1
|
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014; 10:593-619. [DOI: 10.1586/1744666x.2014.894886] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
11 |
317 |
2
|
Vieira AT, Macia L, Galvão I, Martins FS, Canesso MCC, Amaral FA, Garcia CC, Maslowski KM, De Leon E, Shim D, Nicoli JR, Harper JL, Teixeira MM, Mackay CR. A Role for Gut Microbiota and the Metabolite-Sensing Receptor GPR43 in a Murine Model of Gout. Arthritis Rheumatol 2015; 67:1646-56. [PMID: 25914377 DOI: 10.1002/art.39107] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Host-microbial interactions are central in health and disease. Monosodium urate monohydrate (MSU) crystals cause gout by activating the NLRP3 inflammasome, leading to interleukin-1β (IL-1β) production and neutrophil recruitment. This study was undertaken to investigate the relevance of gut microbiota, acetate, and the metabolite-sensing receptor GPR43 in regulating inflammation in a murine model of gout. METHODS Gout was induced by the injection of MSU crystals into the knee joints of mice. Macrophages from the various animals were stimulated to determine inflammasome activation and production of reactive oxygen species (ROS). RESULTS Injection of MSU crystals caused joint inflammation, as seen by neutrophil influx, hypernociception, and production of IL-1β and CXCL1. These parameters were greatly decreased in germ-free mice, mice treated with antibiotics, and GPR-43-deficient mice. Recolonization or administration of acetate to germ-free mice restored inflammation in response to injection of MSU crystals. In vitro, macrophages produced ROS and assembled the inflammasome when stimulated with MSU. Macrophages from germ-free animals produced little ROS, and there was little inflammasome assembly. Similar results were observed in macrophages from GPR-43-deficient mice. Treatment of germ-free mice with acetate restored in vitro responsiveness of macrophages to MSU crystals. CONCLUSION In the absence of microbiota, there is decreased production of short-chain fatty acids that are necessary for adequate inflammasome assembly and IL-1β production in a manner that is at least partially dependent on GPR43. These results clearly show that the commensal microbiota shapes the host's ability to respond to an inflammasome-dependent acute inflammatory stimulus outside the gut.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
180 |
3
|
Garcia CC, Blair HJ, Seager M, Coulthard A, Tennant S, Buddles M, Curtis A, Goodship JA. Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J Med Genet 2004; 41:183-6. [PMID: 14985377 PMCID: PMC1735688 DOI: 10.1136/jmg.2003.013680] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A four generation family is described in which some men of normal intelligence have epilepsy and others have various combinations of epilepsy, learning difficulties, macrocephaly, and aggressive behaviour. As the phenotype in this family is distinct from other X linked recessive disorders linkage studies were carried out. Linkage analysis was done using X chromosome microsatellite polymorphisms to define the interval containing the causative gene. Genes from within the region were considered possible candidates and one of these, SYN1, was screened for mutations by direct DNA sequencing of amplified products. Microsatellite analysis showed that the region between MAOB (Xp11.3) and DXS1275 (Xq12) segregated with the disease. Two point linkage analysis demonstrated linkage with DXS1039, lod score 4.06 at theta = 0, and DXS991, 3.63 at theta = 0. Candidate gene analysis led to identification of a nonsense mutation in the gene encoding synapsin I that was present in all affected family members and female carriers and was not present in 287 control chromosomes. Synapsin I is a synaptic vesicle associated protein involved in the regulation of synaptogenesis and neurotransmitter release. The SYN1 nonsense mutation that was identified is the likely cause of the phenotype in this family.
