1
|
Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N, Fagin JA. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 2013; 3:520-33. [PMID: 23365119 DOI: 10.1158/2159-8290.cd-12-0531] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The RAF inhibitor vemurafenib (PLX4032) increases survival in patients with BRAF-mutant metastatic melanoma, but has limited efficacy in patients with colorectal cancers. Thyroid cancer cells are also comparatively refractory to RAF inhibitors. In contrast to melanomas, inhibition of mitogen-activated protein kinase (MAPK) signaling by PLX4032 is transient in thyroid and colorectal cancer cells. The rebound in extracellular signal-regulated kinase (ERK) in thyroid cells is accompanied by increased HER3 signaling caused by induction of ERBB3 (HER3) transcription through decreased promoter occupancy by the transcriptional repressors C-terminal binding protein 1 and 2 and by autocrine secretion of neuregulin-1 (NRG1). The HER kinase inhibitor lapatinib prevents MAPK rebound and sensitizes BRAF-mutant thyroid cancer cells to RAF or MAP-ERK kinase inhibitors. This provides a rationale for combining ERK pathway antagonists with inhibitors of feedback-reactivated HER signaling in this disease. The determinants of primary resistance to MAPK inhibitors vary between cancer types, due to preferential upregulation of specific receptor tyrosine kinases, and the abundance of their respective ligands.
Collapse
|
Comment |
12 |
310 |
2
|
Leandro-García LJ, Leskelä S, Landa I, Montero-Conde C, López-Jiménez E, Letón R, Cascón A, Robledo M, Rodríguez-Antona C. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 2010; 67:214-23. [PMID: 20191564 DOI: 10.1002/cm.20436] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The beta-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on beta-tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex beta-tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT-PCR technique that accurately determines the mRNA expression of the eight human beta-tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell-specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total beta-tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex beta-tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule-binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
196 |
3
|
Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA, Heguy A, Viale A, Bogdanova T, Thomas GA, Mason CE, Fagin JA. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013; 123:4935-44. [PMID: 24135138 PMCID: PMC3809792 DOI: 10.1172/jci69766] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022] Open
Abstract
Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
173 |
4
|
López-Jiménez E, Gómez-López G, Leandro-García LJ, Muñoz I, Schiavi F, Montero-Conde C, de Cubas AA, Ramires R, Landa I, Leskelä S, Maliszewska A, Inglada-Pérez L, de la Vega L, Rodríguez-Antona C, Letón R, Bernal C, de Campos JM, Diez-Tascón C, Fraga MF, Boullosa C, Pisano DG, Opocher G, Robledo M, Cascón A. Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol 2010; 24:2382-91. [PMID: 20980436 PMCID: PMC5417372 DOI: 10.1210/me.2010-0256] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/30/2010] [Indexed: 12/18/2022] Open
Abstract
The six major genes involved in hereditary susceptibility for pheochromocytoma (PCC)/paraganglioma (PGL) (RET, VHL, NF1, SDHB, SDHC, and SDHD) have been recently integrated into the same neuronal apoptotic pathway where mutations in any of these genes lead to cell death. In this model, prolyl hydroxylase 3 (EglN3) abrogation plays a pivotal role, but the molecular mechanisms underlying its inactivation are currently unknown. The aim of the study was to decipher specific alterations associated with the different genetic classes of PCCs/PGLs. With this purpose, 84 genetically characterized tumors were analyzed by means of transcriptional profiling. The analysis revealed a hypoxia-inducible factor (HIF)-related signature common to succinate dehydrogenase (SDH) and von Hippel-Lindau (VHL) tumors, that differentiated them from RET and neurofibromatosis type 1 cases. Both canonical HIF-1α and HIF-2α target genes were overexpressed in the SDH/VHL cluster, suggesting that a global HIF deregulation accounts for this common profile. Nevertheless, when we compared VHL tumors with SDHB cases, which often exhibit a malignant behavior, we found that HIF-1α target genes showed a predominant activation in the VHL PCCs. Expression data from 67 HIF target genes was sufficient to cluster SDHB and VHL tumors into two different groups, demonstrating different pseudo-hypoxic signatures. In addition, VHL-mutated tumors showed an unexpected overexpression of EglN3 mRNA that did not lead to significantly different EglN3 protein levels. These findings pave the way for more specific therapeutic approaches for malignant PCCs/PGLs management based on the patient's genetic alteration.
