1
|
Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, Lavelle EC, Leverkus M, Martin SJ. Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells. Mol Cell 2013; 49:1034-48. [PMID: 23434371 DOI: 10.1016/j.molcel.2013.01.025] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 11/29/2022]
Abstract
Apoptosis is commonly thought to represent an immunologically silent or even anti-inflammatory mode of cell death, resulting in cell clearance in the absence of explicit activation of the immune system. However, here we show that Fas/CD95-induced apoptosis is associated with the production of an array of cytokines and chemokines, including IL-6, IL-8, CXCL1, MCP-1, and GMCSF. Fas-induced production of MCP-1 and IL-8 promoted chemotaxis of phagocytes toward apoptotic cells, suggesting that these factors serve as "find-me" signals in this context. We also show that RIPK1 and IAPs are required for optimal production of cytokines and chemokines in response to Fas receptor stimulation. Consequently, a synthetic IAP antagonist potently suppressed Fas-dependent expression of multiple proinflammatory mediators and inhibited Fas-induced chemotaxis. Thus, in addition to provoking apoptosis, Fas receptor stimulation can trigger the secretion of chemotactic factors and other immunologically active proteins that can influence immune responsiveness toward dying cells.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
260 |
2
|
Cullen SP, Kearney CJ, Clancy DM, Martin SJ. Diverse Activators of the NLRP3 Inflammasome Promote IL-1β Secretion by Triggering Necrosis. Cell Rep 2015; 11:1535-48. [PMID: 26027935 DOI: 10.1016/j.celrep.2015.05.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/21/2015] [Accepted: 05/01/2015] [Indexed: 12/15/2022] Open
Abstract
The NLRP3 inflammasome is involved in caspase-1-dependent maturation of IL-1β in many contexts. A two-signal model has emerged for IL-1β maturation, with LPS providing "signal I" and diverse agents such as ATP, Nigericin, streptolysin O, uric acid crystals, and alum salts capable of acting as "signal II." In the absence of signal II, pro-IL-1β is upregulated but typically fails to be processed or released. What unites signal II stimuli has been debated, with the ability to promote K+ efflux suggested as a common factor, but the mechanism of IL-1β release remains unclear. Here, we show that all examined inflammasome signal II agents triggered necrosis, which was highly correlated with their ability to promote IL-1β release. IL-1β secretion occurred in tandem with the release of many additional proteins and was confined to necrotic cells. Thus, signal II agents initiate inflammation by promoting necrosis-driven IL-1β release, suggesting that IL-1β represents an inducible danger signal.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
179 |
3
|
Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, Pijpers L, Michie J, Brown KK, Knight DA, Sutton V, Beavis PA, Voskoboinik I, Darcy PK, Silke J, Trapani JA, Johnstone RW, Oliaro J. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol 2018; 3:3/23/eaar3451. [DOI: 10.1126/sciimmunol.aar3451] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
|
|
7 |
165 |
4
|
Davidovich P, Kearney CJ, Martin SJ. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol Chem 2015; 395:1163-71. [PMID: 25153241 DOI: 10.1515/hsz-2014-0164] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023]
Abstract
Microbial infection and tissue injury are well established as the two major drivers of inflammation. However, although it is widely accepted that necrotic cell death can trigger or potentiate inflammation, precisely how this is achieved still remains relatively obscure. Certain molecules, which have been dubbed 'damage-associated molecular patterns' (DAMPs) or alarmins, are thought to promote inflammation upon release from necrotic cells. However, the precise nature and relative potency of DAMPs, compared to conventional pro-inflammatory cytokines or pathogen-associated molecular patterns (PAMPs), remains unclear. How different modes of cell death impact on the immune system also requires further clarification. Apoptosis has long been regarded as a non-inflammatory or even anti-inflammatory mode of cell death, but recent studies suggest that this is not always the case. Necroptosis is a programmed form of necrosis that is engaged under certain conditions when caspase activation is blocked. Necroptosis is also regarded as a highly pro-inflammatory mode of cell death but there has been little explicit examination of this issue. Here we discuss the inflammatory implications of necrosis, necroptosis and apoptosis and some of the unresolved questions concerning how dead cells influence inflammatory responses.