Collapse
|
Journal Article |
21 |
167 |
4
|
Russo RC, Guabiraba R, Garcia CC, Barcelos LS, Roffê E, Souza ALS, Amaral FA, Cisalpino D, Cassali GD, Doni A, Bertini R, Teixeira MM. Role of the chemokine receptor CXCR2 in bleomycin-induced pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol 2008; 40:410-21. [PMID: 18836137 DOI: 10.1165/rcmb.2007-0364oc] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary fibrosis is characterized by chronic inflammation and excessive collagen deposition. Neutrophils are thought to be involved in the pathogenesis of lung fibrosis. We hypothesized that CXCR2-mediated neutrophil recruitment is essential for the cascade of events leading to bleomycin-induced pulmonary fibrosis. CXCL1/KC was detected as early as 6 hours after bleomycin instillation and returned to basal levels after Day 8. Neutrophils were detected in bronchoalveolar lavage and interstitium from 12 hours and peaked at Day 8 after instillation. Treatment with the CXCR2 receptor antagonist, DF2162, reduced airway neutrophil transmigration but led to an increase of neutrophils in lung parenchyma. There was a significant reduction in IL-13, IL-10, CCL5/RANTES, and active transforming growth factor (TGF)-beta(1) levels, but not on IFN-gamma and total TGF-beta(1,) and enhanced granulocyte macrophage-colony-stimulating factor production in DF2162-treated animals. Notably, treatment with the CXCR2 antagonist led to an improvement of the lung pathology and reduced collagen deposition. Using a therapeutic schedule, DF2162 administered from Days 8 to 16 after bleomycin reduced pulmonary fibrosis and levels of active TGF-beta(1) and IL-13. DF2162 treatment reduced bleomycin-induced expression of von Willebrand Factor, a marker of angiogenesis, in the lung. In vitro, DF2162 reduced the angiogenic activity of IL-8 on human umbilical vein endothelial cells. In conclusion, we show that CXCR2 plays an important role in mediating fibrosis after bleomycin instillation. The compound blocks angiogenesis and the production of pro-angiogenic cytokines, and decreases IL-8-induced endothelial cell activation. An effect on neutrophils does not appear to account for the major effects of the blockade of CXCR2 in the system.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
109 |
5
|
Vieira AT, Rocha VM, Tavares L, Garcia CC, Teixeira MM, Oliveira SC, Cassali GD, Gamba C, Martins FS, Nicoli JR. Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium longum 5(1A). Microbes Infect 2015; 18:180-9. [PMID: 26548605 DOI: 10.1016/j.micinf.2015.10.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
Abstract
Klebsiella pneumoniae (Kp) a common cause of pneumonia leads to intense lung injury and mortality that are correlated with infective exacerbations. Probiotics are a class of microorganisms that have immunomodulatory effects to benefit health. We investigated whether the probiotic Bifidobacterium longum 5(1A) induces protection in mice against lung infection induced by Kp and the potential involved mechanisms. Kp infection induced secretion of pro-inflammatory cytokines, neutrophil recruitment, significant bacterial load in the lung and 50% lethality. However, treatment with live B. longum 5(1A) induced faster resolution of inflammation associated with an increased production of IL-10, decreased lung damage with significantly reduction of bacterial burden that contributed to rescue 100% of mice from death. We found that these effects could be attributed, at least in part, to activation of the Toll-like receptor (TLR) adapter protein Mal, since B. longum 5(1A) treatment in Mal-deficient infected mice did not show the protection observed in wild type infected mice. Thus, we propose that live B. longum 5(1A) activates TLR-signaling pathway that results in ROS production and protects the host against pneumonia-induced death by finely tuning the inflammatory response and contributing to faster return to lung homeostasis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
100 |
6
|
Tavares LP, Teixeira MM, Garcia CC. The inflammatory response triggered by Influenza virus: a two edged sword. Inflamm Res 2017; 66:283-302. [PMID: 27744631 DOI: 10.1007/s00011-016-0996-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a 'double edge sword' necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.
