1
|
West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet 1994; 344:769-72. [PMID: 7916070 DOI: 10.1016/s0140-6736(94)92338-8] [Citation(s) in RCA: 895] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distinction between the neurodegenerative changes that accompany normal ageing and those that characterise Alzheimer's disease is not clear. The resolution of this issue has important implications for the design of therapeutic and investigative strategies. To this end we have used modern stereological techniques to compare the regional pattern of neuronal cell loss in the hippocampus related to normal ageing to that associated with Alzheimer's disease. The loss related to normal ageing was evaluated from estimates of the total number of neurons in each of the major hippocampal subdivisions of 45 normal ageing subjects who ranged in age from 13 to 101 years. The Alzheimer's disease related losses were evaluated from similar data obtained from 7 cases of Alzheimer's disease and 14 age matched controls. Qualitative differences were observed in the regional patterns of neuronal loss related to normal ageing and Alzheimer's disease. The most distinctive Alzheimer's disease related neuron loss was seen in the CA1 region of the hippocampus. In the normal ageing group there was almost no neuron loss in this region (final neuron count in the CA1 region: 4.40 x 10(6) neurons for the Alzheimer's disease group vs 14.08 x 10(6) neurons in the normal ageing group). It is concluded that the neurodegenerative processes associated with normal ageing and with Alzheimer's disease are qualitatively different and that Alzheimer's disease is not accelerated by ageing but is a distinct pathological process.
Collapse
|
Comparative Study |
31 |
895 |
2
|
Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Scott RW, Snider WD. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996; 13:43-7. [PMID: 8673102 DOI: 10.1038/ng0596-43] [Citation(s) in RCA: 875] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The discovery that some cases of familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) has focused much attention on the function of SOD1 as related to motor neuron survival. Here we describe the creation and characterization of mice completely deficient for this enzyme. These animals develop normally and show no overt motor deficits by 6 months in age. Histological examination of the spinal cord reveals no signs of pathology in animals 4 months in age. However Cu/Zn SOD-deficient mice exhibit marked vulnerability to motor neuron loss after axonal injury. These results indicate that Cu/Zn SOD is not necessary for normal motor neuron development and function but is required under physiologically stressful conditions following injury.
Collapse
|
Comparative Study |
29 |
875 |
3
|
Abstract
Factors which limit the interpretation of studies of aging brain include: secular trends, species and strain differences, effects of tissue processing, and bias which may be introduced at many levels of an experimental design. With these limitations considered, evidence is reviewed regarding neuron numbers and dendritic extent in normally aging rodent, monkey and human brain and in Alzheimer's disease. It is concluded that neuron loss and change in dendritic extent in normal aging are regionally specific, and that corresponding brain regions do not always change in similar ways in rodents and primates. It is suggested that such differences may, in part, be due to inconsistent definitions of 'aged' among species. In Alzheimer's disease there is excess neuron loss and dendritic regression in some, but not all, brain regions. Measures of the morphological substrates of brain function show appreciable overlap between AD and control groups. It is hypothesized that the static, post-mortem status of brain morphology may not adequately reflect the functional capabilities of the dynamic morphology of the living brain.
Collapse
|
Review |
38 |
531 |
4
|
Spongr VP, Flood DG, Frisina RD, Salvi RJ. Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1997; 101:3546-3553. [PMID: 9193043 DOI: 10.1121/1.418315] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The CBA mouse shows little evidence of hearing loss until late in life, whereas the C57BL/6 strain develops a severe and progressive, high-frequency sensorineural hearing loss beginning around 3-6 months of age. These functional differences have been linked to genetic differences in the amount of hair cell loss as a function of age; however, a precise quantitative description of the sensory cell loss is unavailable. The present study provides mean values of inner hair cell (IHC) and outer hair cell (OHC) loss for CBA and C57BL/6 mice at 1, 3, 8, 18, and 26 months of age. CBA mice showed little evidence of hair cell loss until 18 months of age. At 26 months of age, OHC losses in the apex and base of the cochlea were approximately 65% and 50%, respectively, and IHC losses were approximately 25% and 35%. By contrast, C57BL/6 mice showed approximately a 75% OHC and a 55% IHC loss in the base of the cochlea at 3 months of age. OHC and IHC losses increased rapidly with age along a base-to-apex gradient. By 26 months of age, more than 80% of the OHCs were missing throughout the entire cochlea; however, IHC losses ranged from 100% near the base of the cochlea to approximately 20% in the apex.