Collapse
|
Review |
10 |
137 |
5
|
Vervoort SJ, Welsh SA, Devlin JR, Barbieri E, Knight DA, Offley S, Bjelosevic S, Costacurta M, Todorovski I, Kearney CJ, Sandow JJ, Fan Z, Blyth B, McLeod V, Vissers JHA, Pavic K, Martin BP, Gregory G, Demosthenous E, Zethoven M, Kong IY, Hawkins ED, Hogg SJ, Kelly MJ, Newbold A, Simpson KJ, Kauko O, Harvey KF, Ohlmeyer M, Westermarck J, Gray N, Gardini A, Johnstone RW. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell 2021; 184:3143-3162.e32. [PMID: 34004147 PMCID: PMC8567840 DOI: 10.1016/j.cell.2021.04.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
112 |
6
|
Hogg SJ, Motorna O, Cluse LA, Johanson TM, Coughlan HD, Raviram R, Myers RM, Costacurta M, Todorovski I, Pijpers L, Bjelosevic S, Williams T, Huskins SN, Kearney CJ, Devlin JR, Fan Z, Jabbari JS, Martin BP, Fareh M, Kelly MJ, Dupéré-Richer D, Sandow JJ, Feran B, Knight D, Khong T, Spencer A, Harrison SJ, Gregory G, Wickramasinghe VO, Webb AI, Taberlay PC, Bromberg KD, Lai A, Papenfuss AT, Smyth GK, Allan RS, Licht JD, Landau DA, Abdel-Wahab O, Shortt J, Vervoort SJ, Johnstone RW. Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol Cell 2021; 81:2183-2200.e13. [PMID: 34019788 PMCID: PMC8183601 DOI: 10.1016/j.molcel.2021.04.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 01/19/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
84 |
7
|
Lelliott EJ, Kong IY, Zethoven M, Ramsbottom KM, Martelotto LG, Meyran D, Jiang Zhu J, Costacurta M, Kirby L, Sandow JJ, Lim L, Dominguez PM, Todorovski I, Haynes NM, Beavis PA, Neeson PJ, Hawkins ED, McArthur GA, Parish IA, Johnstone RW, Oliaro J, Sheppard KE, Kearney CJ, Vervoort SJ. CDK4/6 inhibition promotes anti-tumor immunity through the induction of T cell memory. Cancer Discov 2021; 11:2582-2601. [PMID: 33990344 DOI: 10.1158/2159-8290.cd-20-1554] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Pharmacological inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6) are an approved treatment for hormone receptor-positive breast cancer and are currently under evaluation across hundreds of clinical trials for other cancer types. The clinical success of these inhibitors is largely attributed to well-defined tumor-intrinsic cytostatic mechanisms, while their emerging role as immunomodulatory agents is less understood. Using integrated epigenomic, transcriptomic and proteomic analyses, we demonstrated a novel action of CDK4/6 inhibitors in promoting the phenotypic and functional acquisition of immunological T cell memory. Short-term priming with a CDK4/6 inhibitor promoted long-term endogenous anti-tumor T cell immunity in mice, enhanced the persistence and therapeutic efficacy of chimeric antigen receptor (CAR)-T cells, and induced an RB-dependent T cell phenotype supportive of favorable responses to immune checkpoint blockade in melanoma patients. Together, these mechanistic insights significantly broaden the prospective utility of CDK4/6 inhibitors as clinical tools to boost anti-tumor T cell immunity.
Collapse
|
Journal Article |
4 |
70 |
8
|
Kearney CJ, Cullen SP, Clancy D, Martin SJ. RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. FEBS J 2014; 281:4921-34. [PMID: 25195660 DOI: 10.1111/febs.13034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 11/30/2022]
Abstract
Tumour necrosis factor and lipopolysaccharide can promote a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing receptor-interacting serine/threonine kinase (RIPK)3. Because inhibitors of RIPK1 kinase activity such as necrostatin-1 block necroptosis in many settings, RIPK1 is thought to be required for activation of RIPK3, leading to necroptosis. However, here we show that, although necrostatin potently inhibited tumour necrosis factor-induced, lipopolysaccharide-induced and polyIC-induced necroptosis, RIPK1 knockdown unexpectedly potentiated this process. In contrast, RIPK3 knockdown potently suppressed necroptosis under the same conditions. Significantly, necrostatin failed to block necroptosis in the absence of RIPK1, indicating that its ability to suppress necroptosis was indeed RIPK1-dependent. These data argue that RIPK1 is dispensable for necroptosis and can act as an inhibitor of this process. Our observations also suggest that necrostatin enhances the inhibitory effects of RIPK1 on necroptosis, as opposed to blocking its participation in this process.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
64 |
9
|
Kearney CJ, Vervoort SJ, Ramsbottom KM, Todorovski I, Lelliott EJ, Zethoven M, Pijpers L, Martin BP, Semple T, Martelotto L, Trapani JA, Parish IA, Scott NE, Oliaro J, Johnstone RW. SUGAR-seq enables simultaneous detection of glycans, epitopes, and the transcriptome in single cells. SCIENCE ADVANCES 2021; 7:7/8/eabe3610. [PMID: 33608275 PMCID: PMC7895430 DOI: 10.1126/sciadv.abe3610] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/05/2021] [Indexed: 05/08/2023]
Abstract
Multimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.