Collapse
|
other |
15 |
163 |
5
|
Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Pérez L, Schiavi F, Leskelä S, Pita G, Milne R, Maravall J, Ramos I, Andía V, Rodríguez-Poyo P, Jara-Albarrán A, Meoro A, del Peso C, Arribas L, Iglesias P, Caballero J, Serrano J, Picó A, Pomares F, Giménez G, López-Mondéjar P, Castello R, Merante-Boschin I, Pelizzo MR, Mauricio D, Opocher G, Rodríguez-Antona C, González-Neira A, Matías-Guiu X, Santisteban P, Robledo M. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet 2009; 5:e1000637. [PMID: 19730683 PMCID: PMC2727793 DOI: 10.1371/journal.pgen.1000637] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/07/2009] [Indexed: 01/18/2023] Open
Abstract
In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. Although follicular cell-derived thyroid cancer has an important genetic component, efforts in identifying major susceptibility genes have not been successful. Probably this is due to the complex nature of this disease that involves both genetic and environmental factors, as well as the interaction between them, which could be ultimately modulating the individual susceptibility. In this study, focused on genes carefully selected by their biological relation with the disease, and using more than 1,000 cases and 1,000 representative controls from two independent Caucasian populations, we demonstrate that FOXE1 is associated with Papillary Thyroid Cancer susceptibility. Functional assays prove that rs1867277 behaves as a genetic causal variant that regulates FOXE1 expression through a complex transcription factor network. This approach constitutes a successful approximation to define thyroid cancer risk genes related to individual susceptibility, and identifies FOXE1 as a key factor for its development.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
125 |
6
|
Cascón A, Pita G, Burnichon N, Landa I, López-Jiménez E, Montero-Conde C, Leskelä S, Leandro-García LJ, Letón R, Rodríguez-Antona C, Díaz JA, López-Vidriero E, González-Neira A, Velasco A, Matias-Guiu X, Gimenez-Roqueplo AP, Robledo M. Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab 2009; 94:1701-5. [PMID: 19258401 DOI: 10.1210/jc.2008-2756] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The presence of familial history in pheochromocytoma/paraganglioma patients, including syndromic antecedents, leads in the majority of cases to a positive genetic testing for mutations in one of the major susceptibility genes described so far. Furthermore, it has been reported that in the absence of familial antecedents, about 11-24% of patients also carry a mutation in one of these related genes. In these cases, other clinical aspects like bilaterality, multiplicity, location of the tumors, or age at onset can help to recognize the underlying genes involved. OBJECTIVE The objective of the study was to discuss clinical criteria helpful in the genetic diagnosis, placing special emphasis on apparently sporadic cases. DESIGN Two hundred thirty-seven nonrelated probands were analyzed for the major susceptibility genes: VHL, RET, SDHB, SDHC, and SDHD. Genetic characterization included both point mutation analysis and gross deletions in the SDH genes performed by multiplex PCR. RESULTS As expected, all syndromic probands were genetically diagnosed with a mutation affecting either RET or VHL. A total of 79.1% (19 of 24) and 18.4% (31 of 168) of patients presenting with either nonsyndromic familial antecedents or apparently sporadic presentation were found to carry a mutation in one of the susceptibility genes. Finally, we found a Spanish founder effect for two mutations: SDHB c.166_170delCCTCA and SDHD c.129G>A. CONCLUSIONS Germline mutations are rare in apparently sporadic probands diagnosed after age 40 yr (3.9% in our series) and mainly involve SDHB. Therefore, we recommend prioritizing SDHB genetic testing in patients developing isolated tumors at any age, especially those with extraadrenal location or malignant behavior.
Collapse
|
|
16 |
99 |
7
|
Leskelä S, Jara C, Leandro-García LJ, Martínez A, García-Donas J, Hernando S, Hurtado A, Vicario JCC, Montero-Conde C, Landa I, López-Jiménez E, Cascón A, Milne RL, Robledo M, Rodríguez-Antona C. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. THE PHARMACOGENOMICS JOURNAL 2010; 11:121-9. [PMID: 20212519 DOI: 10.1038/tpj.2010.13] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurotoxicity is one of the most relevant dose-limiting toxicities of the anticancer drug paclitaxel. It exhibits substantial interindividual variability of unknown molecular basis, and represents one of the major challenges for the improvement of paclitaxel therapy. The extensive variability in paclitaxel clearance and metabolism lead us to investigate the association between polymorphisms in paclitaxel elimination pathway and neurotoxicity. We selected 13 relevant polymorphisms in genes encoding paclitaxel metabolizing enzymes (CYP2C8, CYP3A4 and CYP3A5) and transporters (organic anion transporting polypeptide (OATP) 1B1, OATP1B3 and P-glycoprotein) and genotyped them in 118 Spanish cancer patients treated with paclitaxel. After adjusting for age and treatment schedule, CYP2C8 Haplotype C and CYP3A5*3 were associated with protection (hazard ratio (HR) (per allele)=0.55; 95% confidence interval (CI)=0.34-0.89; P=0.014 and HR (per allele)=0.51; 95%CI=0.30-0.86; and P=0.012, respectively) and CYP2C8*3 with increased risk (HR (per allele)=1.72; 95%CI=1.05-2.82; and P=0.032). In each case, the allele causing increased paclitaxel metabolism was associated with increased neurotoxicity, suggesting an important role for metabolism and hydroxylated paclitaxel metabolites. We estimated the HR per paclitaxel-metabolism increasing allele carried across the three polymorphisms to be HR=1.64 (95% CI=1.26-2.14; P=0.0003). The results for P-glycoprotein were inconclusive, and no associations were observed for the other genes studied. The incorporation of this genetic data in treatment selection could help to reduce neurotoxicity events, thereby individualizing paclitaxel pharmacotherapy. These results warrant validation in independent series.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
