez-Rodríguez E, Infante J, Lage C, González-Aramburu I, Sanchez-Juan P, Ghetti B, Keith J, Black SE, Masellis M, Rogaeva E, Duyckaerts C, Brice A, Lesage S, Xiromerisiou G, Barrett MJ, Tilley BS, Gentleman S, Logroscino G, Serrano GE, Beach TG, McKeith IG, Thomas AJ, Attems J, Morris CM, Palmer L, Love S, Troakes C, Al-Sarraj S, Hodges AK, Aarsland D, Klein G, Kaiser SM, Woltjer R, Pastor P, Bekris LM, Leverenz JB, Besser LM, Kuzma A, Renton AE, Goate A, Bennett DA, Scherzer CR, Morris HR, Ferrari R, Albani D, Pickering-Brown S, Faber K, Kukull WA, Morenas-Rodriguez E, Lleó A, Fortea J, Alcolea D, Clarimon J, Nalls MA, Ferrucci L, Resnick SM, Tanaka T, Foroud TM, Graff-Radford NR, Wszolek ZK, Ferman T, Boeve BF, Hardy JA, Topol EJ, Torkamani A, Singleton AB, Ryten M, Dickson DW, Chiò A, Ross OA, Gibbs JR, Dalgard CL, Traynor BJ, Scholz SW. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 2021; 53:294-303. [PMID: 33589841 PMCID: PMC7946812 DOI: 10.1038/s41588-021-00785-3] [Show More Authors] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.
Collapse
|
Multicenter Study |
4 |
258 |
5
|
Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, McMullen DC, Jacobowitz DM, Pollard HB, O'Neill JT, Grunberg NE, Dalgard CL, Frank JA, Watson WD. Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma 2011; 28:359-69. [PMID: 21190398 DOI: 10.1089/neu.2010.1427] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Neurological dysfunction after traumatic brain injury (TBI) is caused by both the primary injury and a secondary cascade of biochemical and metabolic events. Since TBI can be caused by a variety of mechanisms, numerous models have been developed to facilitate its study. The most prevalent models are controlled cortical impact and fluid percussion injury. Both typically use "sham" (craniotomy alone) animals as controls. However, the sham operation is objectively damaging, and we hypothesized that the craniotomy itself may cause a unique brain injury distinct from the impact injury. To test this hypothesis, 38 adult female rats were assigned to one of three groups: control (anesthesia only); craniotomy performed by manual trephine; or craniotomy performed by electric dental drill. The rats were then subjected to behavioral testing, imaging analysis, and quantification of cortical concentrations of cytokines. Both craniotomy methods generate visible MRI lesions that persist for 14 days. The initial lesion generated by the drill technique is significantly larger than that generated by the trephine. Behavioral data mirrored lesion volume. For example, drill rats have significantly impaired sensory and motor responses compared to trephine or naïve rats. Finally, of the seven tested cytokines, KC-GRO and IFN-γ showed significant increases in both craniotomy models compared to naïve rats. We conclude that the traditional sham operation as a control confers profound proinflammatory, morphological, and behavioral damage, which confounds interpretation of conventional experimental brain injury models. Any experimental design incorporating "sham" procedures should distinguish among sham, experimentally injured, and healthy/naïve animals, to help reduce confounding factors.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
229 |
6
|
Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 2011; 286:11604-15. [PMID: 21282106 DOI: 10.1074/jbc.m110.198390] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cystic Fibrosis (CF) is characterized by a massive proinflammatory phenotype in the lung arising from profound expression of inflammatory genes, including interleukin-8 (IL-8). We have previously reported that IL-8 mRNA is stabilized in CF lung epithelial cells, resulting in concomitant hyperexpression of IL-8 protein. However, the mechanistic link between mutations in CFTR and acquisition of the proinflammatory phenotype in the CF airway has remained elusive. We hypothesized that specific microRNAs (miRNAs) might mediate this linkage. To identify the potential link, we screened an miRNA library for differential expression in ΔF508-CFTR and wild type CFTR lung epithelial cell lines. Of 22 differentially and significantly expressed miRNAs, we found that expression of miR-155 was more than 5-fold elevated in CF IB3-1 lung epithelial cells in culture, compared with control IB3-1/S9 cells. Clinically, miR-155 was also highly expressed in CF lung epithelial cells and circulating CF neutrophils biopsied from CF patients. We report here that high levels of miR-155 specifically reduced levels of SHIP1, thereby promoting PI3K/Akt activation. However, overexpressing SHIP1 or inhibition of PI3K in CF cells suppressed IL-8 expression. Finally, we found that phospho-Akt levels were elevated in CF lung epithelial cells and were specifically lowered by either antagomir-155 or elevated expression of SHIP1. We therefore suggest that elevated miR-155 contributes to the proinflammatory expression of IL-8 in CF lung epithelial cells by lowering SHIP1 expression and thereby activating the PI3K/Akt signaling pathway. These data suggest that miR-155 may play an important role in the activation of IL-8-dependent inflammation in CF.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
175 |
7
|
Sacco K, Castagnoli R, Vakkilainen S, Liu C, Delmonte OM, Oguz C, Kaplan IM, Alehashemi S, Burbelo PD, Bhuyan F, de Jesus AA, Dobbs K, Rosen LB, Cheng A, Shaw E, Vakkilainen MS, Pala F, Lack J, Zhang Y, Fink DL, Oikonomou V, Snow AL, Dalgard CL, Chen J, Sellers BA, Montealegre Sanchez GA, Barron K, Rey-Jurado E, Vial C, Poli MC, Licari A, Montagna D, Marseglia GL, Licciardi F, Ramenghi U, Discepolo V, Lo Vecchio A, Guarino A, Eisenstein EM, Imberti L, Sottini A, Biondi A, Mató S, Gerstbacher D, Truong M, Stack MA, Magliocco M, Bosticardo M, Kawai T, Danielson JJ, Hulett T, Askenazi M, Hu S, Cohen JI, Su HC, Kuhns DB, Lionakis MS, Snyder TM, Holland SM, Goldbach-Mansky R, Tsang JS, Notarangelo LD. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat Med 2022; 28:1050-1062. [PMID: 35177862 PMCID: PMC9119950 DOI: 10.1038/s41591-022-01724-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Pediatric Coronavirus Disease 2019 (pCOVID-19) is rarely severe; however, a minority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might develop multisystem inflammatory syndrome in children (MIS-C), with substantial morbidity. In this longitudinal multi-institutional study, we applied multi-omics (analysis of soluble biomarkers, proteomics, single-cell gene expression and immune repertoire analysis) to profile children with COVID-19 (n = 110) and MIS-C (n = 76), along with pediatric healthy controls (pHCs; n = 76). pCOVID-19 was characterized by robust type I interferon (IFN) responses, whereas prominent type II IFN-dependent and NF-κB-dependent signatures, matrisome activation and increased levels of circulating spike protein were detected in MIS-C, with no correlation with SARS-CoV-2 PCR status around the time of admission. Transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation. The association of MIS-C with the combination of HLA A*02, B*35 and C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load than pCOVID-19 and pHC. These results identify distinct immunopathological signatures in pCOVID-19 and MIS-C that might help better define the pathophysiology of these disorders and guide therapy.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
164 |
8
|
Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD. The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 2012; 5:6. [PMID: 22291617 PMCID: PMC3265961 DOI: 10.3389/fnmol.2012.00006] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses.