Collapse
|
research-article |
4 |
55 |
10
|
Nüssing S, House IG, Kearney CJ, Chen AXY, Vervoort SJ, Beavis PA, Oliaro J, Johnstone RW, Trapani JA, Parish IA. Efficient CRISPR/Cas9 Gene Editing in Uncultured Naive Mouse T Cells for In Vivo Studies. THE JOURNAL OF IMMUNOLOGY 2020; 204:2308-2315. [PMID: 32152070 DOI: 10.4049/jimmunol.1901396] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
CRISPR/Cas9 technologies have revolutionized our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene editing strategies in T cells require in vitro stimulation or culture that can both preclude the study of unmanipulated naive T cells and alter subsequent differentiation. In this study, we demonstrate highly efficient gene editing within uncultured primary naive murine CD8+ T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knockout cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naive state, suggesting that gene deletion occurs independent of T cell activation. Finally, we demonstrate that targeted mutations can be introduced into naive CD8+ T cells using CRISPR-based homology-directed repair. This protocol thus expands CRISPR-based gene editing approaches beyond models of robust T cell activation to encompass both naive T cell homeostasis and models of weak activation, such as tolerance and tumor models.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
51 |
11
|
Petley EV, Koay HF, Henderson MA, Sek K, Todd KL, Keam SP, Lai J, House IG, Li J, Zethoven M, Chen AXY, Oliver AJ, Michie J, Freeman AJ, Giuffrida L, Chan JD, Pizzolla A, Mak JYW, McCulloch TR, Souza-Fonseca-Guimaraes F, Kearney CJ, Millen R, Ramsay RG, Huntington ND, McCluskey J, Oliaro J, Fairlie DP, Neeson PJ, Godfrey DI, Beavis PA, Darcy PK. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun 2021; 12:4746. [PMID: 34362900 PMCID: PMC8346465 DOI: 10.1038/s41467-021-25009-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.
Collapse
|
research-article |
4 |
48 |
12
|
Fujihara KM, Zhang BZ, Jackson TD, Ogunkola MO, Nijagal B, Milne JV, Sallman DA, Ang CS, Nikolic I, Kearney CJ, Hogg SJ, Cabalag CS, Sutton VR, Watt S, Fujihara AT, Trapani JA, Simpson KJ, Stojanovski D, Leimkühler S, Haupt S, Phillips WA, Clemons NJ. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. SCIENCE ADVANCES 2022; 8:eabm9427. [PMID: 36103522 PMCID: PMC9473576 DOI: 10.1126/sciadv.abm9427] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.
Collapse
|
research-article |
3 |
44 |
13
|
Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol 2017; 14:406-411. [PMID: 28366940 DOI: 10.1038/cmi.2017.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Genetic mutations in the gene encoding DOCK8 cause an autosomal recessive form of hyper immunoglobulin E syndrome (AR-HIES), referred to as DOCK8 deficiency. DOCK8 deficiency in humans results in the onset of combined immunodeficiency disease (CID), clinically associated with chronic infections with diverse microbial pathogens, and a predisposition to malignancy. It is now becoming clear that DOCK8 regulates the function of diverse immune cell sub-types, particularly lymphocytes, to drive both innate and adaptive immune responses. Early studies demonstrated that DOCK8 is required for lymphocyte survival, migration and immune synapse formation, which translates to poor pathogen control in the absence of DOCK8. However, more recent advances have pointed to a crucial role for DOCK8 in regulating the signal transduction events that control transcriptional activity, cytokine production and functional polarization of immune cells. Here, we summarize recent advances in our understanding of DOCK8 function, paying particular attention to an emerging role as a signaling intermediate to promote immune responses to diverse external stimuli.