97 |
8
|
Nagarajah J, Le M, Knauf JA, Ferrandino G, Montero-Conde C, Pillarsetty N, Bolaender A, Irwin C, Krishnamoorthy GP, Saqcena M, Larson SM, Ho AL, Seshan V, Ishii N, Carrasco N, Rosen N, Weber WA, Fagin JA. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J Clin Invest 2016; 126:4119-4124. [PMID: 27669459 DOI: 10.1172/jci89067] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/18/2016] [Indexed: 11/17/2022] Open
Abstract
Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
95 |
9
|
Rodríguez-Antona C, Pallares J, Montero-Conde C, Inglada-Pérez L, Castelblanco E, Landa I, Leskelä S, Leandro-García LJ, López-Jiménez E, Letón R, Cascón A, Lerma E, Martin MC, Carralero MC, Mauricio D, Cigudosa JC, Matias-Guiu X, Robledo M. Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer 2010; 17:7-16. [PMID: 19776290 DOI: 10.1677/erc-08-0304] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Therapeutic options for patients with metastatic medullary thyroid carcinoma (MTC) are limited due to lack of effective treatments. Thus, there is a need to thoroughly characterize the pathways of molecular pathogenesis and to identify potential targets for therapy in MTC. Since epidermal growth factor receptor (EGFR) seems to play a crucial role for RET activation, a key feature of MTCs, and several promising EGFR/vascular endothelial growth factor receptor 2 (VEGFR2)-targeted drugs have been developed, the present study was designed to investigate whether these proteins are altered in MTCs. We used a well-characterized series of 153 MTCs to evaluate EGFR activation by sequencing and FISH analysis, and to perform EGFR and VEGFR2 immunohistochemistry. EGFR tyrosine kinase domain mutations were not a feature of MTCs; however, EGFR polysomy and a strong EGFR expression were detected in 15 and 13% of the tumors respectively. Interestingly, EGFR was significantly overexpressed in metastases compared with primary tumors (35 vs 9%, P=0.002). We also studied whether specific RET mutations were associated with EGFR status, and found a decrease in EGFR polysomies (P=0.006) and a tendency towards lower EGFR expression for the most aggressive RET mutations (918, 883). Concerning VEGFR2, metastasis showed a higher expression than primary tumors (P=2.8 x 10(-8)). In this first study investigating the relationship between EGFR, RET, and VEGFR2 in a large MTC series, we found an activation of EGFR and VEGFR2 in metastasis, using both independent and matched primary/metastasis samples. This suggests that some MTC patients may benefit from existing anti-EGFR/VEFGR2 therapies, although additional preclinical and clinical evidence is needed.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Aneuploidy
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/metabolism
- Carcinoma, Medullary/pathology
- Carcinoma, Medullary/secondary
- Chromosomes, Human, Pair 7/genetics
- ErbB Receptors/biosynthesis
- ErbB Receptors/physiology
- Female
- Gene Amplification
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Genes, erbB-1
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Proto-Oncogene Proteins c-ret/genetics
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/physiology
- Young Adult
Collapse
|
Comparative Study |
15 |
95 |
10
|
Montero-Conde C, Martín-Campos JM, Lerma E, Gimenez G, Martínez-Guitarte JL, Combalía N, Montaner D, Matías-Guiu X, Dopazo J, de Leiva A, Robledo M, Mauricio D. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene 2007; 27:1554-61. [PMID: 17873908 DOI: 10.1038/sj.onc.1210792] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Undifferentiated and poorly differentiated thyroid tumors are responsible for more than half of thyroid cancer patient deaths in spite of their low incidence. Conventional treatments do not obtain substantial benefits, and the lack of alternative approaches limits patient survival. Additionally, the absence of prognostic markers for well-differentiated tumors complicates patient-specific treatments and favors the progression of recurrent forms. In order to recognize the molecular basis involved in tumor dedifferentiation and identify potential markers for thyroid cancer prognosis prediction, we analysed the expression profile of 44 thyroid primary tumors with different degrees of dedifferentiation and aggressiveness using cDNA microarrays. Transcriptome comparison of dedifferentiated and well-differentiated thyroid tumors identified 1031 genes with >2-fold difference in absolute values and false discovery rate of <0.15. According to known molecular interaction and reaction networks, the products of these genes were mainly clustered in the MAPkinase signaling pathway, the TGF-beta signaling pathway, focal adhesion and cell motility, activation of actin polymerization and cell cycle. An exhaustive search in several databases allowed us to identify various members of the matrix metalloproteinase, melanoma antigen A and collagen gene families within the upregulated gene set. We also identified a prognosis classifier comprising just 30 transcripts with an overall accuracy of 95%. These findings may clarify the molecular mechanisms involved in thyroid tumor dedifferentiation and provide a potential prognosis predictor as well as targets for new therapies.