Collapse
|
Journal Article |
13 |
104 |
9
|
Snyder TM, Gittelman RM, Klinger M, May DH, Osborne EJ, Taniguchi R, Zahid HJ, Kaplan IM, Dines JN, Noakes MT, Pandya R, Chen X, Elasady S, Svejnoha E, Ebert P, Pesesky MW, De Almeida P, O'Donnell H, DeGottardi Q, Keitany G, Lu J, Vong A, Elyanow R, Fields P, Greissl J, Baldo L, Semprini S, Cerchione C, Nicolini F, Mazza M, Delmonte OM, Dobbs K, Laguna-Goya R, Carreño-Tarragona G, Barrio S, Imberti L, Sottini A, Quiros-Roldan E, Rossi C, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Tompkins MF, Alba C, Dalgard C, Sambri V, Martinelli G, Goldman JD, Heath JR, Su HC, Notarangelo LD, Paz-Artal E, Martinez-Lopez J, Carlson JM, Robins HS. Magnitude and Dynamics of the T-Cell Response to SARS-CoV-2 Infection at Both Individual and Population Levels. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.31.20165647. [PMID: 32793919 PMCID: PMC7418734 DOI: 10.1101/2020.07.31.20165647] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 85.1% [95% CI = 79.9-89.7]; Day 8-14 = 94.8% [90.7-98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1-98.3]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in clinical diagnostics as well as in vaccine development and monitoring.
Collapse
|
Preprint |
5 |
95 |
10
|
Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Papenberg BW, Zahoor MA, Mirabello L, Ring TJ, Lee CH, Albert PS, Andreakos E, Arons E, Barsh G, Biesecker LG, Boyle DL, Brahier MS, Burnett-Hartman A, Carrington M, Chang E, Choe PG, Chisholm RL, Colli LM, Dalgard CL, Dude CM, Edberg J, Erdmann N, Feigelson HS, Fonseca BA, Firestein GS, Gehring AJ, Guo C, Ho M, Holland S, Hutchinson AA, Im H, Irby L, Ison MG, Joseph NT, Kim HB, Kreitman RJ, Korf BR, Lipkin SM, Mahgoub SM, Mohammed I, Paschoalini GL, Pacheco JA, Peluso MJ, Rader DJ, Redden DT, Ritchie MD, Rosenblum B, Ross ME, Anna HPS, Savage SA, Sharma S, Siouti E, Smith AK, Triantafyllia V, Vargas JM, Vargas JD, Verma A, Vij V, Wesemann DR, Yeager M, Yu X, Zhang Y, Boulant S, Chanock SJ, Feld JJ, Prokunina-Olsson L. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat Genet 2022; 54:1103-1116. [PMID: 35835913 PMCID: PMC9355882 DOI: 10.1038/s41588-022-01113-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
87 |
11
|
Mohyeldin A, Lu H, Dalgard C, Lai SY, Cohen N, Acs G, Verma A. Erythropoietin signaling promotes invasiveness of human head and neck squamous cell carcinoma. Neoplasia 2005; 7:537-43. [PMID: 15967106 PMCID: PMC1501166 DOI: 10.1593/neo.04685] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 11/18/2022] Open
Abstract
Erythropoietin (Epo) is used for managing anemia in cancer patients. However, recent studies have raised concerns for this practice. We investigated the expression and function of Epo and the erythropoietin receptor (EpoR) in tumor biopsies and cell lines from human head and neck cancer. Epo responsiveness of the cell lines was assessed by Epoetin-alpha-induced tyrosine phosphorylation of the Janus kinase 2 (JAK2) protein kinase. Transmigration assays across Matrigel-coated filters were used to examine the effects of Epoetin-alpha on cell invasiveness. In 32 biopsies, we observed a significant association between disease progression and expression of Epo and its receptor, EpoR. Expression was highest in malignant cells, particularly within hypoxic and infiltrating tumor regions. Although both Epo and EpoR were expressed in human head and neck carcinoma cell lines, only EpoR was upregulated by hypoxia. Epoetin-alpha treatment induced prominent JAK2 phosphorylation and enhanced cell invasion. Inhibition of JAK2 phosphorylation reduced both basal and Epo-induced invasiveness. Our findings support a role for autocrine or paracrine Epo signaling in the malignant progression and local invasiveness of head and neck cancer. This mechanism may also be activated by recombinant Epo therapy and could potentially produce detrimental effects in rhEpo-treated cancer patients.
Collapse
|
Journal Article |
20 |
84 |
12
|
Lagraoui M, Latoche JR, Cartwright NG, Sukumar G, Dalgard CL, Schaefer BC. Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Front Neurol 2012; 3:155. [PMID: 23118733 PMCID: PMC3484408 DOI: 10.3389/fneur.2012.00155] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/09/2012] [Indexed: 11/13/2022] Open
Abstract
An immediate consequence of traumatic brain injury (TBI) is the induction of an inflammatory response. Mounting data suggest that inflammation is a major contributor to TBI-induced brain damage. However, much remains unknown regarding the induction and regulation of the inflammatory response to TBI. In this study we compared the TBI-induced inflammatory response to severe parenchymal injury (controlled cortical impact) vs. mild brain injury (craniotomy) over a 21-day period. Our data show that both severe and mild brain injury induce a qualitatively similar inflammatory response, involving highly overlapping sets of effector molecules. However, kinetic analysis revealed that the inflammatory response to mild brain injury is of much shorter duration than the response to severe TBI. Specifically, the inflammatory response to severe brain injury persists for at least 21 days, whereas the response to mild brain injury returns to near baseline values within 10 days post-injury. Our data therefore imply that the development of accurate diagnostic tests of TBI severity that are based on imaging or biomarker analysis of the inflammatory response may require repeated measures over at least a 10-day period, post-injury.