Collapse
|
Review |
8 |
96 |
7
|
Sousa LP, Lopes F, Silva DM, Tavares LP, Vieira AT, Rezende BM, Carmo AF, Russo RC, Garcia CC, Bonjardim CA, Alessandri AL, Rossi AG, Pinho V, Teixeira MM. PDE4 inhibition drives resolution of neutrophilic inflammation by inducing apoptosis in a PKA-PI3K/Akt-dependent and NF-κB-independent manner. J Leukoc Biol 2010; 87:895-904. [DOI: 10.1189/jlb.0809540] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
|
15 |
95 |
8
|
Vieira AT, Galvão I, Macia LM, Sernaglia ÉM, Vinolo MAR, Garcia CC, Tavares LP, Amaral FA, Sousa LP, Martins FS, Mackay CR, Teixeira MM. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J Leukoc Biol 2016; 101:275-284. [PMID: 27496979 DOI: 10.1189/jlb.3a1015-453rrr] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/24/2022] Open
Abstract
Gout is a disease characterized by the deposition of monosodium urate (MSU) crystals in the joints. Continuous gout episodes may lead to unresolved inflammatory responses and tissue damage. We investigated the effects of a high-fiber diet and acetate, a short-chain fatty acid (SCFA) resulting from the metabolism of fiber by gut microbiota, on the inflammatory response in an experimental model of gout in mice. Injection of MSU crystals into the knee joint of mice induced neutrophil influx and inflammatory hypernociception. The onset of inflammatory response induced by MSU crystals was not altered in animals given a high-fiber diet, but the high-fiber diet induced faster resolution of the inflammatory response. Similar results were obtained in animals given the SCFA acetate. Acetate was effective, even when given after injection of MSU crystals at the peak of the inflammatory response and induced caspase-dependent apoptosis of neutrophils that accounted for the resolution of inflammation. Resolution of neutrophilic inflammation was associated with decreased NF-κB activity and enhanced production of anti-inflammatory mediators, including IL-10, TGF-β, and annexin A1. Acetate treatment or intake of a high-fiber diet enhanced efferocytosis, an effect also observed in vitro with neutrophils treated with acetate. In conclusion, a high-fiber diet or one of its metabolic products, acetate, controls the inflammatory response to MSU crystals by favoring the resolution of the inflammatory response. Our studies suggest that what we eat plays a determinant role in our capacity to fine tune the inflammatory response. INTRODUCTION
Collapse
|
|
9 |
88 |
9
|
Vago JP, Tavares LP, Garcia CC, Lima KM, Perucci LO, Vieira ÉL, Nogueira CRC, Soriani FM, Martins JO, Silva PMR, Gomes KB, Pinho V, Bruscoli S, Riccardi C, Beaulieu E, Morand EF, Teixeira MM, Sousa LP. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. THE JOURNAL OF IMMUNOLOGY 2015; 194:4940-50. [PMID: 25876761 DOI: 10.4049/jimmunol.1401722] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/06/2015] [Indexed: 12/19/2022]
Abstract
Glucocorticoid (GC)-induced leucine zipper (GILZ) has been shown to mediate or mimic several actions of GC. This study assessed the role of GILZ in self-resolving and GC-induced resolution of neutrophilic inflammation induced by LPS in mice. GILZ expression was increased during the resolution phase of LPS-induced pleurisy, especially in macrophages with resolving phenotypes. Pretreating LPS-injected mice with trans-activator of transcription peptide (TAT)-GILZ, a cell-permeable GILZ fusion protein, shortened resolution intervals and improved resolution indices. Therapeutic administration of TAT-GILZ induced inflammation resolution, decreased cytokine levels, and promoted caspase-dependent neutrophil apoptosis. TAT-GILZ also modulated the activation of the survival-controlling proteins ERK1/2, NF-κB and Mcl-1. GILZ deficiency was associated with an early increase of annexin A1 (AnxA1) and did not modify the course of neutrophil influx induced by LPS. Dexamethasone treatment resolved inflammation and induced GILZ expression that was dependent on AnxA1. Dexamethasone-induced resolution was not altered in GILZ(-/-) mice due to compensatory expression and action of AnxA1. Our results show that therapeutic administration of GILZ efficiently induces a proapoptotic program that promotes resolution of neutrophilic inflammation induced by LPS. Alternatively, a lack of endogenous GILZ during the resolution of inflammation is compensated by AnxA1 overexpression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