Collapse
|
|
18 |
70 |
11
|
Cascón A, Montero-Conde C, Ruiz-Llorente S, Mercadillo F, Letón R, Rodríguez-Antona C, Martínez-Delgado B, Delgado M, Díez A, Rovira A, Díaz JA, Robledo M. Gross SDHB deletions in patients with paraganglioma detected by multiplex PCR: a possible hot spot? Genes Chromosomes Cancer 2006; 45:213-9. [PMID: 16258955 DOI: 10.1002/gcc.20283] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pheochromocytoma and paraganglioma are rare neuroendocrine tumors that arise in the adrenal medulla and the extra-adrenal paraganglia, respectively. Inheritance of these tumors is mainly a result of mutations affecting the VHL, RET, NF1, and SDH genes. Germ-line mutations of the SDH genes have been found to account for nearly 10% of apparently sporadic cases. Nevertheless, alterations other than point mutations have not yet been well characterized. In this study, we investigated the frequency of gross SDH deletions in 24 patients who tested negative for point mutations and had at least one of the recommended features for genetic testing. For this purpose, we used a technique that is easy to implement in the lab to specifically detect gross deletions affecting SDHB, SDHC, and SDHD. We identified 3 heterozygous SDHB deletions (3/24) in 3 independent cases with paraganglioma: 1 whole SDHB deletion and 2 deletions exclusively affecting exon 1. These latter mutations match the unique gross deletion previously reported, indicating this region could be a hot spot for gross SDHB deletions. It seems likely that these alterations can account for a considerable number of both familial and apparently sporadic paraganglioma cases. Although this is the first report describing the presence of gross deletions in patients with apparently sporadic paragangliomas, the extra-adrenal location of the tumor seems to constitute a determining factor for whether to include these patients in genetic testing for gross deletions in the SDHB gene.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
62 |
12
|
Currás-Freixes M, Piñeiro-Yañez E, Montero-Conde C, Apellániz-Ruiz M, Calsina B, Mancikova V, Remacha L, Richter S, Ercolino T, Rogowski-Lehmann N, Deutschbein T, Calatayud M, Guadalix S, Álvarez-Escolá C, Lamas C, Aller J, Sastre-Marcos J, Lázaro C, Galofré JC, Patiño-García A, Meoro-Avilés A, Balmaña-Gelpi J, De Miguel-Novoa P, Balbín M, Matías-Guiu X, Letón R, Inglada-Pérez L, Torres-Pérez R, Roldán-Romero JM, Rodríguez-Antona C, Fliedner SMJ, Opocher G, Pacak K, Korpershoek E, de Krijger RR, Vroonen L, Mannelli M, Fassnacht M, Beuschlein F, Eisenhofer G, Cascón A, Al-Shahrour F, Robledo M. PheoSeq: A Targeted Next-Generation Sequencing Assay for Pheochromocytoma and Paraganglioma Diagnostics. J Mol Diagn 2017; 19:575-588. [PMID: 28552549 DOI: 10.1016/j.jmoldx.2017.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Genetic diagnosis is recommended for all pheochromocytoma and paraganglioma (PPGL) cases, as driver mutations are identified in approximately 80% of the cases. As the list of related genes expands, genetic diagnosis becomes more time-consuming, and targeted next-generation sequencing (NGS) has emerged as a cost-effective tool. This study aimed to optimize targeted NGS in PPGL genetic diagnostics. A workflow based on two customized targeted NGS assays was validated to study the 18 main PPGL genes in germline and frozen tumor DNA, with one of them specifically directed toward formalin-fixed paraffin-embedded tissue. The series involved 453 unrelated PPGL patients, of whom 30 had known mutations and were used as controls. Partial screening using Sanger had been performed in 275 patients. NGS results were complemented with the study of gross deletions. NGS assay showed a sensitivity ≥99.4%, regardless of DNA source. We identified 45 variants of unknown significance and 89 pathogenic mutations, the latter being germline in 29 (7.2%) and somatic in 58 (31.7%) of the 183 tumors studied. In 37 patients previously studied by Sanger sequencing, the causal mutation could be identified. We demonstrated that both assays are an efficient and accurate alternative to conventional sequencing. Their application facilitates the study of minor PPGL genes, and enables genetic diagnoses in patients with incongruent or missing clinical data, who would otherwise be missed.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
59 |
13
|
Cascón A, Landa I, López-Jiménez E, Díez-Hernández A, Buchta M, Montero-Conde C, Leskelä S, Leandro-García LJ, Letón R, Rodríguez-Antona C, Eng C, Neumann HPH, Robledo M. Molecular characterisation of a common SDHB deletion in paraganglioma patients. J Med Genet 2007; 45:233-8. [PMID: 18057081 DOI: 10.1136/jmg.2007.054965] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Hereditary susceptibility to familial paraganglioma syndromes is mainly due to mutations in one of six genes, including three of the four genes encoding the subunits of the mitochondrial succinate dehydrogenase complex II. Although prevalence, penetrance and clinical characteristics of patients carrying point mutations affecting the genes encoding succinate dehydrogenase have been well studied, little is known regarding these clinical features in patients with gross deletions. Recently, we found two unrelated Spanish families carrying the previously reported SDHB exon 1 deletion, and suggested that this chromosomal region could be a hotspot deletion area. METHODS We present the molecular characterisation of this apparently prevalent mutation in three new families, and discuss whether this recurrent mutation is due either to the presence of a founder effect or to a hotspot. RESULTS The breakpoint analysis showed that all Iberian Peninsular families described harbour the same exon 1 deletion, and that a different breakpoint junction segregates in an affected French pedigree. CONCLUSIONS After haplotyping the SDHB region, we concluded that the deletion detected in Iberian Peninsular people is probably due to a founder effect. Regarding the clinical characteristics of patients with this alteration, it seems that the presence of gross deletions rather than point mutations is more likely related to abdominal presentations and younger age at onset. Moreover, we found for the first time a patient with neuroblastoma and a germline SDHB deletion, but it seems that this paediatric neoplasia in a pheochromocytoma family is not a key component of this disease.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
