1
|
van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 2010; 10:3157-75. [PMID: 19921854 DOI: 10.1021/bm901065f] [Citation(s) in RCA: 438] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This review describes the synthesis, properties, and, in particular, biomedical and pharmaceutical applications of an upcoming class of polymeric networks and assemblies based on cyclodextrins (CDs). CDs are cyclic oligosaccharides composed of alpha-1,4-coupled d-glucose units, which contain a hydrophobic internal cavity that can act as a host for various, generally lipophilic, guest molecules. Because of this unique physicochemical property, commonly referred to as inclusion complex formation, CDs have often been used to design polymeric materials, such as hydrogels and nanoparticles. Polymeric systems based on CDs exhibit unique characteristics in terms of mechanical properties, stimuli-responsiveness, and drug release characteristics. In this contribution, first, an outline is given of covalently cross-linked polymeric networks in which CD moieties were structurally incorporated to modulate the network strength as well as the complexation and release of low molecular weight drugs. Second, physically assembled polymeric systems are discussed, of which the formation is accomplished by inclusion complexes between polymer-conjugated CDs and various guest molecule-derivatized polymers. Due to their physical nature, these polymeric systems are sensitive to external stimuli, such as temperature changes, shear forces and the presence of competing CD-binding molecules, which can be exploited to use these systems as injectable, in situ gelling devices. In recent years, many interesting CD-containing polymeric systems have been described in literature. These systems have to be optimized and extensively evaluated in preclinical studies concerning their safety and efficacy, making future clinical applications of these materials in the biomedical and pharmaceutical field feasible.
Collapse
|
Review |
15 |
438 |
2
|
Luten J, van Nostrum CF, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release 2008; 126:97-110. [DOI: 10.1016/j.jconrel.2007.10.028] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
|
17 |
345 |
3
|
van Nostrum CF, Picken SJ, Schouten AJ, Nolte RJM. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines: Toward Molecular Wires and Molecular Ionoelectronics. J Am Chem Soc 2002. [DOI: 10.1021/ja00145a004] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
23 |
318 |
4
|
Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 2011; 152:168-76. [PMID: 21223989 DOI: 10.1016/j.jconrel.2010.12.016] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 11/28/2022]
Abstract
Functional aliphatic polyesters are biodegradable polymers with many possibilities to tune physico-chemical characteristics such as hydrophilicity and degradation rate as compared to traditional polyesters (e.g. PLLA, PLGA and PCL), making the materials suitable for drug delivery or as scaffolds for tissue engineering. Lately, a large number of polyesters have been synthesized by homopolymerization of functionalized monomers or co-polymerization with other monomers mainly via ring-opening polymerization (ROP) of cyclic esters. This review presents the recent trends in the synthesis of these materials and their application for protein delivery and tissue engineering.
Collapse
|
Review |
14 |
304 |
5
|
Verheyen E, Schillemans JP, van Wijk M, Demeniex MA, Hennink WE, van Nostrum CF. Challenges for the effective molecular imprinting of proteins. Biomaterials 2011; 32:3008-20. [PMID: 21288565 DOI: 10.1016/j.biomaterials.2011.01.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Molecular imprinting is a technique that is used to create artificial receptors by the formation of a polymer network around a template molecule. This technique has proven to be particularly effective for molecules with low molecular weight (<1500 Da), and during the past five years the number of research articles on the imprinting of larger (bio)templates is increasing considerably. However, expanding the methodology toward imprinted materials for selective recognition of proteins, DNA, viruses and bacteria appears to be extremely challenging. This paper presents a critical analysis of data presented by several authors and our own experiments, showing that the molecular imprinting of proteins still faces some fundamental challenges. The main topics of concern are proper monomer selection, washing method/template removal, quantification of the rebinding and reproducibility. Use of charged monomers can lead to strong electrostatic interactions between monomers and template but also to undesired high aspecific binding. Up till now, it has not been convincingly shown that electrostatic interactions lead to better imprinting results. The combination of a detergent (SDS) and AcOH, commonly used for template removal, can lead to experimental artifacts, and should ideally be avoided. In many cases template rebinding is unreliably quantified, results are not evaluated critically and lack statistical analysis. Therefore, it can be argued that presently, in numerous publications the scientific evidence of molecular imprinting of proteins is not convincing.