Collapse
|
Journal Article |
13 |
81 |
13
|
Zhang Q, Matuozzo D, Le Pen J, Lee D, Moens L, Asano T, Bohlen J, Liu Z, Moncada-Velez M, Kendir-Demirkol Y, Jing H, Bizien L, Marchal A, Abolhassani H, Delafontaine S, Bucciol G, COVID Human Genetic Effort AbelLaurentAbolhassaniHassanAiutiAlessandroAkcanOzge MetinAl-MuhsenSalehAl-MullaFahdAlkanGulsumAndersonMark S.AndreakosEvangelosAriasAndrés A.El BakkouriJalilaBaris FeldmanHagitBelotAlexandreBiggsCatherine M.BogunovicDusanBolzeAlexandreBondarenkoAnastasiiaBousfihaAhmed A.BozdemirSefika ElmasBrodinPetterBrycesonYenanBustamanteCarlos D.ButteManish J.CasariGiorgioChristodoulouJohnColobranRogerCondino-NetoAntonioConstantinescuStefan N.CooperMegan A.DalgardClifton L.DesaiMurkeshDroletBeth A.El BaghdadiJamilaEmirogluMelikeErdenizEmine HafizeEspinosa-PadillaSaraFellayJacquesFloresCarlosFrancoJosé LuisFroidureAntoineGregersenPeter K.GrimbacherBodoGulhanBelginHaerynckFilomeenHaginDavidHalwaniRabihHammarströmLennartHeathJames R.HenricksonSarah E.HsiehElena W.Y.HusebyeEysteinImaiKohsukeItanYuvalJabandzievPetrJarvisErich D.KaramitrosTimokratisKarbuzAdemKisandKaiKuCheng-LungLauYu-LungLingYunLucasCarrie L.ManiatisTomMansouriDavoodMaródiLászlóMetinAyseMeytsIsabelleMilnerJoshua D.MironskaKristinaMogensenTrine H.MorioTomohiroNgLisa F.P.NotarangeloLuigi D.NovelliAntonioNovelliGiuseppeO'FarrellyClionaOkadaSatoshiOkamotoKeisukeTüter ÖzŞadiye KübraOzcelikTayfunPan-HammarströmQiangPapadakiMariaPapeJean W.ParlakayAslinur OzkayaPerez de DiegoRebecaPerlinDavid S.PesoleGrazianoPlanasAnna M.PokornaPetraPrandoCarolinaPujolAuroraQuintana-MurciLluisRamaswamySathishkumarReniaLaurentResnickIgorRivièreJacques G.Rodríguez-GallegoCarlosSancho-ShimizuVanessaSedivaAnnaSeppänenMikko R.J.ShahrooeiMohammedShcherbinaAnnaSlabaKaterinaSlabyOndrejSnowAndrew L.Soler-PalacínPereDe SomerLienSpaanAndrás N.TancevskiIvanTangyeStuart G.Abou TayounAhmadThanosDimitrisTurveyStuart E.UddinK M FurkanUddinMohammed J.van de BeekDiederikVermeulenFrançoisVinhDonald C.von BernuthHorstWautersJoostWoutersCarineYahsiAysunKanik YuksekSalihaZatzMayanaZawadzkiPawelSuHelen C.CasanovaJean-Laurent, Bayhan GI, Keles S, Kiykim A, Hancerli S, Haerynck F, Florkin B, Hatipoglu N, Ozcelik T, Morelle G, Zatz M, Ng LF, Lye DC, Young BE, Leo YS, Dalgard CL, Lifton RP, Renia L, Meyts I, Jouanguy E, Hammarström L, Pan-Hammarström Q, Boisson B, Bastard P, Su HC, Boisson-Dupuis S, Abel L, Rice CM, Zhang SY, Cobat A, Casanova JL. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J Exp Med 2022; 219:e20220131. [PMID: 35708626 PMCID: PMC9206114 DOI: 10.1084/jem.20220131] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 × 10-11) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie ∼10% of hospitalizations for COVID-19 pneumonia in children.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
76 |
14
|
Iwaki H, Leonard HL, Makarious MB, Bookman M, Landin B, Vismer D, Casey B, Gibbs JR, Hernandez DG, Blauwendraat C, Vitale D, Song Y, Kumar D, Dalgard CL, Sadeghi M, Dong X, Misquitta L, Scholz SW, Scherzer CR, Nalls MA, Biswas S, Singleton AB, Uniformed Services University of the Health Sciences Associates, AMP PD Whole Genome Sequencing Working Group, AMP PD consortium. Accelerating Medicines Partnership: Parkinson's Disease. Genetic Resource. Mov Disord 2021; 36:1795-1804. [PMID: 33960523 PMCID: PMC8453903 DOI: 10.1002/mds.28549] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Whole-genome sequencing data are available from several large studies across a variety of diseases and traits. However, massive storage and computation resources are required to use these data, and to achieve sufficient power for discoveries, harmonization of multiple cohorts is critical. OBJECTIVES The Accelerating Medicines Partnership Parkinson's Disease program has developed a research platform for Parkinson's disease (PD) that integrates the storage and analysis of whole-genome sequencing data, RNA expression data, and clinical data, harmonized across multiple cohort studies. METHODS The version 1 release contains whole-genome sequencing data derived from 3941 participants from 4 cohorts. Samples underwent joint genotyping by the TOPMed Freeze 9 Variant Calling Pipeline. We performed descriptive analyses of these whole-genome sequencing data using the Accelerating Medicines Partnership Parkinson's Disease platform. RESULTS The clinical diagnosis of participants in version 1 release includes 2005 idiopathic PD patients, 963 healthy controls, 64 prodromal subjects, 62 clinically diagnosed PD subjects without evidence of dopamine deficit, and 705 participants of genetically enriched cohorts carrying PD risk-associated GBA variants or LRRK2 variants, of whom 304 were affected. We did not observe significant enrichment of pathogenic variants in the idiopathic PD group, but the polygenic risk score was higher in PD both in nongenetically enriched cohorts and genetically enriched cohorts. The population analysis showed a correlation between genetically enriched cohorts and Ashkenazi Jewish ancestry. CONCLUSIONS We describe the genetic component of the Accelerating Medicines Partnership Parkinson's Disease platform, a solution to democratize data access and analysis for the PD research community. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
71 |
15
|
Brohl AS, Stinson JR, Su HC, Badgett T, Jennings CD, Sukumar G, Sindiri S, Wang W, Kardava L, Moir S, Dalgard CL, Moscow JA, Khan J, Snow AL. Germline CARD11 Mutation in a Patient with Severe Congenital B Cell Lymphocytosis. J Clin Immunol 2014; 35:32-46. [PMID: 25352053 DOI: 10.1007/s10875-014-0106-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023]
Abstract
PURPOSE Activating germline mutations in CARD11 have recently been linked to a rare genetic disorder associated with congenital B cell lymphocytosis. We describe a patient with a similar clinical phenotype who had a de novo germline G123D CARD11 mutation. METHODS Whole exome sequencing was performed on DNA from the patient and his biological parents. Laboratory studies examined characteristics of the patient's B and T lymphocytes. A CARD11 cDNA containing the mutation was transfected into a lymphocyte cell line to gain an understanding of its function. RNA sequencing was performed on samples from the patient and from patients with alternate germline CARD11 mutations and differential gene expression analysis was performed. RESULTS The patient had a decade-long history of severe polyclonal B lymphocytosis in the 20,000-90,000 lymphocytes/mm(3) range, which was markedly exacerbated by EBV infection and splenectomy at different times. He had a heterozygous germline CARD11 mutation causing a G123D amino acid substitution, which was demonstrated to induce NF-κB activation in unstimulated lymphocytes. In contrast to previous patients with CARD11 mutations, this patient's B cells exhibited higher expression of several cell cycle progression genes, as well as enhanced proliferation and improved survival following B cell receptor stimulation. CONCLUSIONS This is the third reported germline and first de novo CARD11 mutation shown to cause congenital B cell lymphocytosis. The mutation was associated with a dramatically greater lymphocytosis than in previously described cases, disproportionate to the level of constitutive NF-κB activation. However, comparative review of the patient's clinical history, combined with additional genomic and functional analyses, underscore other important variables that may affect pathophysiology or regulate mutant CARD11 function in B cell proliferation and disease. We now refer to these patients as having BENTA disease (B cell Expansion with NF-κB and T cell Anergy).