Collapse
|
Comparative Study |
28 |
234 |
5
|
Howland DS, Trusko SP, Savage MJ, Reaume AG, Lang DM, Hirsch JD, Maeda N, Siman R, Greenberg BD, Scott RW, Flood DG. Modulation of secreted beta-amyloid precursor protein and amyloid beta-peptide in brain by cholesterol. J Biol Chem 1998; 273:16576-82. [PMID: 9632729 DOI: 10.1074/jbc.273.26.16576] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of dietary cholesterol on brain amyloid precursor protein (APP) processing were examined using an APP gene-targeted mouse, genetically humanized in the amyloid beta-peptide (Abeta) domain and expressing the Swedish familial Alzheimer's disease mutations. These mice express endogenous levels of APP holoprotein and abundant human Abeta. Increased dietary cholesterol led to significant reductions in brain levels of secreted APP derivatives, including sAPPalpha, sAPPbeta, Abeta1-40, and Abeta1-42, while having little to no effect on cell-associated species, including full-length APP and the COOH-terminal APP processing derivatives. The changes in levels of sAPP and Abeta in brain all were negatively correlated with serum cholesterol levels and levels of serum and brain apoE. These results demonstrate that secreted APP processing derivatives and Abeta can be modulated in the brain of an animal by diet and provide evidence that cholesterol plays a role in the modulation of APP processing in vivo. APP gene-targeted mice lacking apoE, also have high serum cholesterol levels but do not show alterations in APP processing, suggesting that effects of cholesterol on APP processing require the presence of apoE.
Collapse
|
|
27 |
187 |
6
|
Flood DG, Coleman PD. Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 1988; 9:453-63. [PMID: 3145463 DOI: 10.1016/s0197-4580(88)80098-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the several sources of interest in aging animal brains is their potential as models of the aging human brain. In this review we examine whether neuron numbers and sizes change similarly in aging human, monkey and rodent brain regions which data are available from more than one species. The number of brain regions studied in more than one species is surprisingly limited. Some regions show correspondence in age-related changes between humans and selected animal models (primary visual cortex, CA1 of hippocampus). For the majority of regions the data are conflicting, even within one species (e.g., somatosensory cortex, frontal cortex, cerebellum, cholinergic forebrain areas, locus coeruleus). Although some of the conflicting data may be attributed to procedural differences, particularly when data are expressed as density changes, much must be attributed to real species and/or strain differences in rodents. We conclude that neuron numbers and sizes may show similar age-related changes in human and animal brains only for sharply defined brain regions, animal species and/or strains, and age ranges.