Collapse
|
Review |
14 |
273 |
6
|
van Dijk M, Rijkers DTS, Liskamp RMJ, van Nostrum CF, Hennink WE. Synthesis and Applications of Biomedical and Pharmaceutical Polymers via Click Chemistry Methodologies. Bioconjug Chem 2009; 20:2001-16. [DOI: 10.1021/bc900087a] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
16 |
249 |
7
|
Abstract
Polymeric micelles are emerging as attractive drug delivery systems. Hydrophobic drugs including photosensitizers for photodynamic therapy can be covalently bound or physically entrapped in the core of the micelles and thus be systemically delivered to, for example, tumors using passive or active targeting strategies. Polymers used for photosensitizer encapsulation include pluronics, poly(ethylene glycol) (PEG)-lipid conjugates, and pH-sensitive poly(N-isopropylacrylamide) based micelles or polyion complex (PIC) micelles. This paper reviews the results obtained so far, including drug loading, biodistribution studies, and therapeutic efficiency. The pH-sensitive micelles appear to be promising candidates for photosensitizer delivery.
Collapse
|
Review |
21 |
226 |
8
|
Soga O, van Nostrum CF, Fens M, Rijcken CJF, Schiffelers RM, Storm G, Hennink WE. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release 2005; 103:341-53. [PMID: 15763618 DOI: 10.1016/j.jconrel.2004.12.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/29/2004] [Accepted: 12/02/2004] [Indexed: 11/18/2022]
Abstract
The preparation, release and in vitro cytotoxicity of a novel polymeric micellar formulation of paclitaxel (PTX) were investigated. The micelles consisted of an AB block copolymer of poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol) (pHPMAmDL-b-PEG). Taking advantage of the thermosensitivity of pHPMAmDL-b-PEG, the loading was done by simply mixing of a small volume of a concentrated PTX solution in ethanol and an aqueous polymer solution and subsequent heating of the resulting solution above the critical micelle temperature of the polymer. PTX could be almost quantitatively loaded in the micelles up to 2 mg/mL. By dynamic light scattering and cryo-transmission electron microscopy, it was shown that PTX-loaded micelles have a mean size around 60 nm with narrow size distribution. At pH 8.8 and 37 degrees C, PTX-loaded micelles destabilized within 10 h due to the hydrolysis of the lactic acid side group of the pHPMAmDL. Because the hydrolysis of the lactic acid side groups is first order in hydroxyl ion concentration, the micelles were stable for about 200 h at physiological conditions. The presence of serum proteins did not have an adverse effect on the stability of the micelles during at least 15 h. Interestingly, the dissolution kinetics of pHPMAmDL-b-PEG micelles was retarded by incorporation of PTX, indicating a strong interaction between PTX and the pHPMAmDL block. The PTX-loaded micelles showed a release of the incorporated 70% of PTX during 20 h at 37 degrees C and at pH 7.4. PTX-loaded pHPMAmDL-b-PEG micelles showed comparable in vitro cytotoxicity against B16F10 cells compared to the Taxol standard formulation containing Cremophor EL, while pHPMAmDL-b-PEG micelles without PTX were far less toxic than the Cremophor EL vehicle. Confocal laser-scanning microscopy (CLSM) and fluorescence activated cell sorting (FACS) analysis of fluorescently labelled micelles showed that pHPMAmDL-b-PEG micelles were internalized by the B16F10 cells. The present results suggest that pHPMAmDL-b-PEG block copolymer micelles are a promising delivery system for the parenteral administration of PTX.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
210 |
9
|
Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NME, Crommelin DJA, Hennink WE. Endosomal Escape of Polymeric Gene Delivery Complexes Is Not Always Enhanced by Polymers Buffering at Low pH. Biomacromolecules 2004; 5:32-9. [PMID: 14715005 DOI: 10.1021/bm034041+] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the crucial steps in gene delivery with cationic polymers is the escape of the polymer/DNA complexes ("polyplexes") from the endosome. A possible way to enhance endosomal escape is the use of cationic polymers with a pKa around or slightly below physiological pH ("proton sponge"). We synthesized a new polymer with two tertiary amine groups in each monomeric unit [poly(2-methyl-acrylic acid 2-[(2-(dimethylamino)-ethyl)-methyl-amino]-ethyl ester), abbreviated as pDAMA]. One pKa of the monomer is approximately 9, providing cationic charge at physiological pH, and thus DNA binding properties, the other is approximately 5 and provides endosomal buffering capacity. Using dynamic light scattering and zeta potential measurements, it was shown that pDAMA is able to condense DNA in small particles with a surface charge depending on the polymer/DNA ratio. pDAMA has a substantial lower toxicity than other polymeric transfectants, but in vitro, the transfection activity of the pDAMA-based polyplexes was very low. The addition of a membrane disruptive peptide to pDAMA-based polyplexes considerably increased the transfection efficiency without adversely affecting the cytotoxicity of the system. This indicates that the pDAMA-based polyplexes alone are not able to mediate escape from the endosomes via the proton sponge mechanism. Our observations imply that the proton sponge hypothesis is not generally applicable for polymers with buffering capacity at low pH and gives rise to a reconsideration of this hypothesis.