56 |
14
|
Calsina B, Castro-Vega LJ, Torres-Pérez R, Inglada-Pérez L, Currás-Freixes M, Roldán-Romero JM, Mancikova V, Letón R, Remacha L, Santos M, Burnichon N, Lussey-Lepoutre C, Rapizzi E, Graña O, Álvarez-Escolá C, de Cubas AA, Lanillos J, Cordero-Barreal A, Martínez-Montes ÁM, Bellucci A, Amar L, Fernandes-Rosa FL, Calatayud M, Aller J, Lamas C, Sastre-Marcos J, Canu L, Korpershoek E, Timmers HJ, Lenders JWM, Beuschlein F, Fassnacht-Capeller M, Eisenhofer G, Mannelli M, Al-Shahrour F, Favier J, Rodríguez-Antona C, Cascón A, Montero-Conde C, Gimenez-Roqueplo AP, Robledo M. Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/mTOR axis in metastatic pheochromocytoma/paraganglioma. Am J Cancer Res 2019; 9:4946-4958. [PMID: 31410193 PMCID: PMC6691382 DOI: 10.7150/thno.35458] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients' liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients' management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
40 |
15
|
Ruiz-Llorente S, Carrillo Santa de Pau E, Sastre-Perona A, Montero-Conde C, Gómez-López G, Fagin JA, Valencia A, Pisano DG, Santisteban P. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions. BMC Genomics 2012; 13:147. [PMID: 22531031 PMCID: PMC3403905 DOI: 10.1186/1471-2164-13-147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022] Open
Abstract
Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF) and chromatin remodeling (Sp1), and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis) gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism that represents a novel role of Pax8 in the transcriptional output of the thyrocyte.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
35 |
16
|
Remacha L, Pirman D, Mahoney CE, Coloma J, Calsina B, Currás-Freixes M, Letón R, Torres-Pérez R, Richter S, Pita G, Herráez B, Cianchetta G, Honrado E, Maestre L, Urioste M, Aller J, García-Uriarte Ó, Gálvez MÁ, Luque RM, Lahera M, Moreno-Rengel C, Eisenhofer G, Montero-Conde C, Rodríguez-Antona C, Llorca Ó, Smolen GA, Robledo M, Cascón A. Recurrent Germline DLST Mutations in Individuals with Multiple Pheochromocytomas and Paragangliomas. Am J Hum Genet 2019; 104:651-664. [PMID: 30929736 PMCID: PMC6451733 DOI: 10.1016/j.ajhg.2019.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) provide some of the clearest genetic evidence for the critical role of metabolism in the tumorigenesis process. Approximately 40% of PPGLs are caused by driver germline mutations in 16 known susceptibility genes, and approximately half of these genes encode members of the tricarboxylic acid (TCA) cycle. Taking as a starting point the involvement of the TCA cycle in PPGL development, we aimed to identify unreported mutations that occurred in genes involved in this key metabolic pathway and that could explain the phenotypes of additional individuals who lack mutations in known susceptibility genes. To accomplish this, we applied a targeted sequencing of 37 TCA-cycle-related genes to DNA from 104 PPGL-affected individuals with no mutations in the major known predisposing genes. We also performed omics-based analyses, TCA-related metabolite determination, and 13C5-glutamate labeling assays. We identified five germline variants affecting DLST in eight unrelated individuals (∼7%); all except one were diagnosed with multiple PPGLs. A recurrent variant, c.1121G>A (p.Gly374Glu), found in four of the eight individuals triggered accumulation of 2-hydroxyglutarate, both in tumors and in a heterologous cell-based assay designed to functionally evaluate DLST variants. p.Gly374Glu-DLST tumors exhibited loss of heterozygosity, and their methylation and expression profiles are similar to those of EPAS1-mutated PPGLs; this similarity suggests a link between DLST disruption and pseudohypoxia. Moreover, we found positive DLST immunostaining exclusively in tumors carrying TCA-cycle or EPAS1 mutations. In summary, this study reveals DLST as a PPGL-susceptibility gene and further strengthens the relevance of the TCA cycle in PPGL development.
Collapse
|
research-article |
6 |
35 |
17
|
Landa I, Montero-Conde C, Malanga D, De Gisi S, Pita G, Leandro-García LJ, Inglada-Pérez L, Letón R, De Marco C, Rodríguez-Antona C, Viglietto G, Robledo M. Allelic variant at -79 (C>T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels. Endocr Relat Cancer 2010; 17:317-28. [PMID: 20075119 DOI: 10.1677/erc-09-0016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study is to assess if common genetic variants located in the CDKN1B locus, coding for the cell cycle inhibitor p27(Kip1), are involved in thyroid cancer susceptibility. Based on the literature and functional predictions, we selected three polymorphisms within the CDKN1B gene (rs2066827 (T326G, V109G), rs34330 (-79C>T) and rs36228499 (-838C>A)) to perform the first case-control study in thyroid cancer involving this locus. We had 649 Spanish patients with sporadic thyroid cancer and 385 healthy representative controls available. Luciferase reporter gene assays, real-time quantitative reverse transcription-PCR and immunoblot experiments were carried out to demonstrate the putative effect of the associated variant. The polymorphism rs34330 (-79C>T) was identified as a risk factor for developing the follicular variant of papillary thyroid carcinoma (FVPTC), fitting a recessive model (odds ratio=2.12; 95% confidence interval=1.09-4.15; P value=0.023). The risk allele (T) of this single nucleotide polymorphism led to a lower transcription rate in cells transfected with a luciferase reporter driven by the polymorphic p27(Kip1) promoter (P value <0.001). This effect was observed in -79TT genotype control carriers, who showed a tendency towards lower CDKN1B mRNA levels in lymphocytes, as well as at the protein level. This is the first study that identifies CDKN1B as a low-penetrance gene in thyroid cancer, and specifically in FVPTC subtype. We propose a reduced CDKN1B gene transcription depending on the genotype of the -79C>T (rs34330) variant as a novel mechanism underlying p27(Kip1) downregulation.