Collapse
|
Comparative Study |
37 |
181 |
7
|
Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman EK, Scott RW, Wright JS, Putcha GV, Salvi RJ. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 1999; 4:237-46. [PMID: 10436316 DOI: 10.1159/000013847] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species (ROS) such as superoxide, peroxide and hydroxyl radicals are generated during normal cellular metabolism and are increased in acute injury and in many chronic disease states. When their production is inadequately regulated, ROS accumulate and irreversibly damage cell components, causing impaired cellular function and death. Antioxidant enzymes such as superoxide dismutase (SOD) play a vital role in minimizing ROS levels and ROS-mediated damage. The cytosolic form of Cu/Zn-SOD appears specialized to remove superoxide produced as a result of injury. 'Knockout' mice with targeted deletion of Sod1, the gene that codes for Cu/Zn-SOD, develop normally but show enhanced susceptibility to central nervous system injury. Since loud noise is injurious to the cochlea and is associated with elevated cochlear ROS, we hypothesized that Sod1 knockout mice would be more susceptible to noise-induced permanent threshold shifts (PTS) than wild-type and heterozygous control mice. Fifty-nine mice (15 knockout, 29 heterozygous and 15 wild type for Sod1) were exposed to broad-band noise (4.0-45.0 kHz) at 110 dB SPL for 1 h. Hearing sensitivity was evaluated at 5, 10, 20 and 40 kHz using auditory brainstem responses before exposure and 1, 14 and 28 days afterward. Cu/Zn-SOD deficiency led to minor (0-7 dB) threshold elevations prior to noise exposure, and about 10 dB of additional noise-induced PTS at all test frequencies, compared to controls. The distribution of thresholds at 10 and 20 kHz at 28 days following exposure contained three modes, each showing an effect of Cu/Zn-SOD deficiency. Thus another factor, possibly an additional unlinked gene, may account for the majority of the observed PTS. Our results indicate that genes involved in ROS regulation can impact the vulnerability of the cochlea to noise-induced hearing loss.
Collapse
|
|
26 |
149 |
8
|
McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 1999; 20:1-8. [PMID: 10466888 DOI: 10.1016/s0197-4580(99)00018-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Age-related hearing loss in humans and many strains of mice is associated with a base-to-apex gradient of cochlear hair cell loss. To determine if copper/zinc superoxide dismutase (Cu/Zn SOD) deficiency influences age-related cochlear pathology, we compared hair cell losses in cochleas obtained from 2-, 7-, and 17- to 19-month-old wild type (WT) mice with normal levels of Cu/Zn SOD and mutant knockout (KO) mice with a targeted deletion of Sod1, the gene that codes for Cu/Zn SOD. WT and KO mice exhibited similar patterns of hair cell loss with age, i.e., a baso-apical progression of hair cell loss, with greater loss of outer hair cells than inner hair cells. Within each age group, the magnitude of loss was much greater in KO mice compared to WT mice. The results indicate that Cu/Zn SOD deficiency potentiates cochlear hair cell degeneration, presumably through metabolic pathways involving the superoxide radical.
Collapse
|
|
26 |
136 |
9
|
Shefner JM, Reaume AG, Flood DG, Scott RW, Kowall NW, Ferrante RJ, Siwek DF, Upton-Rice M, Brown RH. Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 1999; 53:1239-46. [PMID: 10522879 DOI: 10.1212/wnl.53.6.1239] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the motor neuron dysfunction in two models by performing physiologic and morphometric studies. BACKGROUND Mutations in the gene encoding cytosolic superoxide dismutase 1 (SOD1) account for 25% of familial ALS (FALS). Transgenes with these mutations produce a pattern of lower motor neuron degeneration similar to that seen in patients with FALS. In contrast, mice lacking SOD1 develop subtle motor symptoms by approximately 6 months of age. METHODS Physiologic measurements, including motor conduction and motor unit estimation, were analyzed in normal mice, mice bearing the human transgene for FALS (mFALS mice), and knockout mice deficient in SOD1 (SOD1-KO). In addition, morphometric analysis was performed on the spinal cords of SOD1-KO and normal mice. RESULTS In mFALS mice, the motor unit number in the distal hind limb declined before behavioral abnormalities appeared, and motor unit size increased. Compound motor action potential amplitude and distal motor latency remained normal until later in the disease. In SOD1-KO mice, motor unit numbers were reduced early but declined slowly with age. In contrast with the mFALS mice, SOD1-KO mice demonstrated only a modest increase in motor unit size. Morphometric analysis of the spinal cords from normal and SOD1-KO mice showed no significant differences in the number and size of motor neurons. CONCLUSIONS The physiologic abnormalities in mFALS mice resemble those in human ALS. SOD1-deficient mice exhibit a qualitatively different pattern of motor unit remodeling that suggests that axonal sprouting and reinnervation of denervated muscle fibers are functionally impaired in the absence of SOD1.
