1
|
Sola A, Bellucci D, Raucci MG, Zeppetelli S, Ambrosio L, Cannillo V. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity. J Biomed Mater Res A 2011; 100:305-22. [PMID: 22052581 DOI: 10.1002/jbm.a.33276] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 11/06/2022]
Abstract
Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment.
Collapse
|
Journal Article |
14 |
35 |
2
|
Bellucci D, Sola A, Cannillo V. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2138-51. [DOI: 10.1016/j.msec.2013.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 01/06/2023]
|
|
12 |
24 |
3
|
Bellucci D, Chiellini F, Ciardelli G, Gazzarri M, Gentile P, Sola A, Cannillo V. Processing and characterization of innovative scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1397-1409. [PMID: 22441671 DOI: 10.1007/s10856-012-4622-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
A new protocol, based on a modified replication method, is proposed to obtain bioactive glass scaffolds. The main feature of these samples, named "shell scaffolds", is their external surface that, like a compact and porous shell, provides both high permeability to fluids and mechanical support. In this work, two different scaffolds were prepared using the following slurry components: 59 % water, 29 % 45S5 Bioglass(®) and 12 % polyvinylic binder and 51 % water, 34 % 45S5 Bioglass(®), 10 % polyvinylic binder and 5 % polyethylene. All the proposed samples were characterized by a widespread microporosity and an interconnected macroporosity, with a total porosity of 80 % vol. After immersion in a simulated body fluid (SBF), the scaffolds showed strong ability to develop hydroxyapatite, enhanced by the high specific surface of the porous systems. Moreover preliminary biological evaluations suggested a promising role of the shell scaffolds for applications in bone tissue regeneration. As regards the mechanical behaviour, the shell scaffolds could be easily handled without damages, due to their resistant external surface. More specifically, they possessed suitable mechanical properties for bone regeneration, as proved by compression tests performed before and after immersion in SBF.
Collapse
|
|
13 |
23 |
4
|
Altomare L, Bellucci D, Bolelli G, Bonferroni B, Cannillo V, De Nardo L, Gadow R, Killinger A, Lusvarghi L, Sola A, Stiegler N. Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1303-1319. [PMID: 21461917 DOI: 10.1007/s10856-011-4307-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
The high-velocity suspension flame spraying technique (HVSFS) was employed in order to deposit 45S5 bioactive glass coatings onto titanium substrates, using a suspension of micron-sized glass powders dispersed in a water + isopropanol mixture as feedstock. By modifying the process parameters, five coatings with different thickness and porosity were obtained. The coatings were entirely glassy but exhibited a through-thickness microstructural gradient, as the deposition mechanisms of the glass droplets changed at every torch cycle because of the increase in the system temperature during spraying. After soaking in simulated body fluid, all of the coatings were soon covered by a layer of hydroxyapatite; furthermore, the coatings exhibited no cytotoxicity and human osteosarcoma cells could adhere and proliferate well onto their surfaces. HVSFS-deposited 45S5 bioglass coatings are therefore highly bioactive and have potentials as replacement of conventional hydroxyapatite in order to favour osseointegration of dental and prosthetic implants.
Collapse
|
|
14 |
16 |
5
|
Fiocco L, Elsayed H, Badocco D, Pastore P, Bellucci D, Cannillo V, Detsch R, Boccaccini AR, Bernardo E. Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers. Biofabrication 2017; 9:025012. [PMID: 28393760 DOI: 10.1088/1758-5090/aa6c37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Silica-bonded calcite scaffolds have been successfully 3D-printed by direct ink writing, starting from a paste comprising a silicone polymer and calcite powders, calibrated in order to match a SiO2/CaCO3 weight balance of 35/65. The scaffolds, fabricated with two slightly different geometries, were first cross-linked at 350 °C, then fired at 600 °C, in air. The low temperature adopted for the conversion of the polymer into amorphous silica, by thermo-oxidative decomposition, prevented the decomposition of calcite. The obtained silica-bonded calcite scaffolds featured open porosity of about 56%-64% and compressive strength of about 2.9-5.5 MPa, depending on the geometry. Dissolution studies in SBF and preliminary cell culture tests, with bone marrow stromal cells, confirmed the in vitro bioactivity of the scaffolds and their biocompatibility. The seeded cells were found to be alive, well anchored and spread on the samples surface. The new silica-calcite composites are expected to be suitable candidates as tissue-engineering 3D scaffolds for regeneration of cancellous bone defects.