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
71 |
16
|
Jabbari E, Koga S, Valentino RR, Reynolds RH, Ferrari R, Tan MMX, Rowe JB, Dalgard CL, Scholz SW, Dickson DW, Warner TT, Revesz T, Höglinger GU, Ross OA, Ryten M, Hardy J, Shoai M, Morris HR. Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurol 2021; 20:107-116. [PMID: 33341150 PMCID: PMC7116626 DOI: 10.1016/s1474-4422(20)30394-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The genetic basis of variation in the progression of primary tauopathies has not been determined. We aimed to identify genetic determinants of survival in progressive supranuclear palsy (PSP). METHODS In stage one of this two stage genome-wide association study (GWAS), we included individuals with PSP, diagnosed according to pathological and clinical criteria, from two separate cohorts: the 2011 PSP GWAS cohort, from brain banks based at the Mayo Clinic (Jacksonville, FL, USA) and in Munich (Germany), and the University College London PSP cohort, from brain banks and the PROSPECT study, a UK-wide longitudinal study of patients with atypical parkinsonian syndromes. Individuals were included if they had clinical data available on sex, age at motor symptom onset, disease duration (from motor symptom onset to death or to the date of censoring, Dec 1, 2019, if individuals were alive), and PSP phenotype (with reference to the 2017 Movement Disorder Society criteria). Genotype data were used to do a survival GWAS using a Cox proportional hazards model. In stage two, data from additional individuals from the Mayo Clinic brain bank, which were obtained after the 2011 PSP GWAS, were used for a pooled analysis. We assessed the expression quantitative trait loci (eQTL) profile of variants that passed genome-wide significance in our GWAS using the Functional Mapping and Annotation of GWAS platform, and did colocalisation analyses using the eQTLGen and PsychENCODE datasets. FINDINGS Data were collected and analysed between Aug 1, 2016, and Feb 1, 2020. Data were available for 1001 individuals of white European ancestry with PSP in stage one. We found a genome-wide significant association with survival at chromosome 12 (lead single nucleotide polymorphism rs2242367, p=7·5 × 10-10, hazard ratio 1·42 [95% CI 1·22-1·67]). rs2242367 was associated with survival in the individuals added in stage two (n=238; p=0·049, 1·22 [1·00-1·48]) and in the pooled analysis of both stages (n=1239; p=1·3 × 10-10, 1·37 [1·25-1·51]). An eQTL database screen revealed that rs2242367 is associated with increased expression of LRRK2 and two long intergenic non-coding RNAs (lncRNAs), LINC02555 and AC079630.4, in whole blood. Although we did not detect a colocalisation signal for LRRK2, analysis of the PSP survival signal and eQTLs for LINC02555 in the eQTLGen blood dataset revealed a posterior probability of hypothesis 4 of 0·77, suggesting colocalisation due to a single shared causal variant. INTERPRETATION Genetic variation at the LRRK2 locus was associated with survival in PSP. The mechanism of this association might be through a lncRNA-regulated effect on LRRK2 expression because LINC02555 has previously been shown to regulate LRRK2 expression. LRRK2 has been associated with sporadic and familial forms of Parkinson's disease, and our finding suggests a genetic overlap with PSP. Further functional studies will be important to assess the potential of LRRK2 modulation as a disease-modifying therapy for PSP and related tauopathies. FUNDING PSP Association, CBD Solutions, Medical Research Council (UK).
Collapse
|
Research Support, N.I.H., Extramural |
4 |
70 |
17
|
Bandres-Ciga S, Saez-Atienzar S, Kim JJ, Makarious MB, Faghri F, Diez-Fairen M, Iwaki H, Leonard H, Botia J, Ryten M, Hernandez D, Gibbs JR, Ding J, Gan-Or Z, Noyce A, Pihlstrom L, Torkamani A, Soltis AR, Dalgard CL, Scholz SW, Traynor BJ, Ehrlich D, Scherzer CR, Bookman M, Cookson M, Blauwendraat C, Nalls MA, Singleton AB. Large-scale pathway specific polygenic risk and transcriptomic community network analysis identifies novel functional pathways in Parkinson disease. Acta Neuropathol 2020; 140:341-358. [PMID: 32601912 PMCID: PMC8096770 DOI: 10.1007/s00401-020-02181-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 01/21/2023]
Abstract
Polygenic inheritance plays a central role in Parkinson disease (PD). A priority in elucidating PD etiology lies in defining the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological processes underlying PD using the largest currently available cohorts of genetic and gene expression data from International Parkinson's Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership-Parkinson's disease initiative (AMP-PD), among other sources. We applied large-scale gene-set specific polygenic risk score (PRS) analyses to assess the role of common variation on PD risk focusing on publicly annotated gene sets representative of curated pathways. We nominated specific molecular sub-processes underlying protein misfolding and aggregation, post-translational protein modification, immune response, membrane and intracellular trafficking, lipid and vitamin metabolism, synaptic transmission, endosomal-lysosomal dysfunction, chromatin remodeling and apoptosis mediated by caspases among the main contributors to PD etiology. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data and found evidence for a burden of rare damaging alleles in a range of processes, including neuronal transmission-related pathways and immune response. We explored enrichment linked to expression cell specificity patterns using single-cell gene expression data and demonstrated a significant risk pattern for dopaminergic neurons, serotonergic neurons, hypothalamic GABAergic neurons, and neural progenitors. Subsequently, we created a novel way of building de novo pathways by constructing a network expression community map using transcriptomic data derived from the blood of PD patients, which revealed functional enrichment in inflammatory signaling pathways, cell death machinery related processes, and dysregulation of mitochondrial homeostasis. Our analyses highlight several specific promising pathways and genes for functional prioritization and provide a cellular context in which such work should be done.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
67 |
18
|
Dewan R, Chia R, Ding J, Hickman RA, Stein TD, Abramzon Y, Ahmed S, Sabir MS, Portley MK, Tucci A, Ibáñez K, Shankaracharya FNU, Keagle P, Rossi G, Caroppo P, Tagliavini F, Waldo ML, Johansson PM, Nilsson CF, American Genome Center (TAGC), FALS Sequencing Consortium, Genomics England Research Consortium, International ALS/FTD Genomics Consortium (iAFGC), International FTD Genetics Consortium (IFGC), International LBD Genomics Consortium (iLBDGC), NYGC ALS Consortium, PROSPECT Consortium, Rowe JB, Benussi L, Binetti G, Ghidoni R, Jabbari E, Viollet C, Glass JD, Singleton AB, Silani V, Ross OA, Ryten M, Torkamani A, Tanaka T, Ferrucci L, Resnick SM, Pickering-Brown S, Brady CB, Kowal N, Hardy JA, Van Deerlin V, Vonsattel JP, Harms MB, Morris HR, Ferrari R, Landers JE, Chiò A, Gibbs JR, Dalgard CL, Scholz SW, Traynor BJ. Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron 2021; 109:448-460.e4. [PMID: 33242422 PMCID: PMC7864894 DOI: 10.1016/j.neuron.2020.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 02/01/2023]
Abstract
We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered.