Collapse
|
|
26 |
130 |
10
|
Flood DG, Buell SJ, Horwitz GJ, Coleman PD. Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res 1987; 402:205-16. [PMID: 3828793 DOI: 10.1016/0006-8993(87)90027-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Granule cells of the hippocampal dentate gyrus of 22 human brains obtained at autopsy were studied in Golgi-Cox stained tissue. Seventeen cases were cognitively normal and ranged from 43 to 95 years of age. Five cases had a progressive, dementing disease consistent with the diagnosis of senile dementia (SD) of the Alzheimer's type. Dendritic extent of granule cells was found to increase in normal aging between middle age (fifties) and early old age (seventies). However, dendritic regression was found in the oldest old (nineties). This finding of dendritic regression following growth is in contrast to previous quantitative reports of continued dendritic growth in parahippocampal gyrus of normal aging human brain and suggests that changes in dendritic extent in normal aging are region and age specific. In cases with SD, dendritic extent was greatly reduced when compared with the normal cases of the same age (seventies) and slightly reduced when compared with middle-aged cases. The very old normal and SD cases were similar in dendritic extent, suggesting that the functional and memory deficits characteristic of SD cannot be explained solely on the basis of the static status of dendritic extent of single neurons.
Collapse
|
|
38 |
124 |
11
|
Hornberger JC, Buell SJ, Flood DG, McNeill TH, Coleman PD. Stability of numbers but not size of mouse forebrain cholinergic neurons to 53 months. Neurobiol Aging 1985; 6:269-75. [PMID: 4088422 DOI: 10.1016/0197-4580(85)90003-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In normal mammalian aging there is a reduction of cholinergic markers in a variety of regions. To determine whether this reduction is related to reduced numbers of basal forebrain cholinergic neurons, we counted the number and measured the sizes of the magnocellular acetylcholinesterase-positive neurons in this region of 7, 15, and 53-month-old C57Bl/6NNIA mice. Data were collected from coded slides containing the medial septum, nucleus of the diagonal band, magnocellular preoptic nucleus, and nucleus basalis magnocellularis. There was no decline in numbers of basal forebrain acetylcholinesterase-positive neurons in any of the regions studied. However, cell sizes showed a progressive age-related decline which was greatest in the nucleus basalis magnocellularis.
Collapse
|
|
40 |
92 |
12
|
Flood DG, Buell SJ, Defiore CH, Horwitz GJ, Coleman PD. Age-related dendritic growth in dentate gyrus of human brain is followed by regression in the 'oldest old'. Brain Res 1985; 345:366-8. [PMID: 4041896 DOI: 10.1016/0006-8993(85)91018-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic extent in dentate gyrus granule cells of normal aging human brain was found to increase between middle age (fifties) and early old age (seventies). However, dendritic regression was found in the oldest old (nineties). This finding of dendritic regression following growth is in contrast to previous quantitative reports of continued dendritic growth in parahippocampal gyrus of aging human brain. This new result reinforces the concept of age and region specificity in changes in dendritic extent.