Collapse
|
|
21 |
203 |
10
|
Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials 2007; 28:5581-93. [PMID: 17915312 DOI: 10.1016/j.biomaterials.2007.08.047] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 08/27/2007] [Indexed: 11/23/2022]
Abstract
In this study, core-crosslinked (CCL) biodegradable thermosensitive micelles based on mPEG(5000) and N-(2-hydroxyethyl)methacrylamide)-oligolactates (mPEG-b-p(HEMAm-Lac(n))) were synthesised and their properties investigated. Rapidly heating aqueous solutions of partially methacrylated block copolymers to above their critical micelle temperature (CMT), followed by illumination in presence of a photoinitiator yielded almost monodisperse CCL micelles with a size of 68+/-7 nm. Either below the CMT or after addition of sodium dodecyl sulphate, the non-crosslinked (NCL) micelles rapidly disintegrated whereas the CCL micelles kept their integrity. NCL micelles fell apart after 5h in pH 7.4 at 37 degrees C as a result of the hydrolysis of lactate side chains, whereas the CCL micelles had a much higher stability and only degraded after cleavage of the ester bonds in the crosslinks. The circulation kinetics and biodistribution of CCL micelles were considerably better than those of NCL micelles, i.e., 58% of the injected dose (ID) of CCL versus 6% of NCL micelles was recovered in the circulation 4h post-injection. Furthermore, the liver uptake of the CCL micelles (10% ID) was much lower than that of the NCL micelles (24% ID) 4h after administration, while tumour accumulation was almost 6 times higher for the CCL micelles. Likely, NCL micelles dissociated after i.v. administration and/or were opsonised and captured by macrophages while the dense PEG shell of CCL micelles made them less prone towards opsonisation. The excellent physical stability of these degradable CCL micelles and very favourable biodistribution profile renders them very suitable for drug targeting purposes.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
200 |
11
|
Shi Y, van der Meel R, Theek B, Blenke EO, Pieters EH, Fens MH, Ehling J, Schiffelers RM, Storm G, van Nostrum CF, Lammers T, Hennink WE. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles. ACS NANO 2015; 9:3740-52. [PMID: 25831471 PMCID: PMC4523313 DOI: 10.1021/acsnano.5b00929] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achiv prolonged circulation kinetics. As a result, PTX deposition in tumors is increased, while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed PTX-loaded micelles which are stable without chemical cross-linking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses, while they induced complete tumor regression in two different xenograft models (i.e., A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index.
Collapse
|
research-article |
10 |
171 |
12
|
Shi Y, van Steenbergen MJ, Teunissen EA, Novo L, Gradmann S, Baldus M, van Nostrum CF, Hennink WE. Π–Π Stacking Increases the Stability and Loading Capacity of Thermosensitive Polymeric Micelles for Chemotherapeutic Drugs. Biomacromolecules 2013; 14:1826-37. [DOI: 10.1021/bm400234c] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
12 |
153 |
13
|
Schouten PG, Warman JM, de Haas MP, van Nostrum CF, Gelinck GH, Nolte RJM, Copyn MJ, Zwikker JW, Engel MK. The Effect of Structural Modifications on Charge Migration in Mesomorphic Phthalocyanines. J Am Chem Soc 2002. [DOI: 10.1021/ja00094a048] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
23 |
146 |
14
|
Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE. Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials 2005; 26:2129-35. [PMID: 15576188 DOI: 10.1016/j.biomaterials.2004.05.035] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
This paper presents a novel self-gelling hydrogel potentially suitable for controlled drug delivery and tissue engineering. The macroscopic gels are obtained by mixing dispersions of oppositely charged crosslinked dextran microspheres. These microspheres in turn were prepared by crosslinking of dextran derivatized with hydroxyethyl methacrylate emulsified in an aqueous poly(ethylene glycol) solution. Negatively or positively charged microspheres were obtained by addition of methacrylic acid (MAA) or dimethylaminoethyl methacrylate (DMAEMA) to the polymerization mixture. Rheological analysis showed that instantaneous gelation occurred when equal volumes of oppositely charged microspheres, dispersed in buffer solutions of pH 7, were mixed. The shear modulus of the networks could be tailored from 30 to 6500 Pa by varying the water content of the system. Moreover, controlled strain and creep experiments showed that the formed networks were mainly elastic. Importantly for application of these systems, e.g. as controlled matrix of pharmaceutically active proteins, it was demonstrated that the hydrogel system has a reversible yield point, meaning that above a certain applied stress, the system starts to flow, whereas when the stress is removed, gel formation occurred. Further it was shown that the network structure could be broken by either a low pH or a high ionic strength of the medium. This demonstrates that the networks, formed at pH 7 and at low ionic strength, are held together by ionic interactions between the oppositely charged dextran microspheres. This system holds promise as injectable gels that are suitable for drug delivery and tissue engineering applications.