79 |
10
|
Galvão I, Tavares LP, Corrêa RO, Fachi JL, Rocha VM, Rungue M, Garcia CC, Cassali G, Ferreira CM, Martins FS, Oliveira SC, Mackay CR, Teixeira MM, Vinolo MAR, Vieira AT. The Metabolic Sensor GPR43 Receptor Plays a Role in the Control of Klebsiella pneumoniae Infection in the Lung. Front Immunol 2018. [PMID: 29515566 PMCID: PMC5826235 DOI: 10.3389/fimmu.2018.00142] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pneumonia is one of the leading causes of death and mortality worldwide. The inflammatory responses that follow respiratory infections are protective leading to pathogen clearance but can also be deleterious if unregulated. The microbiota is known to be an important protective barrier against infections, mediating both direct inhibitory effects against the potential pathogen and also regulating the immune responses contributing to a proper clearance of the pathogen and return to homeostasis. GPR43 is one receptor for acetate, a microbiota metabolite shown to induce and to regulate important immune functions. Here, we addressed the role of GPR43 signaling during pulmonary bacterial infections. We have shown for the first time that the absence of GPR43 leads to increased susceptibility to Klebsiella pneumoniae infection, which was associated to both uncontrolled proliferation of bacteria and to increased inflammatory response. Mechanistically, we showed that GPR43 expression especially in neutrophils and alveolar macrophages is important for bacterial phagocytosis and killing. In addition, treatment with the GPR43 ligand, acetate, is protective during bacterial lung infection. This was associated to reduction in the number of bacteria in the airways and to the control of the inflammatory responses. Altogether, GPR43 plays an important role in the “gut–lung axis” as a sensor of the host gut microbiota activity through acetate binding promoting a proper immune response in the lungs.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
75 |
11
|
Garcia CC, Weston-Davies W, Russo RC, Tavares LP, Rachid MA, Alves-Filho JC, Machado AV, Ryffel B, Nunn MA, Teixeira MM. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PLoS One 2013; 8:e64443. [PMID: 23696894 PMCID: PMC3655967 DOI: 10.1371/journal.pone.0064443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/15/2013] [Indexed: 01/30/2023] Open
Abstract
Influenza virus A (IAV) causes annual epidemics and intermittent pandemics that affect millions of people worldwide. Potent inflammatory responses are commonly associated with severe cases of IAV infection. The complement system, an important mechanism of innate and humoral immune responses to infections, is activated during primary IAV infection and mediates, in association with natural IgM, viral neutralization by virion aggregation and coating of viral hemmagglutinin. Increased levels of the anaphylatoxin C5a were found in patients fatally infected with the most recent H1N1 pandemic virus. In this study, our aim was to evaluate whether targeting C5 activation alters inflammatory lung injury and viral load in a murine model of IAV infection. To address this question C57Bl/6j mice were infected intranasally with 10(4) PFU of the mouse adapted Influenza A virus A/WSN/33 (H1N1) or inoculated with PBS (Mock). We demonstrated that C5a is increased in bronchoalveolar lavage fluid (BALF) upon experimental IAV infection. To evaluate the role of C5, we used OmCI, a potent arthropod-derived inhibitor of C5 activation that binds to C5 and prevents release of C5a by complement. OmCI was given daily by intraperitoneal injection from the day of IAV infection until day 5. Treatment with OmCI only partially reduced C5a levels in BALF. However, there was significant inhibition of neutrophil and macrophage infiltration in the airways, Neutrophil Extracellular Traps (NETs) formation, death of leukocytes, lung epithelial injury and overall lung damage induced by the infection. There was no effect on viral load. Taken together, these data suggest that targeting C5 activation with OmCI during IAV infection could be a promising approach to reduce excessive inflammatory reactions associated with the severe forms of IAV infections.