Collapse
Collaborators
Adelani Adeleye, Camille Alba, Dagmar Bacikova, Daniel N Hupalo, Elisa McGrath Martinez, Harvey B Pollard, Gauthaman Sukumar, Anthony R Soltis, Meila Tuck, Xijun Zhang, Matthew D Wilkerson, Bradley N Smith, Nicola Ticozzi, Claudia Fallini, Athina Soragia Gkazi, Simon D Topp, Jason Kost, Emma L Scotter, Kevin P Kenna, Jack W Miller, Cinzia Tiloca, Caroline Vance, Eric W Danielson, Claire Troakes, Claudia Colombrita, Safa Al-Sarraj, Elizabeth A Lewis, Andrew King, Daniela Calini, Viviana Pensato, Barbara Castellotti, Jacqueline de Belleroche, Frank Baas, Anneloor L M A Ten Asbroek, Peter C Sapp, Diane McKenna-Yasek, Russell L McLaughlin, Meraida Polak, Seneshaw Asress, Jesús Esteban-Pérez, José Luis Muñoz-Blanco, Zorica Stevic, Sandra D'Alfonso, Letizia Mazzini, Giacomo P Comi, Roberto Del Bo, Mauro Ceroni, Stella Gagliardi, Giorgia Querin, Cinzia Bertolin, Wouter van Rheenen, Frank P Diekstra, Rosa Rademakers, Marka van Blitterswijk, Kevin B Boylan, Giuseppe Lauria, Stefano Duga, Stefania Corti, Cristina Cereda, Lucia Corrado, Gianni Sorarù, Kelly L Williams, Garth A Nicholson, Ian P Blair, Claire Leblond-Manry, Guy A Rouleau, Orla Hardiman, Karen E Morrison, Jan H Veldink, Leonard H van den Berg, Ammar Al-Chalabi, Hardev Pall, Pamela J Shaw, Martin R Turner, Kevin Talbot, Franco Taroni, Alberto García-Redondo, Zheyang Wu, Cinzia Gellera, Antonia Ratti, Robert H Brown, Christopher E Shaw, John C Ambrose, Prabhu Arumugam, Emma L Baple, Marta Bleda, Freya Boardman-Pretty, Jeanne M Boissiere, Christopher R Boustred, H Brittain, Mark J Caulfield, Georgia C Chan, Clare E H Craig, Louise C Daugherty, Anna de Burca, Andrew Devereau, Greg Elgar, Rebecca E Foulger, Tom Fowler, Pedro Furió-Tarí, Joanne M Hackett, Dina Halai, Angela Hamblin, Shirley Henderson, James E Holman, Tim J P Hubbard, Rob Jackson, Louise J Jones, Dalia Kasperaviciute, Melis Kayikci, Lea Lahnstein, Kay Lawson, Sarah E A Leigh, Ivonne U S Leong, Javier F Lopez, Fiona Maleady-Crowe, Joanne Mason, Ellen M McDonagh, Loukas Moutsianas, Michael Mueller, Nirupa Murugaesu, Anna C Need, Chris A Odhams, Christine Patch, Daniel Perez-Gil, Dimitris Polychronopoulos, John Pullinger, Tahrima Rahim, Augusto Rendon, Pablo Riesgo-Ferreiro, Tim Rogers, Kevin Savage, Kushmita Sawant, Richard H Scott, Afshan Siddiq, Alexander Sieghart, Damian Smedley, Katherine R Smith, Alona Sosinsky, William Spooner, Helen E Stevens, Alexander Stuckey, Razvan Sultana, Ellen R A Thomas, Simon R Thompson, Carolyn Tregidgo, Emma Walsh, Sarah A Watters, Matthew J Welland, Eleanor Williams, Katarzyna Witkowska, Suzanne M Wood, Magdalena Zarowiecki, Sampath Arepalli, Pavan Auluck, Robert H Baloh, Robert Bowser, Alexis Brice, James Broach, William Camu, Adriano Chiò, John Cooper-Knock, Philippe Corcia, Carsten Drepper, Vivian E Drory, Travis L Dunckley, Faraz Faghri, Jennifer Farren, Eva Feldman, Mary Kay Floeter, Pietro Fratta, Glenn Gerhard, Summer B Gibson, Stephen A Goutman, Terry D Heiman-Patterson, Dena G Hernandez, Ben Hoover, Lilja Jansson, Freya Kamel, Janine Kirby, Neil W Kowall, Hannu Laaksovirta, Francesco Landi, Isabelle Le Ber, Serge Lumbroso, Daniel Jl MacGowan, Nicholas J Maragakis, Gabriele Mora, Kevin Mouzat, Liisa Myllykangas, Mike A Nalls, Richard W Orrell, Lyle W Ostrow, Roger Pamphlett, Erik Pioro, Stefan M Pulst, John M Ravits, Alan E Renton, Wim Robberecht, Ian Robey, Ekaterina Rogaeva, Jeffrey D Rothstein, Michael Sendtner, Pamela J Shaw, Katie C Sidle, Zachary Simmons, David J Stone, Pentti J Tienari, John Q Trojanowski, Juan C Troncoso, Miko Valori, Philip Van Damme, Ludo Van Den Bosch, Lorne Zinman, Diego Albani, Barbara Borroni, Alessandro Padovani, Amalia Bruni, Jordi Clarimon, Oriol Dols-Icardo, Ignacio Illán-Gala, Alberto Lleó, Adrian Danek, Daniela Galimberti, Elio Scarpini, Maria Serpente, Caroline Graff, Huei-Hsin Chiang, Behzad Khoshnood, Linn Öijerstedt, Christopher M Morris, Benedetta Nacmias, Sandro Sorbi, Jorgen E Nielsen, Lynne E Hjermind, Valeria Novelli, Annibale A Puca, Pau Pastor, Ignacio Alvarez, Monica Diez-Fairen, Miquel Aguilar, Robert Perneczky, Janine Diehl-Schimd, Ekaterina Rogaeva, Mina Rossi, Agustin Ruiz, Mercè Boada, Isabel Hernández, Sonia Moreno-Grau, Johannes C Schlachetzki, Dag Aarsland, Camille Alba, Marilyn S Albert, Safa Al-Sarraj, Johannes Attems, Dagmar Bacikova, Matthew J Barrett, Thomas G Beach, Lynn M Bekris, David A Bennett, Lilah M Besser, Eileen H Bigio, Sandra E Black, Bradley F Boeve, Ryan C Bohannan, Francesca Brett, Alexis Brice, Maura Brunetti, Chad A Caraway, Jose-Alberto Palma, Andrea Calvo, Antonio Canosa, Jordi Clarimon, Dennis Dickson, Monica Diez-Fairen, Charles Duyckaerts, Kelley Faber, Tanis Ferman, Margaret E Flanagan, Gianluca Floris, Tatiana M Foroud, Juan Fortea, Ziv Gan-Or, Steve Gentleman, Bernardino Ghetti, Jesse Raphael Gibbs, Alison Goate, David Goldstein, Isabel González-Aramburu, Neill R Graff-Radford, Angela K Hodges, Heng-Chen Hu, Daniel Hupalo, Jon Infante, Alex Iranzo, Scott M Kaiser, Horacio Kaufmann, Julia Keith, Ronald C Kim, Gregory Klein, Rejko Krüger, Walter Kukull, Amanda Kuzma, Carmen Lage, Suzanne Lesage, Alberto Lleó, James B