Collapse
|
Review |
8 |
43 |
14
|
Kearney CJ, Ramsbottom KM, Voskoboinik I, Darcy PK, Oliaro J. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Oncoimmunology 2016; 5:e1196308. [PMID: 27622064 DOI: 10.1080/2162402x.2016.1196308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/22/2023] Open
Abstract
Acute myeloid leukemia (AML) is associated with poor natural killer (NK) cell function through aberrant expression of NK-cell-activating receptors and their ligands on tumor cells. These alterations are thought to promote formation of inhibitory NK-target cell synapses, in which killer cell degranulation is attenuated. Allogeneic stem cell transplantation can be effective in treating AML, through restoration of NK cell lytic activity. Similarly, agents that augment NK-cell-activating signals within the immunological synapse may provide some therapeutic benefit. However, the receptor-ligand interactions that critically dictate NK cell function in AML remain undefined. Here, we demonstrate that CD112/CD155 expression is required for DNAM-1-dependent killing of AML cells. Indeed, the low, or absent, expression of CD112/CD155 on multiple AML cell lines resulted in failure to stimulate optimal NK cell function. Importantly, isolated clones with low CD112/155 expression were resistant to NK cell killing while those expressing abundant levels of CD112/155 were highly susceptible. Attenuated NK cell killing in the absence of CD112/CD155 originated from decreased NK-target cell conjugation. Furthermore, we reveal by time-lapse microscopy, a significant increase in NK cell 'failed killing' in the absence of DNAM-1 ligands. Consequently, NK cells preferentially lysed ligand-expressing cells within heterogeneous populations, driving clonal selection of CD112/CD155-negative blasts upon NK cell attack. Taken together, we identify reduced CD155 expression as a major NK cell escape mechanism in AML and an opportunity for targeted immunotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
42 |
15
|
Michie J, Beavis PA, Freeman AJ, Vervoort SJ, Ramsbottom KM, Narasimhan V, Lelliott EJ, Lalaoui N, Ramsay RG, Johnstone RW, Silke J, Darcy PK, Voskoboinik I, Kearney CJ, Oliaro J. Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunol Res 2019; 7:183-192. [DOI: 10.1158/2326-6066.cir-18-0428] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/06/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
|
|
6 |
40 |
16
|
Freeman AJ, Kearney CJ, Silke J, Oliaro J. Unleashing TNF cytotoxicity to enhance cancer immunotherapy. Trends Immunol 2021; 42:1128-1142. [PMID: 34750058 DOI: 10.1016/j.it.2021.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine that is produced and secreted by cytotoxic lymphocytes upon tumor target recognition. Depending on the context, TNF can mediate either pro-survival or pro-death signals. The potential cytotoxicity of T cell-produced TNF, particularly in the context of T cell-directed immunotherapies, has been largely overlooked. However, a spate of recent studies investigating tumor immune evasion through the application of CRISPR-based gene-editing screens have highlighted TNF-mediated killing as an important component of the mammalian T cell antitumor repertoire. In the context of the current understanding of the role of TNF in antitumor immunity, we discuss these studies and touch on their therapeutic implications. Collectively, we provide an enticing prospect to augment immunotherapy responses through TNF cytotoxicity.
Collapse
|
Review |
4 |
37 |
17
|
Feltham R, Jamal K, Tenev T, Liccardi G, Jaco I, Domingues CM, Morris O, John SW, Annibaldi A, Widya M, Kearney CJ, Clancy D, Elliott PR, Glatter T, Qiao Q, Thompson AJ, Nesvizhskii A, Schmidt A, Komander D, Wu H, Martin S, Meier P. Mind Bomb Regulates Cell Death during TNF Signaling by Suppressing RIPK1's Cytotoxic Potential. Cell Rep 2018; 23:470-484. [PMID: 29642005 PMCID: PMC5912950 DOI: 10.1016/j.celrep.2018.03.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/16/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor (TNF) is an inflammatory cytokine that can signal cell survival or cell death. The mechanisms that switch between these distinct outcomes remain poorly defined. Here, we show that the E3 ubiquitin ligase Mind Bomb-2 (MIB2) regulates TNF-induced cell death by inactivating RIPK1 via inhibitory ubiquitylation. Although depletion of MIB2 has little effect on NF-κB activation, it sensitizes cells to RIPK1- and caspase-8-dependent cell death. We find that MIB2 represses the cytotoxic potential of RIPK1 by ubiquitylating lysine residues in the C-terminal portion of RIPK1. Our data suggest that ubiquitin conjugation of RIPK1 interferes with RIPK1 oligomerization and RIPK1-FADD association. Disruption of MIB2-mediated ubiquitylation, either by mutation of MIB2's E3 activity or RIPK1's ubiquitin-acceptor lysines, sensitizes cells to RIPK1-mediated cell death. Together, our findings demonstrate that Mind Bomb E3 ubiquitin ligases can function as additional checkpoint of cytokine-induced cell death, selectively protecting cells from the cytotoxic effects of TNF.