Collapse
|
research-article |
12 |
71 |
12
|
Russo RC, Garcia CC, Barcelos LS, Rachid MA, Guabiraba R, Roffê E, Souza ALS, Sousa LP, Mirolo M, Doni A, Cassali GD, Pinho V, Locati M, Teixeira MM. Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice. J Leukoc Biol 2010; 89:269-82. [PMID: 21048214 DOI: 10.1189/jlb.0610346] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PI3Kγ is central in signaling diverse arrays of cellular functions and inflammation. Pulmonary fibrosis is associated with pulmonary inflammation, angiogenesis, and deposition of collagen and is modeled by instillation of bleomycin. The role of PI3Kγ in mediating bleomycin-induced pulmonary inflammation and fibrosis in mice and potential mechanisms involved was investigated here. WT or PI3Kγ KO mice were instilled with bleomycin and leukocyte subtype influx, cytokine and chemokine levels, and angiogenesis and tissue fibrosis evaluated. The activation of lung-derived leukocytes and fibroblasts was evaluated in vitro. The relevance of PI3Kγ for endothelial cell function was evaluated in HUVECs. PI3Kγ KO mice had greater survival and weight recovery and less fibrosis than WT mice after bleomycin instillation. This was associated with decreased production of TGF-β(1) and CCL2 and increased production of IFN-γ and IL-10. There was reduced expression of collagen, fibronectin, α-SMA, and von Willebrand factor and decreased numbers and activation of leukocytes and phosphorylation of AKT and IκB-α. PI3Kγ KO mice had a reduced number and area of blood vessels in the lungs. In vitro, treatment of human endothelial cells with the PI3Kγ inhibitor AS605240 decreased proliferation, migration, and formation of capillary-like structures. AS605240 also decreased production of collagen by murine lung-derived fibroblasts. PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury, angiogenesis, and fibrosis through the modulation of leukocyte, fibroblast, and endothelial cell functions. Inhibitors of PI3Kγ may be beneficial for the treatment of pulmonary fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
54 |
13
|
Carmo AAF, Costa BRC, Vago JP, de Oliveira LC, Tavares LP, Nogueira CRC, Ribeiro ALC, Garcia CC, Barbosa AS, Brasil BSAF, Dusse LM, Barcelos LS, Bonjardim CA, Teixeira MM, Sousa LP. Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-, MEK/ERK-, and CCR2-mediated signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:3654-63. [PMID: 25165151 DOI: 10.4049/jimmunol.1400334] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The plasminogen (Plg)/plasmin (Pla) system is associated with a variety of biological activities beyond the classical dissolution of fibrin clots, including cell migration, tissue repair, and inflammation. Although the capacity of Plg/Pla to induce cell migration is well defined, the mechanism underlying this process in vivo is elusive. In this study, we show that Pla induces in vitro migration of murine fibroblasts and macrophages (RAW 264.7) dependent on the MEK/ERK pathway and by requiring its proteolytic activity and lysine binding sites. Plasmin injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that was associated with augmented ERK1/2 and IκB-α phosphorylation and increased levels of CCL2 and IL-6 in pleural exudates. The inhibition of protease activity by using a serine protease inhibitor leupeptin or two structurally different protease-activated receptor-1 antagonists (SCH79797 and RWJ56110) abolished Pla-induced mononuclear recruitment and ERK1/2 and IκB-α phosphorylation. Interestingly, inhibition of the MEK/ERK pathway abolished Pla-induced CCL2 upregulation and mononuclear cell influx. In agreement with a requirement for the CCL2/CCR2 axis to Pla-induced cell migration, the use of a CCR2 antagonist (RS504393) prevented the Plg/Pla-induced recruitment of mononuclear cells to the pleural cavity and migration of macrophages at transwell plates. Therefore, Pla-induced mononuclear cell recruitment in vivo was dependent on protease-activated receptor-1 activation of the MEK/ERK/NF-κB pathway, which led to the release of CCL2 and activation of CCR2.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
50 |
14
|
Russo RC, Alessandri AL, Garcia CC, Cordeiro BF, Pinho V, Cassali GD, Proudfoot AEI, Teixeira MM. Therapeutic effects of evasin-1, a chemokine binding protein, in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2010; 45:72-80. [PMID: 20833968 DOI: 10.1165/rcmb.2009-0406oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CC chemokines play an important role in the pathogenesis of idiopathic pulmonary fibrosis. Few studies have evaluated the efficacy of therapeutically targeting CC chemokines and their receptors during interstitial lung diseases. In the present study, the therapeutic effects of Evasin-1, a tick-derived chemokine-binding protein that has high affinity for CCL3/microphage inflammatory protein (MIP)-1α, was investigated in a murine model of bleomycin-induced lung fibrosis. CCL3/MIP-1α concentrations in lung homogenates increased significantly with time after bleomycin challenge, and this was accompanied by increased number of leukocytes and elevated levels of CCL2/monocyte chemoattractant protein (MCP)-1, CCL5/regulated upon activation, normal T cell expressed and secreted, TNF-α and transforming growth factor-β(1), and pulmonary fibrosis. Administration of evasin-1 on a preventive (from the day of bleomycin administration) or therapeutic (from Day 8 after bleomycin) schedule decreased number of leukocytes in the lung, reduced levels of TNF-α and transforming growth factor-β(1), and attenuated lung fibrosis. These protective effects were similar to those observed in CCL3/MIP-1α-deficient mice. In conclusion, targeting CCL3/MIP-1α by treatment with evasin-1 is beneficial in the context of bleomycin-induced lung injury, even when treatment is started after the fibrogenic insult. Mechanistically, evasin-1 treatment was associated with decreased recruitment of leukocytes and production of fibrogenic cytokines. Modulation of CCL3/MIP-1α function by evasin-1 could be useful for the treatment of idiopathic pulmonary fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