Leverenz, Giancarlo Logroscino, Grisel Lopez, Seth Love, Qinwen Mao, Maria Jose Marti, Elisa Martinez-McGrath, Mario Masellis, Eliezer Masliah, Patrick May, Ian McKeith, Marek-Marsel Mesulam, Edwin S Monuki, Christopher M Morris, Kathy L Newell, Lucy Norcliffe-Kaufmann, Laura Palmer, Pau Pastor, Matthew Perkins, Olga Pletnikova, Laura Molina-Porcel, Alan E Renton, Regina H Reynolds, Eloy Rodríguez-Rodríguez, Ekaterina Rogaeva, Jonathan D Rohrer, Pascual Sanchez-Juan, Clemens R Scherzer, Geidy E Serrano, Vikram Shakkottai, Ellen Sidransky, Nahid Tayebi, Alan J Thomas, Bension S Tilley, Claire Troakes, Juan C Troncoso, Ronald L Walton, Randy Woltjer, Zbigniew K Wszolek, Georgia Xiromerisiou, Chiara Zecca, Hemali Phatnani, Justin Kwan, Dhruv Sareen, James R Broach, Zachary Simmons, Ximena Arcila-Londono, Edward B Lee, Neil A Shneider, Ernest Fraenkel, Lyle W Ostrow, Frank Baas, Noah Zaitlen, James D Berry, Andrea Malaspina, Pietro Fratta, Gregory A Cox, Leslie M Thompson, Steve Finkbeiner, Efthimios Dardiotis, Timothy M Miller, Siddharthan Chandran, Suvankar Pal, Eran Hornstein, Daniel J MacGowan, Terry Heiman-Patterson, Molly G Hammell, Nikolaos A Patsopoulos, Oleg Butovsky, Joshua Dubnau, Avindra Nath, Robert Bowser, Matt Harms, Eleonora Aronica, Mary Poss, Jennifer Phillips-Cremins, John Crary, Nazem Atassi, Dale J Lange, Darius J Adams, Leonidas Stefanis, Marc Gotkine, Robert H Baloh, Suma Babu, Towfique Raj, Sabrina Paganoni, Ophir Shalem, Colin Smith, Bin Zhang, Brent Harris, Iris Broce, Vivian Drory, John Ravits, Corey McMillan, Vilas Menon, Lani Wu, Steven Altschuler, Khaled Amar, Neil Archibald, Oliver Bandmann, Erica Capps, Alistair Church, Jan Coebergh, Alyssa Costantini, Peter Critchley, Boyd Cp Ghosh, Michele T M Hu, Christopher Kobylecki, P Nigel Leigh, Carl Mann, Luke A Massey, Huw R Morris, Uma Nath, Nicola Pavese, Dominic Paviour, Jagdish Sharma, Jenny Vaughan,
Collapse
|
Research Support, N.I.H., Extramural |
4 |
63 |
19
|
Lee S, Zhao L, Rojas C, Bateman NW, Yao H, Lara OD, Celestino J, Morgan MB, Nguyen TV, Conrads KA, Rangel KM, Dood RL, Hajek RA, Fawcett GL, Chu RA, Wilson K, Loffredo JL, Viollet C, Jazaeri AA, Dalgard CL, Mao X, Song X, Zhou M, Hood BL, Banskota N, Wilkerson MD, Te J, Soltis AR, Roman K, Dunn A, Cordover D, Eterovic AK, Liu J, Burks JK, Baggerly KA, Fleming ND, Lu KH, Westin SN, Coleman RL, Mills GB, Casablanca Y, Zhang J, Conrads TP, Maxwell GL, Futreal PA, Sood AK. Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer. Cell Rep 2020; 31:107502. [PMID: 32294438 PMCID: PMC7234854 DOI: 10.1016/j.celrep.2020.03.066] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022] Open
Abstract
The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC), which is the most lethal gynecologic malignancy, is not well understood. Here, we perform comprehensive multi-platform omics analyses, including integrated analysis, and immune monitoring on primary and metastatic sites from highly clinically annotated HGSC samples based on a laparoscopic triage algorithm from patients who underwent complete gross resection (R0) or received neoadjuvant chemotherapy (NACT) with excellent or poor response. We identify significant distinct molecular abnormalities and cellular changes and immune cell repertoire alterations between the groups, including a higher rate of NF1 copy number loss, and reduced chromothripsis-like patterns, higher levels of strong-binding neoantigens, and a higher number of infiltrated T cells in the R0 versus the NACT groups.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
63 |
20
|
Zhou Q, Dalgard CL, Wynder C, Doughty ML. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci 2011; 12:50. [PMID: 21615950 PMCID: PMC3123242 DOI: 10.1186/1471-2202-12-50] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/26/2011] [Indexed: 01/08/2023] Open
Abstract
Background Histone deacetylases (HDACs) are enzymes that modulate gene expression and cellular processes by deacetylating histones and non-histone proteins. While small molecule inhibitors of HDAC activity (HDACi) are used clinically in the treatment of cancer, pre-clinical treatment models suggest they also exert neuroprotective effects and stimulate neurogenesis in neuropathological conditions. However, the direct effects of HDACi on cell cycle progression and proliferation, two properties required for continued neurogenesis, have not been fully characterized in adult neural stem cells (NSCs). In this study, we examined the effects of two broad class I and class II HDACi on adult mouse NSCs, the hydroxamate-based HDACi suberoylanilide hydroxamic acid (vorinostat, SAHA) and the short chain fatty acid HDACi sodium butyrate. Results We show that both HDACi suppress the formation of neurospheres by adult mouse NSCs grown in proliferation culture conditions in vitro. DNA synthesis is significantly inhibited in adult mouse NSCs exposed to either SAHA or sodium butyrate and inhibition is associated with an arrest in the G1 phase of the cell cycle. HDACi exposure also resulted in transcriptional changes in adult mouse NSCs. Cdk inhibitor genes p21 and p27 transcript levels are increased and associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27. mRNA levels for notch effector Hes genes and Spry-box stem cell transcription factors are downregulated, whereas pro-neural transcription factors Neurog1 and Neurod1 are upregulated. Lastly, we show HDAC inhibition under proliferation culture conditions leads to long-term changes in cell fate in adult mouse NSCs induced to differentiate in vitro. Conclusion SAHA and sodium butyrate directly regulate cdk inhibitor transcription to control cell cycle progression in adult mouse NSCs. HDAC inhibition results in G1 arrest in adult mouse NSCs and transcriptional changes associated with activation of neuronal lineage commitment programs and a reduction of stem/progenitor state. Changes in differentiated cell state in adult mouse NSCs treated with HDACi under proliferation culture conditions suggests an intrinsic relationship between multipotency, cell cycle progression and HDAC activity in these cells.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
62 |
21
|
Petrovics G, Li H, Stümpel T, Tan SH, Young D, Katta S, Li Q, Ying K, Klocke B, Ravindranath L, Kohaar I, Chen Y, Ribli D, Grote K, Zou H, Cheng J, Dalgard CL, Zhang S, Csabai I, Kagan J, Takeda D, Loda M, Srivastava S, Scherf M, Seifert M, Gaiser T, McLeod DG, Szallasi Z, Ebner R, Werner T, Sesterhenn IA, Freedman M, Dobi A, Srivastava S. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine 2015; 2:1957-64. [PMID: 26844274 PMCID: PMC4703707 DOI: 10.1016/j.ebiom.2015.10.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 02/03/2023] Open
Abstract
Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present a systematic whole genome analyses, revealing alterations that differentiate African American (AA) and Caucasian American (CA) CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array, 320 patients). Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
62 |
22
|
Dalgard CL, Gonzalez M, deNiro JE, O'Brien JM. Differential MicroRNA-34a Expression and Tumor Suppressor Function in Retinoblastoma Cells. ACTA ACUST UNITED AC 2009; 50:4542-51. [DOI: 10.1167/iovs.09-3520] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
16 |
59 |
23
|
Johnson JO, Chia R, Miller DE, Li R, Kumaran R, Abramzon Y, Alahmady N, Renton AE, Topp SD, Gibbs JR, Cookson MR, Sabir MS, Dalgard CL, Troakes C, Jones AR, Shatunov A, Iacoangeli A, Al Khleifat A, Ticozzi N, Silani V, Gellera C, Blair IP, Dobson-Stone C, Kwok JB, Bonkowski ES, Palvadeau R, Tienari PJ, Morrison KE, Shaw PJ, Al-Chalabi A, Brown RH, Calvo A, Mora G, Al-Saif H, Gotkine M, Leigh F, Chang IJ, Perlman SJ, Glass I, Scott AI, Shaw CE, Basak AN, Landers JE, Chiò A, Crawford TO, Smith BN, Traynor BJ, Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp SD, Scotter EL, Kenna KP, Keagle P, Tiloca C, Vance C, Troakes C, Colombrita C, King A, Pensato V, Castellotti B, Baas F, Ten Asbroek ALMA, McKenna-Yasek D, McLaughlin RL, Polak M, Asress S, Esteban-Pérez J, Stevic Z, D'Alfonso S, Mazzini L, Comi GP, Del Bo R, Ceroni M, Gagliardi S, Querin G, Bertolin C, van Rheenen W, Rademakers R, van Blitterswijk M, Lauria G, Duga S, Corti S, Cereda C, Corrado L, Sorarù G, Williams KL, Nicholson GA, Blair IP, Leblond-Manry C, Rouleau GA, Hardiman O, Morrison KE, Veldink JH, van den Berg LH, Al-Chalabi A, Pall H, Shaw PJ, et alJohnson JO, Chia R, Miller DE, Li R, Kumaran R, Abramzon Y, Alahmady N, Renton AE, Topp SD, Gibbs JR, Cookson MR, Sabir MS, Dalgard CL, Troakes C, Jones AR, Shatunov A, Iacoangeli A, Al Khleifat A, Ticozzi N, Silani V, Gellera C, Blair IP, Dobson-Stone C, Kwok JB, Bonkowski ES, Palvadeau R, Tienari PJ, Morrison KE, Shaw PJ, Al-Chalabi A, Brown RH, Calvo A, Mora G, Al-Saif H, Gotkine M, Leigh F, Chang IJ, Perlman SJ, Glass I, Scott AI, Shaw CE, Basak AN, Landers JE, Chiò A, Crawford TO, Smith BN, Traynor BJ, Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp SD, Scotter EL, Kenna KP, Keagle P, Tiloca C, Vance C, Troakes C, Colombrita C, King A, Pensato V, Castellotti B, Baas F, Ten Asbroek ALMA, McKenna-Yasek D, McLaughlin RL, Polak M, Asress S, Esteban-Pérez J, Stevic Z, D'Alfonso S, Mazzini L, Comi GP, Del Bo R, Ceroni M, Gagliardi S, Querin G, Bertolin C, van Rheenen W, Rademakers R, van Blitterswijk M, Lauria G, Duga S, Corti S, Cereda C, Corrado L, Sorarù G, Williams KL, Nicholson GA, Blair IP, Leblond-Manry C, Rouleau GA, Hardiman O, Morrison KE, Veldink JH, van den Berg LH, Al-Chalabi A, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, García-Redondo A, Wu Z, Glass JD, Gellera C, Ratti A, Brown RH, Silani V, Shaw CE, Landers JE, Dalgard CL, Adeleye A, Soltis AR, Alba C, Viollet C, Bacikova D, Hupalo DN, Sukumar G, Pollard HB, Wilkerson MD, Martinez EM, Abramzon Y, Ahmed S, Arepalli S, Baloh RH, Bowser R, Brady CB, Brice A, Broach J, Campbell RH, Camu W, Chia R, Cooper-Knock J, Ding J, Drepper C, Drory VE, Dunckley TL, Eicher JD, England BK, Faghri F, Feldman E, Floeter MK, Fratta P, Geiger JT, Gerhard G, Gibbs JR, Gibson SB, Glass JD, Hardy J, Harms MB, Heiman-Patterson TD, Hernandez DG, Jansson L, Kirby J, Kowall NW, Laaksovirta H, Landeck N, Landi F, Le Ber I, Lumbroso S, MacGowan DJL, Maragakis NJ, Mora G, Mouzat