Collapse
|
|
20 |
130 |
15
|
Talelli M, Rijcken CJF, Lammers T, Seevinck PR, Storm G, van Nostrum CF, Hennink WE. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2060-2067. [PMID: 19166276 DOI: 10.1021/la8036499] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been receiving great attention lately due to their various biomedical applications, such as in MR imaging and image guided drug delivery. However, their systemic administration still remains a challenge. In this study, the ability of biodegradable thermosensitive polymeric micelles to stably encapsulate hydrophobic oleic-acid-coated SPIONs (diameter 5-10 nm) was investigated, to result in a system fulfilling the requirements for systemic administration. The micelles were composed of amphiphilic, thermosensitive, and biodegradable block copolymers of poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide dilactate] (mPEG-b-p(HPMAm-Lac2)). The encapsulation was performed by addition of one volume of SPIONs in THF to nine volumes of a cold aqueous mPEG-b-p(HPMAm-Lac2) solution (0 degrees C; below the cloud point of the polymer), followed by rapid heating of the resulting mixture to 50 degrees C, to induce micelle formation ("rapid heating" procedure). Dynamic light scattering (DLS) measurements revealed that approximately 200 nm particles (PDI=0.2) were formed, while transmission electron microscopy (TEM) analysis demonstrated that clusters of SPIONs were present in the core of the micelles. A maximum loading of 40% was obtained, while magnetic resonance imaging (MRI) scanning of the samples demonstrated that the SPION-loaded micelles had high r2 and r2* relaxivities. Furthermore, the r2* values were found to be at least 2-fold higher than the r2 values, confirming the clustering of the SPIONs in the micellar core. The particles showed excellent stability under physiological conditions for 7 days, even in the presence of fetal bovine serum. This, together with their ease of preparation and their size of approximately 200 nm, makes these systems highly suitable for image-guided drug delivery.
Collapse
|
|
16 |
129 |
16
|
van de Manakker F, van der Pot M, Vermonden T, van Nostrum CF, Hennink WE. Self-Assembling Hydrogels Based on β-Cyclodextrin/Cholesterol Inclusion Complexes. Macromolecules 2008. [DOI: 10.1021/ma702607r] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
17 |
121 |
17
|
Soga O, van Nostrum CF, Ramzi A, Visser T, Soulimani F, Frederik PM, Bomans PHH, Hennink WE. Physicochemical characterization of degradable thermosensitive polymeric micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:9388-9395. [PMID: 15461534 DOI: 10.1021/la048354h] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Amphiphilic AB block copolymers consisting of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol), pHPMAmDL-b-PEG, were synthesized via a macroinitiator route. Dynamic light scattering measurements showed that these block copolymers form polymeric micelles in water with a size of around 50 nm by heating of an aqueous polymer solution from below to above the critical micelle temperature (cmt). The critical micelle concentration as well as the cmt decreased with increasing pHPMAmDL block lengths, which can be attributed to the greater hydrophobicity of the thermosensitive block with increasing molecular weight. Cryogenic transmission electron microscopy analysis revealed that the micelles have a spherical shape with a narrow size distribution. 1H NMR measurements in D2O showed that the intensity of the peaks of the protons from the pHPMAmDL block significantly decreased above the cmt, indicating that the thermosensitive blocks indeed form the solidlike core of the micelles. Static light scattering measurements demonstrated that pHPMAmDL-b-PEG micelles with relatively large pHPMAmDL blocks possess a highly packed core that is stabilized by a dense layer of swollen PEG chains. FT-IR analysis indicated that dehydration of amide bonds in the pHPMAmDL block occurs when the polymer dissolved in water is heated from below to above its cmt. The micelles were stable when an aqueous solution of micelles was incubated at 37 degrees C and at pH 5.0, where the hydrolysis rate of lactate side groups is minimized. On the other hand, at pH 9.0, where hydrolysis of the lactic acid side groups occurs, the micelles started to swell after 1.5 h of incubation and complete dissolution of micelles was observed after 4 h as a result of hydrophilization of the thermosensitive block. Fluorescence spectroscopy measurements with pyrene loaded in the hydrophobic core of the micelles showed that when these micelles were incubated at pH 8.6 and at 37 degrees C the microenvironment of pyrene became increasingly hydrated in time during this swelling phase. The results demonstrate the potential applicability of pHPMAmDL-b-PEG block copolymer micelles for the controlled delivery of hydrophobic drugs.