45 |
15
|
Souza ÉL, Elian SD, Paula LM, Garcia CC, Vieira AT, Teixeira MM, Arantes RM, Nicoli JR, Martins FS. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model. J Med Microbiol 2016; 65:201-210. [DOI: 10.1099/jmm.0.000222] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
|
9 |
40 |
16
|
Liu M, Zhu H, Li J, Garcia CC, Feng W, Kirpotina LN, Hilmer J, Tavares LP, Layton AW, Quinn MT, Bothner B, Teixeira MM, Lei B. Group A Streptococcus secreted esterase hydrolyzes platelet-activating factor to impede neutrophil recruitment and facilitate innate immune evasion. PLoS Pathog 2012; 8:e1002624. [PMID: 22496650 PMCID: PMC3320582 DOI: 10.1371/journal.ppat.1002624] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/21/2012] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses. GAS is a major human pathogen causing a variety of infections, including pharyngitis and necrotizing fasciitis. GAS pathogenesis is mediated by a large array of secreted and cell-surface virulence factors. However, the functions of many GAS virulence factors are poorly understood. Recently, we reported that the esterase secreted by GAS (SsE) is a CovRS (the control of virulence two component regulatory system)-regulated protective antigen and is critical for spreading in the skin and systemic dissemination of GAS in a mouse model of necrotizing fasciitis. This report presents three major findings regarding the function and functional mechanism of SsE: 1) SsE contributes to GAS inhibition of neutrophil recruitment; 2) SsE is a potent PAF acetylhydrolase and the first secreted bacterial PAF acetylhydrolase identified so far; and 3) the PAF receptor significantly contributes to neutrophil recruitment in skin GAS infection. These findings support a novel mechanism for evasion of the innate immune system by GAS that may be relevant to other infections.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
38 |
17
|
Tavares LP, Garcia CC, Vago JP, Queiroz-Junior CM, Galvão I, David BA, Rachid MA, Silva PMR, Russo RC, Teixeira MM, Sousa LP. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice. Am J Respir Cell Mol Biol 2017; 55:24-34. [PMID: 26677751 DOI: 10.1165/rcmb.2015-0083oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
35 |
18
|
Machado AV, Caetano BC, Barbosa RP, Salgado APC, Rabelo RH, Garcia CC, Bruna-Romero O, Escriou N, Gazzinelli RT. Prime and boost immunization with influenza and adenovirus encoding the Toxoplasma gondii surface antigen 2 (SAG2) induces strong protective immunity. Vaccine 2010; 28:3247-56. [PMID: 20189485 DOI: 10.1016/j.vaccine.2010.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/21/2010] [Accepted: 02/03/2010] [Indexed: 11/25/2022]
Abstract
In this work, we explored an original vaccination protocol using recombinant influenza and adenovirus. We constructed recombinant influenza viruses harboring dicistronic NA segments containing the surface antigen 2 (SAG2) from Toxoplasma gondii under control of the duplicated 3' promoter. Recombinant influenza viruses were able to drive the expression of the foreign SAG2 sequence in cell culture and to replicate efficiently both in cell culture and in lungs of infected mice. In addition, mice primed with recombinant influenza virus and boosted with a recombinant adenovirus encoding SAG2 elicited both humoral and cellular immune responses specific for SAG2. Moreover, when immunized animals were challenged with the cystogenic P-Br strain of T. gondii, they displayed up to 85% of reduction in parasite burden. These results demonstrate the potential use of recombinant influenza vectors harboring the dicistronic segments in the development of vaccines against infectious diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
34 |
19
|
Tavares LP, Garcia CC, Machado MG, Queiroz-Junior CM, Barthelemy A, Trottein F, Siqueira MM, Brandolini L, Allegretti M, Machado AM, de Sousa LP, Teixeira MM. CXCR1/2 Antagonism Is Protective during Influenza and Post-Influenza Pneumococcal Infection. Front Immunol 2017; 8:1799. [PMID: 29326698 PMCID: PMC5733534 DOI: 10.3389/fimmu.2017.01799] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/30/2017] [Indexed: 01/29/2023] Open
Abstract
Rationale Influenza A infections are a leading cause of morbidity and mortality worldwide especially when associated with secondary pneumococcal infections. Inflammation is important to control pathogen proliferation but may also cause tissue injury and death. CXCR1/2 are chemokine receptors relevant for the recruitment of neutrophils. We investigated the role of CXCR1/2 during influenza, pneumococcal, and post-influenza pneumococcal infections. Methods Mice were infected with influenza A virus (IAV) or Streptococcus pneumoniae and then treated daily with the CXCR1/2 antagonist DF2162. To study secondary pneumococcal infection, mice were infected with a sublethal inoculum of IAV then infected with S. pneumoniae 14 days later. DF2162 was given in a therapeutic schedule from days 3 to 6 after influenza infection. Lethality, weight loss, inflammation, virus/bacteria counts, and lung injury were assessed. Results CXCL1 and CXCL2 were produced at high levels during IAV infection. DF2162 treatment decreased morbidity and this was associated with decreased infiltration of neutrophils in the lungs and reduced pulmonary damage and viral titers. During S. pneumoniae infection, DF2162 treatment decreased neutrophil recruitment, pulmonary damage, and lethality rates, without affecting bacteria burden. Therapeutic treatment with DF2162 during sublethal IAV infection reduced the morbidity associated with virus infection and also decreased the magnitude of inflammation, lung damage, and number of bacteria in the blood of mice subsequently infected with S. pneumoniae. Conclusion Modulation of the inflammatory response by blocking CXCR1/2 improves disease outcome during respiratory influenza and pneumococcal infections, without compromising the ability of the murine host to deal with infection. Altogether, inhibition of CXCR1/2 may be a valid therapeutic strategy for treating lung infections caused by these pathogens, especially controlling secondary bacterial infection after influenza.