Collapse
|
research-article |
7 |
37 |
18
|
Brien GL, Healy E, Jerman E, Conway E, Fadda E, O'Donovan D, Krivtsov AV, Rice AM, Kearney CJ, Flaus A, McDade SS, Martin SJ, McLysaght A, O'Connell DJ, Armstrong SA, Bracken AP. A chromatin-independent role of Polycomb-like 1 to stabilize p53 and promote cellular quiescence. Genes Dev 2015; 29:2231-43. [PMID: 26494712 PMCID: PMC4647557 DOI: 10.1101/gad.267930.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/02/2015] [Indexed: 12/05/2022]
Abstract
Brien et al. show that while Polycomb-like proteins PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. PCL1 binds to and stabilizes p53 to block cellular proliferation, and depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. Polycomb-like proteins 1–3 (PCL1–3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
31 |
19
|
Kearney CJ, Sheridan C, Cullen SP, Tynan GA, Logue SE, Afonina IS, Vucic D, Lavelle EC, Martin SJ. Inhibitor of apoptosis proteins (IAPs) and their antagonists regulate spontaneous and tumor necrosis factor (TNF)-induced proinflammatory cytokine and chemokine production. J Biol Chem 2012; 288:4878-90. [PMID: 23275336 DOI: 10.1074/jbc.m112.422410] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) play a major role in determining whether cells undergo apoptosis in response to TNF as well as other stimuli. However, TNF is also highly proinflammatory through its ability to trigger the secretion of multiple inflammatory cytokines and chemokines, which is arguably the most important role of TNF in vivo. Indeed, deregulated production of TNF-induced cytokines is a major driver of inflammation in several autoimmune conditions such as rheumatoid arthritis. Here, we show that IAPs are required for the production of multiple TNF-induced proinflammatory mediators. Ablation or antagonism of IAPs potently suppressed TNF- or RIPK1-induced proinflammatory cytokine and chemokine production. Surprisingly, IAP antagonism also led to spontaneous production of chemokines, particularly RANTES, in vitro and in vivo. Thus, IAPs play a major role in influencing the production of multiple inflammatory mediators, arguing that these proteins are important regulators of inflammation in addition to apoptosis. Furthermore, small molecule IAP antagonists can modulate spontaneous as well as TNF-induced inflammatory responses, which may have implications for use of these agents in therapeutic settings.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
31 |
20
|
Freeman AJ, Vervoort SJ, Michie J, Ramsbottom KM, Silke J, Kearney CJ, Oliaro J. HOIP limits anti-tumor immunity by protecting against combined TNF and IFN-gamma-induced apoptosis. EMBO Rep 2021; 22:e53391. [PMID: 34467615 DOI: 10.15252/embr.202153391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The success of cancer immunotherapy is limited to a subset of patients, highlighting the need to identify the processes by which tumors evade immunity. Using CRISPR/Cas9 screening, we reveal that melanoma cells lacking HOIP, the catalytic subunit of LUBAC, are highly susceptible to both NK and CD8+ T-cell-mediated killing. We demonstrate that HOIP-deficient tumor cells exhibit increased sensitivity to the combined effect of the inflammatory cytokines, TNF and IFN-γ, released by NK and CD8+ T cells upon target recognition. Both genetic deletion and pharmacological inhibition of HOIP augment tumor cell sensitivity to combined TNF and IFN-γ. Together, we unveil a protective regulatory axis, involving HOIP, which limits a transcription-dependent form of cell death that engages both intrinsic and extrinsic apoptotic machinery upon exposure to TNF and IFN-γ. Our findings highlight HOIP inhibition as a potential strategy to harness and enhance the killing capacity of TNF and IFN-γ during immunotherapy.