Collapse
|
|
21 |
111 |
18
|
van Nostrum CF, Veldhuis TF, Bos GW, Hennink WE. Hydrolytic degradation of oligo(lactic acid): a kinetic and mechanistic study. POLYMER 2004. [DOI: 10.1016/j.polymer.2004.08.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
21 |
105 |
19
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [PMID: 28017888 DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
|
8 |
104 |
20
|
Hofman JW, van Zeeland F, Turker S, Talsma H, Lambrechts SAG, Sakharov DV, Hennink WE, van Nostrum CF. Peripheral and axial substitution of phthalocyanines with solketal groups: synthesis and in vitro evaluation for photodynamic therapy. J Med Chem 2007; 50:1485-94. [PMID: 17348640 DOI: 10.1021/jm061136w] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phthalocyanines (Pcs) are a class of photosensitizers (PSs) with a strong tendency to aggregate in aqueous environment, which has a negative influence on their photosensitizing ability in photodynamic therapy. Pcs with either peripheral or axial solketal substituents, that is, ZnPc(sol)8 and Si(sol)2Pc, respectively, were synthesized and their tendency to aggregate as well as their photodynamic properties in 14C and B16F10 cell lines were evaluated. The results were compared to more hydrophilic silicon Pcs, that is, Si(PEG750)2Pc and Pc4. The order of cellular uptake was Pc4 > ZnPc(sol)8 > Si(PEG750)2Pc > Si(sol2)Pc. In contrast, Si(sol2)Pc showed the highest photocytotoxicity, while ZnPc(sol)8 did not show any photocytotoxicity up to a concentration of 10 microM in both cell types. UV/vis spectroscopy showed that Si(sol)2Pc is less prone to aggregation than ZnPc(sol)8, which can explain the lack of photoactivity of the latter. Si(sol)2Pc was predominantly located in lipid droplets, whereas Si(PEG750)2Pc was homogeneously distributed in the cytosol, which is probably the main cause of their difference in photoactivity. The very high photodynamic efficacy of Si(sol)2Pc makes this PS an interesting candidate for future studies.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
103 |
21
|
Funhoff AM, van Nostrum CF, Lok MC, Fretz MM, Crommelin DJA, Hennink WE. Poly(3-guanidinopropyl methacrylate): a novel cationic polymer for gene delivery. Bioconjug Chem 2005; 15:1212-20. [PMID: 15546186 DOI: 10.1021/bc049864q] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cationic polymethacrylate with a guanidinium side group was designed in order to create a polymer with cell membrane-penetrating properties such as Tat or other arginine-rich peptides. The polymer, poly(3-guanidinopropyl methacrylate), abbreviated as pGuaMA, was synthesized by free radical polymerization. The DNA-condensing properties of pGuaMA (Mw 180 kDa) were investigated via dynamic light scattering and zeta potential measurements, and small, positively charged particles (110 nm, +37 mV) were found. It was shown that polyplexes based on pGuaMA were able to transfect COS-7 cells efficiently in the absence of serum, while under the same conditions poly(arginine) (pArg) polyplexes did not show detectable transfection levels. Addition of a membrane-disrupting peptide, INF 7, derived from the influenza virus, to preformed pGuaMA polyplexes did result in approximately 2 times increased transfection levels. DLS, zeta potential measurements, gel electrophoresis, and ethidium bromide displacement measurements indicated that serum induced aggregation of the polyplexes at high polymer/plasmid ratios, while at low polymer/plasmid ratios the polarity of the polyplexes reversed likely due to adsorption of negatively charged proteins on their surface. Likely, the unfavorable interactions of pGuaMA polyplexes with serum proteins is the reason for the absent transfection activity of these polyplexes in the presence of serum. Confocal laser scanning microscopy indicated cellular internalization via endocytosis of both polyplexes and free polymer. Thus, pGuaMA polyplexes enter cells, as reported for other polyplexes, by endocytosis and not, as hypothesized, via direct membrane passage.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
102 |
22
|