Collapse
|
Journal Article |
8 |
33 |
20
|
Grossman DC, Garcia CC. Effectiveness of health promotion programs to increase motor vehicle occupant restraint use among young children. Am J Prev Med 1999; 16:12-22. [PMID: 9921382 DOI: 10.1016/s0749-3797(98)00120-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To review the effectiveness of nonlegislative community and clinical programs to increase the rate of child motor vehicle occupant restraint use among children under the age of 5 years. METHOD This was a systematic review of the world's published literature. The Cochrane Collaboration protocol was used to conduct the literature search. The following databases were searched for literature on this topic: MEDLINE, EMBASE, NTIS, PsychINFO, ERIC, Nursing and Allied Health, Transportation Research and Information Service, and EI Compendex. The bibliographies of relevant publications were used to search for additional references. SELECTION CRITERIA Studies were included if they evaluated a clinical or community-based intervention designed to increase the use child restraint devices among motor vehicle passengers under the age of 5 years. Studies of the effects of legislation or law enforcement programs were excluded. All study design types, including randomized controlled trials, controlled trials, and controlled or uncontrolled pre/post evaluations, were included. Studies were excluded if there was either no control group or no baseline data with which to compare outcome data. Studies were also excluded if they did not use observed restraint use as at least one of the outcome measures. DATA COLLECTION Each study was reviewed in depth with special attention to the strength of study design. Outcomes were assessed in terms of the absolute difference in observed restraint use within and/or between groups across study intervals. RESULTS A total of 18 studies met inclusion criteria for in-depth review. Pooling of results was not possible because of the large differences between studies with regard to study design, settings, target groups, intervention methods, and units of analysis. There were a total of three randomized controlled trials, four controlled trials without random individual or group assignment, three controlled pre-post evaluations, and eight uncontrolled pre/post studies. Among preschool programs, short-term absolute percentage point gains in seat belt use rates ranged from 12% to 52% but only from 8% to 14% one month or more after the intervention. Among community-based media campaigns, long-term child restraint use increased by an absolute margin of 5% to 14%. Of the eleven peri-partum counseling programs, long-term follow-up revealed gains of 6% to 27% with most between 10% to 15%. Many studies had serious design flaws that could overestimate the magnitude of the effect. CONCLUSIONS Programs to increase the rate of child restraint use among child occupants of motor vehicles appear to have overall moderate short-term effectiveness. The magnitude of the positive program effects one or more months after the intervention appear to diminish substantially. There is a strong need for high quality randomized controlled trials to determine the long-term effectiveness of child restraint promotion programs.
Collapse
|
Meta-Analysis |
26 |
29 |
21
|
Tessi MA, Aringoli EE, Pirovani ME, Vincenzini AZ, Sabbag NG, Costa SC, Garcia CC, Zannier MS, Silva ER, Moguilevsky MA. Microbiological quality and safety of ready-to-eat cooked foods from a centralized school kitchen in Argentina. J Food Prot 2002; 65:636-42. [PMID: 11952212 DOI: 10.4315/0362-028x-65.4.636] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to evaluate the microbiological and sensory quality as well as the safety of ready-to-eat (RTE) cooked foods prepared in and distributed from a centralized kitchen to schools in Argentina. A total of 101 cooked food samples delivered as hot RTE cooked foods (group A) and as RTE cooked foods at room temperature (group B) and 140 surface swab environment samples were collected from February to November 1999. Petrifilm plates were used for aerobic (PAC), coliform (PCC), and Escherichia coli (PEC) counts. Standard methods were used to determine Enterobacteriaceae (EntC) and thermotolerant coliform counts (TCC). Samples were also tested for the presence of Salmonella spp., Staphylococcus aureus, Bacillus cereus, and Clostridium perfringens. Food temperatures just before samples were put into containers ranged from 80 to 98 degrees C and from 28 to 32 degrees C for group A and group B, respectively. For group A food samples, PAC ranged from 1.04 to 3.50 log CFU/g, and PCC, PEC, TCC, and EntC were not detected. For group B food samples, PAC ranged from 3.63 to 6.48 log CFU/g, PCC ranged from 1.90 to 5.36 log CFU/g, TCC ranged from 1.30 to 3.95 log CFU/g, and EntC ranged from 3.60 to 5.46 log CFU/g. Of the foodborne pathogens, only B. cereus was isolated (63.4% of samples) in both food groups (<4 log CFU/g). The microbiological and sensory quality and the safety of group A foods were satisfactory. Large numbers of PAC and EntC detected in group B foods show that better control is needed to avoid potential foodborne diseases.
Collapse
|
|
23 |
27 |
22
|
Mendes de Almeida V, Engel DF, Ricci MF, Cruz CS, Lopes ÍS, Alves DA, d’ Auriol M, Magalhães J, Machado EC, Rocha VM, Carvalho TG, Lacerda LSB, Pimenta JC, Aganetti M, Zuccoli GS, Smith BJ, Carregari VC, da Silva Rosa E, Galvão I, Dantas Cassali G, Garcia CC, Teixeira MM, André LC, Ribeiro FM, Martins FS, Saia RS, Costa VV, Martins-de-Souza D, Hansbro PM, Marques JT, Aguiar ERGR, Vieira AT. Gut microbiota from patients with COVID-19 cause alterations in mice that resemble post-COVID symptoms. Gut Microbes 2023; 15:2249146. [PMID: 37668317 PMCID: PMC10481883 DOI: 10.1080/19490976.2023.2249146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.