Collapse
|
|
4 |
21 |
21
|
Kearney CJ, Vervoort SJ, Ramsbottom KM, Freeman AJ, Michie J, Peake J, Casanova JL, Picard C, Tangye SG, Ma CS, Johnstone RW, Randall KL, Oliaro J. DOCK8 Drives Src-Dependent NK Cell Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2118-2127. [PMID: 28794229 DOI: 10.4049/jimmunol.1700751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Mutations in the dedicator of cytokinesis 8 (DOCK8) gene cause an autosomal recessive form of hyper-IgE syndrome, characterized by chronic immunodeficiency with persistent microbial infection and increased incidence of malignancy. These manifestations suggest a defect in cytotoxic lymphocyte function and immune surveillance. However, how DOCK8 regulates NK cell-driven immune responses remains unclear. In this article, we demonstrate that DOCK8 regulates NK cell cytotoxicity and cytokine production in response to target cell engagement or receptor ligation. Genetic ablation of DOCK8 in human NK cells attenuated cytokine transcription and secretion through inhibition of Src family kinase activation, particularly Lck, downstream of target cell engagement or NKp30 ligation. PMA/Ionomycin treatment of DOCK8-deficient NK cells rescued cytokine production, indicating a defect proximal to receptor ligation. Importantly, NK cells from DOCK8-deficient patients had attenuated production of IFN-γ and TNF-α upon NKp30 stimulation. Taken together, we reveal a novel molecular mechanism by which DOCK8 regulates NK cell-driven immunity.
Collapse
|
|
8 |
14 |
22
|
Salmon JM, Todorovski I, Stanley KL, Bruedigam C, Kearney CJ, Martelotto LG, Rossello F, Semple T, Arnau GM, Zethoven M, Bots M, Bjelosevic S, Cluse LA, Fraser PJ, Litalien V, Vidacs E, McArthur K, Matthews AY, Gressier E, de Weerd NA, Lichte J, Kelly MJ, Hogg SJ, Hertzog PJ, Kats LM, Vervoort SJ, De Carvalho DD, Scheu S, Bedoui S, Kile BT, Lane SW, Perkins AC, Wei AH, Dominguez PM, Johnstone RW. Epigenetic Activation of Plasmacytoid DCs Drives IFNAR-Dependent Therapeutic Differentiation of AML. Cancer Discov 2022; 12:1560-1579. [PMID: 35311997 PMCID: PMC9355625 DOI: 10.1158/2159-8290.cd-20-1145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
|
research-article |
3 |
12 |
23
|
Kearney CJ, Brennan AJ, Darcy PK, Oliaro J. The Role of the immunological Synapse Formed by Cytotoxic Lymphocytes in Immunodeficiency and Anti-Tumor immunity. Crit Rev Immunol 2016; 35:325-47. [PMID: 26757394 DOI: 10.1615/critrevimmunol.2015014417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A synapse is a specialized structure that forms when the plasma membrane of two cells come into close contact to facilitate communication and signaling. Cells of the immune system form 'immunological' synapses that have an ordered structure and are essential for immune cell activation, function and homeostasis. Optimal synapse formation is not only critical for the generation of effective immunity against pathogens but is also essential for immune surveillance against cancer and for the prevention of immune disorders. Not surprisingly, defective synapse formation can therefore have severe consequences for human health, culminating in poor immune function leading to immunodeficiency disease or failure to detect and control infected or cancerous cells. Here, we discuss the immunological synapse formed by cytotoxic lymphocytes in both immunodeficiency diseases and anticancer immunity and touch on novel therapies that may alter or enhance synapse formation.
Collapse
|
Review |
9 |
10 |
24
|
Lelliott EJ, Ramsbottom KM, Dowling MR, Shembrey C, Noori T, Kearney CJ, Michie J, Parish IA, Jordan MA, Baxter AG, Young ND, Brennan AJ, Oliaro J. NKG7 Enhances CD8+ T Cell Synapse Efficiency to Limit Inflammation. Front Immunol 2022; 13:931630. [PMID: 35874669 PMCID: PMC9299089 DOI: 10.3389/fimmu.2022.931630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses.
Collapse
|
|
3 |
8 |
25
|
Wellinger LC, Hogg SJ, Newman DM, Friess T, Geiss D, Michie J, Ramsbottom KM, Bacac M, Fauti T, Marbach D, Jarassier L, Thienger P, Paehler A, Cluse LA, Kearney CJ, Vervoort SJ, Trapani JA, Oliaro J, Shortt J, Ruefli-Brasse A, Rohle D, Johnstone RW. BET Inhibition Enhances TNF-Mediated Anti-Tumor Immunity. Cancer Immunol Res 2021; 10:87-107. [PMID: 34782346 DOI: 10.1158/2326-6066.cir-21-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/06/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance anti-tumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (Bromo- and Extra-Terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the anti-tumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the pro-inflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of pro-survival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune oncology agents.
Collapse
|
|
4 |
7 |