Collapse
|
|
15 |
33 |
18
|
Cascón A, Escobar B, Montero-Conde C, Rodríguez-Antona C, Ruiz-Llorente S, Osorio A, Mercadillo F, Letón R, Campos JM, García-Sagredo JM, Benítez J, Malumbres M, Robledo M. Loss of the actin regulator HSPC300 results in clear cell renal cell carcinoma protection in Von Hippel-Lindau patients. Hum Mutat 2007; 28:613-21. [PMID: 17311301 DOI: 10.1002/humu.20496] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common malignant neoplasm of the kidney. The majority of hereditary and sporadic ccRCC cases are associated with germline and somatic mutations in the Von Hippel-Lindau gene (VHL), respectively. Gross deletions at the VHL locus can result either in ccRCC or in a mild clinical phenotype, with the absence of ccRCC development. Our goal in this study was to identify the molecular basis responsible for these differences in the clinical behavior in order to predict patients' phenotype. Using multiplex ligation-dependent amplification (MLPA), we identified and characterized gross VHL deletions in Spanish VHL families. A candidate gene related to this clinical association, HSPC300, was identified and depleted by RNA interference. It was possible to narrow the susceptibility region related to the mild clinical phenotype down to approximately 14 kb that included HSPC300 (C3orf10), a regulator of actin dynamics and cytoskeleton organization. Whereas 9 out of 10 families with ccRCC retained HSPC300 in the germline, loss of the HSPC300 locus was associated with mild clinical presentation of the disease in 6 out of 8 families. In fact, genetic depletion of HSPC300 resulted in cytoskeleton abnormalities and cytokinesis arrest in several tumor cell lines including ccRCC cells, suggesting that tumor cell proliferation was compromised in the absence of HSPC300. These clinical and functional data indicate a relevant function of HSPC300 in tumor cell progression, and suggest future therapeutic strategies based upon the inhibition of HSPC300 in renal cell carcinoma and possibly on other cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
33 |
19
|
López-Jiménez E, de Campos JM, Kusak EM, Landa I, Leskelä S, Montero-Conde C, Leandro-García LJ, Vallejo LA, Madrigal B, Rodríguez-Antona C, Robledo M, Cascón A. SDHC mutation in an elderly patient without familial antecedents. Clin Endocrinol (Oxf) 2008; 69:906-10. [PMID: 18681855 DOI: 10.1111/j.1365-2265.2008.03368.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Head and neck paragangliomas are usually asymptomatic and benign tumours arising mainly from the carotid body and the vagal, tympanic or jugular glomus. The majority of patients develop sporadic masses, and around 30% of cases harbour germline mutations in one of the succinate dehydrogenase genes: SDHB, SDHC or SDHD. In these hereditary cases, the presence of familial antecedents of the disease, multiplicity/bilaterality, young age at onset, and more recently, presence of gastrointestinal stromal tumours, are main factors to be considered. Here we describe a new mutation (c.256-257insTTT) affecting the SDHC gene in a 60-year-old-patient with a single head and neck paraganglioma, and without familial antecedents of the disease. In silico splice site analysis showed that this variant created a cryptic splice acceptor site and loss of heterozygosity (LOH) supported the pathogenic role of the mutation. Control population analyses did not detect this variant but revealed a novel SDHC polymorphism that exhibited a frequency of 0.3% (3/1020). This latter finding highlights the importance of assessing the clinical relevance of variants of unknown significance by means of analysing sufficient controls. Despite having found a germline mutation in an older, apparently sporadic patient, we consider that the high costs of analysing all susceptibility genes related to the disease support the recommendation of screening for mutations only in patients fulfilling the above criteria.
Collapse
|
Case Reports |
17 |
31 |
20
|
Leskelä S, Honrado E, Montero-Conde C, Landa I, Cascón A, Letón R, Talavera P, Cózar JM, Concha A, Robledo M, Rodríguez-Antona C. Cytochrome P450 3A5 is highly expressed in normal prostate cells but absent in prostate cancer. Endocr Relat Cancer 2007; 14:645-54. [PMID: 17914095 DOI: 10.1677/erc-07-0078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Testosterone is essential for the growth and function of the luminal prostate cells, but it is also critical for the development of prostate cancer, which in the majority of the cases derives from luminal cells. Cytochrome P450 3A (CYP3A) enzymes hydroxylate testosterone and dehydroepiandrosterone to less active metabolites, which might be the basis for the association between CYP3A polymorphisms and prostate cancer. However, it is unknown whether the CYP3A enzymes are expressed at relevant levels in the prostate and which polymorphisms could affect this tissue-specific CYP3A activity. Thus, we measured CYP3A4, CYP3A5, CYP3A7, and CYP3A43 mRNA in 14 benign prostatic hyperplasias and ten matched non-tumoral/tumoral prostate samples. We found that CYP3A5 mRNA in non-tumoral prostate tissue was 10% of the average amount of liver samples, whereas the expression of the other CYP3A genes was much lower. Similarly to liver, CYP3A5*3 polymorphism decreased CYP3A5 mRNA content 13-fold. CYP3A5 protein was detected in non-tumoral prostate microsomes by western blot, and immunohistochemistry (IHC) localized CYP3A5 exclusively in the basolateral prostate cells. In contrast to the normal tissue, IHC and RT-PCR showed that tumoral tissue lacked CYP3A5 expression. In conclusion, prostate basolateral cells express high levels of CYP3A5 which dramatically decrease in tumoral tissue. This finding supports an endogenous function of CYP3A5 related to the metabolism of intra-prostatic androgens and cell growth, and that polymorphisms affecting CYP3A5 activity may result in altered prostate cancer risk and aggressiveness.