van Dijk M, van Nostrum CF, Hennink WE, Rijkers DTS, Liskamp RMJ. Synthesis and Characterization of Enzymatically Biodegradable PEG and Peptide-Based Hydrogels Prepared by Click Chemistry. Biomacromolecules 2010; 11:1608-14. [DOI: 10.1021/bm1002637] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
15 |
98 |
23
|
Martínez-Jothar L, Doulkeridou S, Schiffelers RM, Sastre Torano J, Oliveira S, van Nostrum CF, Hennink WE. Insights into maleimide-thiol conjugation chemistry: Conditions for efficient surface functionalization of nanoparticles for receptor targeting. J Control Release 2018. [PMID: 29526739 DOI: 10.1016/j.jconrel.2018.03.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maleimide-thiol chemistry is widely used for the design and preparation of ligand-decorated drug delivery systems such as poly(lactide-co-glycolide) (PLGA) based nanoparticles (NPs). While many publications on nanocarriers functionalized exploiting this strategy are available in the literature, the conditions at which this reaction takes place vary among publications. This paper presents a comprehensive study on the conjugation of the peptide cRGDfK and the nanobody 11A4 (both containing a free thiol group) to maleimide functionalized PLGA NPs by means of the maleimide-thiol click reaction. The influence of different parameters, such as the nanoparticles preparation method and storage conditions as well as the molar ratio of maleimide to ligand used for conjugation, on the reaction efficiency has been evaluated. The NPs were prepared by a single or double emulsion method using different types and concentrations of surfactants and stored at 4 or 20 °C before reaction with the targeting moieties. Several maleimide to ligand molar ratios and different reaction times were studied and the conjugation efficiency was determined by quantification of the not-bound ligand by liquid chromatography. The kind of emulsion used to prepare the NPs as well as the type and concentration of surfactant used had no effect on the conjugation efficiency. Reaction between the maleimide groups present in the NPs and cRGDfK was optimal at a maleimide to thiol molar ratio of 2:1, reaching a conjugation efficiency of 84 ± 4% after 30 min at room temperature in 10 mM HEPES pH 7.0. For 11A4 nanobody the optimal reaction efficiency, 58 ± 12%, was achieved after 2 h of incubation at room temperature in PBS pH 7.4 using a 5:1 maleimide to protein molar ratio. Storage of the NPs at 4 °C for 7 days prior to their exposure to the ligands resulted in approximately 10% decrease in the reactivity of maleimide in contrast to storage at 20 °C which led to almost 40% of the maleimide being unreactive after the same storage time. Our findings demonstrate that optimization of this reaction, particularly in terms of reactant ratios, can represent a significant increase in the conjugation efficiency and prevent considerable waste of resources.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
96 |
24
|
van Nostrum CF, Bosman AW, Gelinck GH, Schouten PG, Warman JM, Kentgens APM, Devillers MAC, Meijerink A, Picken SJ, Sohling U, Schouten AJ, Nolte RJM. Supramolecular Structure, Physical Properties, and Langmuir-Blodgett Film Formation of an Optically Active Liquid-Crystalline Phthalocyanine. Chemistry 1995. [DOI: 10.1002/chem.19950010306] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
30 |
87 |
25
|
Crielaard BJ, Rijcken CJF, Quan L, van der Wal S, Altintas I, van der Pot M, Kruijtzer JAW, Liskamp RMJ, Schiffelers RM, van Nostrum CF, Hennink WE, Wang D, Lammers T, Storm G. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew Chem Int Ed Engl 2012; 51:7254-8. [PMID: 22692876 DOI: 10.1002/anie.201202713] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Indexed: 01/23/2023]
Abstract
Polymerizable and hydrolytically cleavable dexamethasone (DEX, red dot in picture) derivatives were covalently entrapped in core-cross-linked polymeric micelles that were prepared from a thermosensitive block copolymer (yellow and gray building block). By varying the oxidation degree of the thioether in the drug linker, the release rate of DEX could be controlled. The DEX-loaded micelles were used for efficient treatment of inflammatory arthritis in two animal models.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
87 |