Collapse
|
Journal Article |
8 |
14 |
6
|
Bellucci D, Sola A, Cannillo V. A Revised Replication Method for Bioceramic Scaffolds. ACTA ACUST UNITED AC 2011. [DOI: 10.4303/bda/d110401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
14 |
13 |
7
|
Fiocco L, Bernardo E, Colombo P, Cacciotti I, Bianco A, Bellucci D, Sola A, Cannillo V. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers. J Biomed Mater Res A 2013; 102:2502-10. [DOI: 10.1002/jbm.a.34918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 11/09/2022]
|
|
12 |
12 |
8
|
Bellucci D, Sola A, Cannillo V. Bioactive glass/ZrO
2
composites for orthopaedic applications. Biomed Mater 2013; 9:015005. [DOI: 10.1088/1748-6041/9/1/015005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
12 |
11 |
9
|
Montinaro S, Luginina M, Garroni S, Orrù R, Delogu F, Bellucci D, Cannillo V, Cao G. Spark plasma sintered CaO-rich bioglass-derived glass-ceramics with different crystallinity ratios: A detailed investigation of their behaviour during biological tests in SBF. Ann Ital Chir 2019. [DOI: 10.1016/j.jeurceramsoc.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
|
6 |
3 |
10
|
Anesi A, Ferretti M, Salvatori R, Bellucci D, Cavani F, Di Bartolomeo M, Palumbo C, Cannillo V. In-vivo evaluations of bone regenerative potential of two novel bioactive glasses. J Biomed Mater Res A 2023; 111:1264-1278. [PMID: 36876550 DOI: 10.1002/jbm.a.37526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Due to the aging of population, materials able to repair damaged tissues are needed. Among others, bioactive glasses (BGs) have attracted a lot of interest due to their outstanding properties both for hard and soft tissues. Here, for the first time, two new BGs, which gave very promising results in preliminary in vitro-tests, were implanted in animals in order to evaluate their regenerative potential. The new BGs, named BGMS10 and Bio_MS and containing specific therapeutic ions, were produced in granules and implanted in rabbits' femurs for up to 60 days, to test their biocompatibility and osteoconduction. Additionally, granules of 45S5 Bioglass® were employed and used as a standard reference for comparison. The results showed that, after 30 days, the two novel BGs and 45S5 displayed a similar behavior, in terms of bone amount, thickness of new bone trabeculae and affinity index. On the contrary, after 60 days, 45S5 granules were mainly surrounded by wide and scattered bone trabeculae, separated by large amounts of soft tissue, while in BGMS10 and Bio_MS the trabeculae were thin and uniformly distributed around the BG granules. This latter scenario could be considered as more advantageous, since the features of the two novel BG granules allowed for the neo-formation of a uniformly distributed bony trabeculae, predictive of more favorable mechanical behavior, compared to the less uniform coarse trabeculae, separated by large areas of soft tissue in 45S5 granules. Thus, BGMS10 and Bio_MS could be considered suitable products for tissue regeneration in the orthopedic and dental fields.
Collapse
|
|
2 |
|
11
|
Bellucci D, Sola A, Gentile P, Ciardelli G, Cannillo V. Biomimetic coating on bioactive glass‐derived scaffolds mimicking bone tissue. J Biomed Mater Res A 2012; 100:3259-66. [DOI: 10.1002/jbm.a.34271] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/12/2022]
|
|
13 |
41 |
12
|
Petrachi T, Portone A, Bellucci D, Pacchioni L, Marra C, De Santis G, Rovati L, Dominici M, Veronesi E, Cannillo V. A Bioprinted Hydrogel Patch With Bioactive Glass: A New Frontier in Chronic Wound Healing. J Biomed Mater Res A 2025; 113:e37865. [PMID: 39794924 DOI: 10.1002/jbm.a.37865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues. Due to their ability to promote fibroblast proliferation, angiogenesis, collagen production, and evade antibacterial activity, they have been suggested as key players in the skin regeneration process. Since their initial introduction, various compositions have been proposed depending on the clinical goal to be achieved. Recently, a novel bioglass composition named Bio_MS was found to exhibit significant bone regenerative potential. Given its peculiar composition characterized by strontium and magnesium, Bio_MS could also play a role in skin healing. In the present work, an innovative patch was designed by combining the attractive characteristics of Bio_MS with bioprinting technology. The regenerative potential of the Bio_MS patch was tested in an ex vivo cutaneous model using human skin in which an experimental wound was induced by sodium dodecyl sulfate incubation. After injury, the Bio_MS patch was able to restore skin architecture and enhance the epidermal barrier function. Additionally, the Bio_MS patch demonstrated therapeutic effects in both the epidermis and dermis, making it suitable not only for superficial lesions but also for deep wounds.
Collapse
|
|
1 |
|