Collapse
|
Comparative Study |
18 |
28 |
21
|
Chiappetta G, De Marco C, Quintiero A, Califano D, Gherardi S, Malanga D, Scrima M, Montero-Conde C, Cito L, Monaco M, Motti ML, Pasquinelli R, Agosti V, Robledo M, Fusco A, Viglietto G. Overexpression of the S-phase kinase-associated protein 2 in thyroid cancer. Endocr Relat Cancer 2007; 14:405-20. [PMID: 17639054 DOI: 10.1677/erc-06-0030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Loss of expression of the cyclin-dependent kinase inhibitor p27 through enhanced protein degradation frequently occurs in human cancer. Degradation of p27 requires ubiquitination by the S-phase kinase-associated protein 2 (Skp2), a member of the F-box family of Skp1-Cullin-F-box protein ubiquitin ligases. In the present study, we have investigated the role of Skp2 in human thyroid tumours. Immunohistochemistry analysis showed that Skp2 was overexpressed significantly in thyroid carcinomas (26 out of 51) compared with goitres (0 out of 12, P<0.001) or adenomas (1 out of 10, P<0.05), and that high Skp2 expression was detected more often in anaplastic thyroid (ATC; 83%, n=12) than follicular thyroid (FTC; 40%, n=20) or papillary thyroid (PTC; 42%, n=19) carcinomas (P<0.05). Thyroid cancer cell lines and tissues with high levels of Skp2 protein presented high p27 degradation activity and there was an inverse correlation between Skp2 and p27 expression in thyroid cancer tissues (n=68; P<0.05). In most cases, the observed overexpression of Skp2 protein was paralleled by an increase in the levels of Skp2 mRNA, and we observed Skp2 gene amplification at 5p13 in 2 out of 6 cell lines and in 9 out of 23 primary tumours (six out of eight ATCs, two out of nine PTCs and one out of six FTCs) using Q-PCR and/or fluorescence in situ hybridization analysis. Finally, in vitro experiments demonstrated that suppression of Skp2 expression drastically reduced proliferation of thyroid cancer cells and, conversely, forced expression of Skp2 circumvented serum dependency and contact inhibition in Skp2-negative cells by promoting p27 degradation. These findings indicate that Skp2 plays an important role for the development of thyroid cancer.
Collapse
|
|
18 |
27 |
22
|
Cascón A, Ruiz-Llorente S, Rodríguez-Perales S, Honrado E, Martínez-Ramírez A, Letón R, Montero-Conde C, Benítez J, Dopazo J, Cigudosa JC, Robledo M. A novel candidate region linked to development of both pheochromocytoma and head/neck paraganglioma. Genes Chromosomes Cancer 2005; 42:260-8. [PMID: 15609347 DOI: 10.1002/gcc.20139] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although the histologic distinction between pheochromocytomas and head and neck paragangliomas is clear, little is known about the genetic differences between them. To date, various sets of genes have been found to be involved in inherited susceptibility to developing both tumor types, but the genes involved in sporadic pathogenesis are still unknown. To define new candidate regions, we performed CGH analysis on 29 pheochromocytomas and on 24 paragangliomas mainly of head and neck origin (20 of 24), which allowed us to differentiate between the two tumor types. Loss of 3q was significantly more frequent in pheochromocytomas, and loss of 1q appeared only in paragangliomas. We also found gain of 11q13 to be a significantly frequent alteration in malignant cases of both types. In addition, recurrent loss of 8p22-23 was found in 62% of pheochromocytomas (including all malignant cases) versus in 33% of paragangliomas, suggesting that this region contains candidate genes involved in the pathogenesis of this abnormality. Using FISH analysis on tissue microarrays, we confirmed genomic deletion of this region in 55% of pheochromocytomas compared to 12% of paragangliomas. Loss of 8p22-23 appears to be an important event in the sporadic development of these tumors, and additional molecular studies are necessary to identify candidate genes in this chromosomal region.