Collapse
|
research-article |
2 |
16 |
23
|
Garcia CC, Tavares LP, Dias ACF, Kehdy F, Alvarado-Arnez LE, Queiroz-Junior CM, Galvão I, Lima BH, Matos AR, Gonçalves APF, Soriani FM, Moraes MO, Marques JT, Siqueira MM, Machado AMV, Sousa LP, Russo RC, Teixeira MM. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients. Front Immunol 2018; 9:975. [PMID: 29867955 PMCID: PMC5962662 DOI: 10.3389/fimmu.2018.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
15 |
24
|
Tavares LP, Garcia CC, Gonçalves APF, Kraemer LR, Melo EM, Oliveira FMS, Freitas CS, Lopes GAO, Reis DC, Cassali GD, Machado AM, Mantovani A, Locati M, Teixeira MM, Russo RC. ACKR2 contributes to pulmonary dysfunction by shaping CCL5:CCR5-dependent recruitment of lymphocytes during influenza A infection in mice. Am J Physiol Lung Cell Mol Physiol 2020; 318:L655-L670. [DOI: 10.1152/ajplung.00134.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation triggered by influenza A virus (IAV) infection is important for viral clearance, induction of adaptive responses, and return to lung homeostasis. However, an exaggerated immune response, characterized by the overproduction of chemokines, can lead to intense lung injury, contributing to mortality. Chemokine scavenger receptors, such as ACKR2, control the levels of CC chemokines influencing the immune responses. Among the chemokine targets of ACKR2, CCL5 is important to recruit and activate lymphocytes. We investigated the role of ACKR2 during IAV infection in mice. Pulmonary ACKR2 expression was increased acutely after IAV infection preceding the virus-induced lung dysfunction. ACKR2-knockout (ACKR2−/−) mice were protected from IAV, presenting decreased viral burden and lung dysfunction. Mechanistically, the absence of ACKR2 resulted in augmented airway CCL5 levels, secreted by mononuclear and plasma cells in the lung parenchyma. The higher chemokine gradient led to an augmented recruitment of T and B lymphocytes, formation of inducible bronchus-associated lymphoid tissue and production of IgA in the airways of ACKR2−/− mice post-IAV. CCL5 neutralization in ACKR2−/− mice prevented lymphocyte recruitment and increased bronchoalveolar lavage fluid protein levels and pulmonary dysfunction. Finally, CCR5−/− mice presented increased disease severity during IAV infection, displaying increased neutrophils, pulmonary injury and dysfunction, and accentuated lethality. Collectively, our data showed that ACKR2 dampens CCL5 levels and the consequent recruitment of CCR5+ T helper 1 (Th1), T regulatory cells (Tregs), and B lymphocytes during IAV infection, decreasing pathogen control and promoting lung dysfunction in wild type mice. Therefore, ACKR2 is detrimental and CCR5 is protective during IAV infection coordinating innate and adaptive immune responses in mice.
Collapse
|
|
5 |
11 |
25
|
Matos AR, Martins JSCC, Oliveira MDLA, Garcia CC, Siqueira MM. Human CCR5Δ32 (rs333) polymorphism has no influence on severity and mortality of influenza A(H1N1)pdm09 infection in Brazilian patients from the post pandemic period. INFECTION GENETICS AND EVOLUTION 2018; 67:55-59. [PMID: 30389547 DOI: 10.1016/j.meegid.2018.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Influenza is an acute and highly contagious viral respiratory infection that causes significant morbidity and mortality. The identification of host genetic factors associated with susceptibility and severity of influenza virus infection is of paramount importance. Previous studies evaluating the potential involvement of the CCR5Δ32 polymorphism (rs333), a 32 base pair deletion in CC motif chemokine receptor 5 (CCR5) gene, in severity and mortality of influenza A(H1N1)pdm09 infected individuals have been reported, but their results are quite conflicting. OBJECTIVES The aim of this study was the evaluation of the CCR5Δ32 frequency in individuals with mild, severe and fatal influenza A(H1N1)pdm09 infection and its putative association with clinical and epidemiologic data. PATIENTS/METHODS A total of 432 individuals were included in this study and classified according to their clinical status, into the following groups: influenza like illness (ILI) (n = 153); severe acute respiratory infection (SARI) (n = 173) and fatal (n = 106) cases. The samples were collected in the post pandemic period, from 2012 to 2018. Individuals were further stratified according to their clinical and epidemiological data. The CCR5Δ32 variant was genotyped by PCR amplification and a subset of samples was further submitted to Sanger sequencing. RESULTS The different clinical groups (ILI, SARI and fatal) presented similar distribution of wt/wt and wt/Δ32 genotypes and CCR5Δ32 allele frequencies. Genotype Δ32/Δ32 was not detected in our study. Additionally, no association between wt/wt and wt/Δ32 genotypes and dyspnea, a clinical factor for influenza complications was found. Similarly, no significant differences in the distribution of wt/wt and wt/Δ32 genotypes and CCR5Δ32 variant allele frequencies were observed in samples from the different Brazilian geographical regions. CONCLUSIONS The CCR5Δ32 variant does not influence the susceptibility to influenza A(H1N1)pdm09 severe disease or mortality in individuals from Brazil.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
9 |