K, Murphy NA, Myllykangas L, Nalls MA, Orrell RW, Ostrow LW, Pamphlett R, Pickering-Brown S, Pioro EP, Pletnikova O, Pliner HA, Pulst SM, Ravits JM, Renton AE, Rivera A, Robberecht W, Rogaeva E, Rollinson S, Rothstein JD, Scholz SW, Sendtner M, Shaw PJ, Sidle KC, Simmons Z, Singleton AB, Smith N, Stone DJ, Tienari PJ, Troncoso JC, Valori M, Van Damme P, Van Deerlin VM, Van Den Bosch L, Zinman L, Landers JE, Chiò A, Traynor BJ, Angelocola SM, Ausiello FP, Barberis M, Bartolomei I, Battistini S, Bersano E, Bisogni G, Borghero G, Brunetti M, Cabona C, Calvo A, Canale F, Canosa A, Cantisani TA, Capasso M, Caponnetto C, Cardinali P, Carrera P, Casale F, Chiò A, Colletti T, Conforti FL, Conte A, Conti E, Corbo M, Cuccu S, Dalla Bella E, D'Errico E, DeMarco G, Dubbioso R, Ferrarese C, Ferraro PM, Filippi M, Fini N, Floris G, Fuda G, Gallone S, Gianferrari G, Giannini F, Grassano M, Greco L, Iazzolino B, Introna A, La Bella V, Lattante S, Lauria G, Liguori R, Logroscino G, Logullo FO, Lunetta C, Mandich P, Mandrioli J, Manera U, Manganelli F, Marangi G, Marinou K, Marrosu MG, Martinelli I, Messina S, Moglia C, Mora G, Mosca L, Murru MR, Origone P, Passaniti C, Petrelli C, Petrucci A, Pozzi S, Pugliatti M, Quattrini A, Ricci C, Riolo G, Riva N, Russo M, Sabatelli M, Salamone P, Salivetto M, Salvi F, Santarelli M, Sbaiz L, Sideri R, Simone I, Simonini C, Spataro R, Tanel R, Tedeschi G, Ticca A, Torriello A, Tranquilli S, Tremolizzo L, Trojsi F, Vasta R, Vacchiano V, Vita G, Volanti P, Zollino M, Zucchi E. Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurol 2021; 78:1236-1248. [PMID: 34459874 PMCID: PMC8406220 DOI: 10.1001/jamaneurol.2021.2598] [Show More Authors] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Importance Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. Objective To identify the genetic variants associated with juvenile ALS. Design, Setting, and Participants In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. Main Outcomes and Measures De novo variants present only in the index case and not in unaffected family members. Results Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. Conclusions and Relevance These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.
Collapse
|
Research Support, N.I.H., Intramural |
4 |
54 |
24
|
Matuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Abou Tayoun A, Aiuti A, Alavi Darazam I, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Metin Akcan O, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, et alMatuozzo D, Talouarn E, Marchal A, Zhang P, Manry J, Seeleuthner Y, Zhang Y, Bolze A, Chaldebas M, Milisavljevic B, Gervais A, Bastard P, Asano T, Bizien L, Barzaghi F, Abolhassani H, Abou Tayoun A, Aiuti A, Alavi Darazam I, Allende LM, Alonso-Arias R, Arias AA, Aytekin G, Bergman P, Bondesan S, Bryceson YT, Bustos IG, Cabrera-Marante O, Carcel S, Carrera P, Casari G, Chaïbi K, Colobran R, Condino-Neto A, Covill LE, Delmonte OM, El Zein L, Flores C, Gregersen PK, Gut M, Haerynck F, Halwani R, Hancerli S, Hammarström L, Hatipoğlu N, Karbuz A, Keles S, Kyheng C, Leon-Lopez R, Franco JL, Mansouri D, Martinez-Picado J, Metin Akcan O, Migeotte I, Morange PE, Morelle G, Martin-Nalda A, Novelli G, Novelli A, Ozcelik T, Palabiyik F, Pan-Hammarström Q, de Diego RP, Planas-Serra L, Pleguezuelo DE, Prando C, Pujol A, Reyes LF, Rivière JG, Rodriguez-Gallego C, Rojas J, Rovere-Querini P, Schlüter A, Shahrooei M, Sobh A, Soler-Palacin P, Tandjaoui-Lambiotte Y, Tipu I, Tresoldi C, Troya J, van de Beek D, Zatz M, Zawadzki P, Al-Muhsen SZ, Alosaimi MF, Alsohime FM, Baris-Feldman H, Butte MJ, Constantinescu SN, Cooper MA, Dalgard CL, Fellay J, Heath JR, Lau YL, Lifton RP, Maniatis T, Mogensen TH, von Bernuth H, Lermine A, Vidaud M, Boland A, Deleuze JF, Nussbaum R, Kahn-Kirby A, Mentre F, Tubiana S, Gorochov G, Tubach F, Hausfater P, Meyts I, Zhang SY, Puel A, Notarangelo LD, Boisson-Dupuis S, Su HC, Boisson B, Jouanguy E, Casanova JL, Zhang Q, Abel L, Cobat A. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med 2023; 15:22. [PMID: 37020259 PMCID: PMC10074346 DOI: 10.1186/s13073-023-01173-8] [Show More Authors] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. METHODS We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. RESULTS No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P = 1.1 × 10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3-8.2], P = 2.1 × 10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1-2635.4], P = 3.4 × 10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3-8.4], P = 7.7 × 10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10-5). CONCLUSIONS Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
52 |
25
|
Buchbinder D, Stinson JR, Nugent DJ, Heurtier L, Suarez F, Sukumar G, Dalgard CL, Masson C, Parisot M, Zhang Y, Matthews HF, Su HC, Durandy A, Fischer A, Kracker S, Snow AL. Mild B-cell lymphocytosis in patients with a CARD11 C49Y mutation. J Allergy Clin Immunol 2015; 136:819-821.e1. [PMID: 25930198 DOI: 10.1016/j.jaci.2015.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/24/2015] [Accepted: 03/06/2015] [Indexed: 01/05/2023]
|
Research Support, Non-U.S. Gov't |
10 |
44 |