Collapse
MESH Headings
- Adolescent
- Adrenal Gland Neoplasms/genetics
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Child
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 8/genetics
- Female
- Gene Deletion
- Head and Neck Neoplasms/genetics
- Humans
- Male
- Middle Aged
- Nucleic Acid Hybridization
- Paraganglioma/genetics
- Pheochromocytoma/genetics
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
26 |
23
|
Ruiz-Llorente S, Montero-Conde C, Milne RL, Moya CM, Cebrián A, Letón R, Cascón A, Mercadillo F, Landa I, Borrego S, Pérez de Nanclares G, Alvarez-Escolá C, Díaz-Pérez JA, Carracedo A, Urioste M, González-Neira A, Benítez J, Santisteban P, Dopazo J, Ponder BA, Robledo M. Association study of 69 genes in the ret pathway identifies low-penetrance loci in sporadic medullary thyroid carcinoma. Cancer Res 2007; 67:9561-7. [PMID: 17909067 DOI: 10.1158/0008-5472.can-07-1638] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To date, few association studies have been done to better understand the genetic basis for the development of sporadic medullary thyroid carcinoma (sMTC). To identify additional low-penetrance genes, we have done a two-stage case-control study in two European populations using high-throughput genotyping. We selected 417 single nucleotide polymorphisms (SNP) belonging to 69 genes either related to RET signaling pathway/functions or involved in key processes for cancer development. TagSNPs and functional variants were included where possible. These SNPs were initially studied in the largest known series of sMTC cases (n = 266) and controls (n = 422), all of Spanish origin. In stage II, an independent British series of 155 sMTC patients and 531 controls was included to validate the previous results. Associations were assessed by an exhaustive analysis of individual SNPs but also considering gene- and linkage disequilibrium-based haplotypes. This strategy allowed us to identify seven low-penetrance genes, six of them (STAT1, AURKA, BCL2, CDKN2B, CDK6, and COMT) consistently associated with sMTC risk in the two case-control series and a seventh (HRAS) with individual SNPs and haplotypes associated with sMTC in the Spanish data set. The potential role of CDKN2B was confirmed by a functional assay showing a role of a SNP (rs7044859) in the promoter region in altering the binding of the transcription factor HNF1. These results highlight the utility of association studies using homogeneous series of cases for better understanding complex diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
25 |
24
|
Mancikova V, Montero-Conde C, Perales-Paton J, Fernandez A, Santacana M, Jodkowska K, Inglada-Pérez L, Castelblanco E, Borrego S, Encinas M, Matias-Guiu X, Fraga M, Robledo M. Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in RETM918T Tumors. Clin Cancer Res 2016; 23:1334-1345. [PMID: 27620278 DOI: 10.1158/1078-0432.ccr-16-0947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs. Clin Cancer Res; 23(5); 1334-45. ©2016 AACR.
Collapse
|
Journal Article |
9 |
21 |
25
|
Sánchez-Barroso L, Apellaniz-Ruiz M, Gutiérrez-Gutiérrez G, Santos M, Roldán-Romero JM, Curras M, Remacha L, Calsina B, Calvo I, Sereno M, Merino M, García-Donas J, Castelo B, Guerra E, Letón R, Montero-Conde C, Cascón A, Inglada-Pérez L, Robledo M, Rodríguez-Antona C. Concomitant Medications and Risk of Chemotherapy-Induced Peripheral Neuropathy. Oncologist 2018; 24:e784-e792. [PMID: 30470691 DOI: 10.1634/theoncologist.2018-0418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Peripheral neuropathy is the dose-limiting toxicity of many oncology drugs, including paclitaxel. There is large interindividual variability in the neuropathy, and several risk factors have been proposed; however, many have not been replicated. Here we present a comprehensive study aimed at identifying treatment and physiopathology-related paclitaxel-induced neuropathy risk factors in a large cohort of well-characterized patients. PATIENTS AND METHODS Analyses included 503 patients with breast or ovarian cancer who received paclitaxel treatment. Paclitaxel dose modifications caused by the neuropathy were extracted from medical records and patients self-reported neuropathy symptoms were collected. Multivariate logistic regression analyses were performed to identify concomitant medications and comorbidities associated with paclitaxel-induced neuropathy. RESULTS Older patients had higher neuropathy: for each increase of 1 year of age, the risk of dose modifications and grade 3 neuropathy increased 4% and 5%, respectively. Cardiovascular drugs increased the risk of paclitaxel dose reductions (odds ratio [OR], 2.51; p = .006), with a stronger association for beta-adrenergic antagonists. The total number of concomitant medications also showed an association with dose modifications (OR, 1.25; p = .012 for each concomitant drug increase). A dose modification predictive model that included the new identified factors gave an area under the curve of 0.74 (p = 1.07 × 10-10). Preexisting nerve compression syndromes seemed to increase neuropathy risk. CONCLUSION Baseline characteristics of the patients, including age and concomitant medications, could be used to identify individuals at high risk of neuropathy, personalizing chemotherapy treatment and reducing the risk of severe neuropathy. IMPLICATIONS FOR PRACTICE Peripheral neuropathy is a common adverse effect of many cancer drugs, including chemotherapeutics, targeted therapies, and immune checkpoint inhibitors. About 40% of survivors of cancer have functional deficits caused by this toxicity, some of them irreversible. Currently, there are no effective treatments to prevent or treat this neuropathy. This study, performed in a large cohort of well-characterized patients homogenously treated with paclitaxel, identified concomitant medications, comorbidities, and demographic factors associated with peripheral neuropathy. These factors could serve to identify patients at high risk of severe neuropathy for whom alternative non-neurotoxic alternatives may be considered.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
20 |