Collapse
|
Comparative Study |
40 |
90 |
13
|
Siman R, Flood DG, Thinakaran G, Neumar RW. Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons: effect of an Alzheimer's disease-linked presenilin-1 knock-in mutation. J Biol Chem 2001; 276:44736-43. [PMID: 11574534 DOI: 10.1074/jbc.m104092200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress elicits protective responses of chaperone induction and translational suppression and, when unimpeded, leads to caspase-mediated apoptosis. Alzheimer's disease-linked mutations in presenilin-1 (PS-1) reportedly impair ER stress-mediated protective responses and enhance vulnerability to degeneration. We used cleavage site-specific antibodies to characterize the cysteine protease activation responses of primary mouse cortical neurons to ER stress and evaluate the influence of a PS-1 knock-in mutation on these and other stress responses. Two different ER stressors lead to processing of the ER-resident protease procaspase-12, activation of calpain, caspase-3, and caspase-6, and degradation of ER and non-ER protein substrates. Immunocytochemical localization of activated caspase-3 and a cleaved substrate of caspase-6 confirms that caspase activation extends into the cytosol and nucleus. ER stress-induced proteolysis is unchanged in cortical neurons derived from the PS-1 P264L knock-in mouse. Furthermore, the PS-1 genotype does not influence stress-induced increases in chaperones Grp78/BiP and Grp94 or apoptotic neurodegeneration. A similar lack of effect of the PS-1 P264L mutation on the activation of caspases and induction of chaperones is observed in fibroblasts. Finally, the PS-1 knock-in mutation does not alter activation of the protein kinase PKR-like ER kinase (PERK), a trigger for stress-induced translational suppression. These data demonstrate that ER stress in cortical neurons leads to activation of several cysteine proteases within diverse neuronal compartments and indicate that Alzheimer's disease-linked PS-1 mutations do not invariably alter the proteolytic, chaperone induction, translational suppression, and apoptotic responses to ER stress.
Collapse
|
|
24 |
79 |
14
|
Flood DG, Reaume AG, Gruner JA, Hoffman EK, Hirsch JD, Lin YG, Dorfman KS, Scott RW. Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:663-72. [PMID: 10433959 PMCID: PMC1866863 DOI: 10.1016/s0002-9440(10)65162-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/1999] [Indexed: 10/18/2022]
Abstract
The role of oxidative damage in neurodegenerative disease was investigated in mice lacking cytoplasmic Cu/Zn superoxide dismutase (SOD), created by deletion of the SOD1 gene (SOD1(-/-)). SOD1(-/-) mice developed a chronic peripheral hindlimb axonopathy. Mild denervation of muscle was detected at 2 months, and behavioral and physiological motor deficits were present at 5-7 months of age. Ventral root axons were shrunken but were normal in number. The somatosensory system in SOD1(-/-) mice was mildly affected. SOD1(-/-) mice expressing Cu/Zn SOD only in brain and spinal cord were generated using transgenic mice expressing mouse SOD1 driven by the neuron-specific synapsin promoter. Neuron-specific expression of Cu/Zn SOD in SOD1(-/-) mice rescued motor neurons from the neuropathy. Therefore, Cu/Zn SOD is not required for normal motor neuron survival, but is necessary for the maintenance of normal neuromuscular junctions by hindlimb motor neurons.
Collapse
|
research-article |
26 |
78 |
15
|
Anderton BH, Callahan L, Coleman P, Davies P, Flood D, Jicha GA, Ohm T, Weaver C. Dendritic changes in Alzheimer's disease and factors that may underlie these changes. Prog Neurobiol 1998; 55:595-609. [PMID: 9670220 DOI: 10.1016/s0301-0082(98)00022-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It seems likely that the Alzheimer disease (AD)-related dendritic changes addressed in this article are induced by two principally different processes. One process is linked to the plastic response associated with deafferentation, that is, long-lasting transneuronally induced regressive changes in dendritic geometry and structure. The other process is associated with severe alterations of the dendritic- and perikaryal cytoskeleton as seen in neurons with the neurofibrillary pathology of AD, that is, the formation of paired helical filaments formed by hyperphosphorylated microtubule-associated protein tau. As the development of dendritic and cytoskeletal abnormalities are at least mediated by alterations in signal transduction, this article also reviews changes in signal pathways in AD. We also discuss transgenic approaches developed to model and understand cytoskeletal abnormalities.
Collapse
|
Review |
27 |
75 |
16
|
Hanks SD, Flood DG. Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. I. CA1 of hippocampus. Brain Res 1991; 540:63-82. [PMID: 2054634 DOI: 10.1016/0006-8993(91)90493-f] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pyramidal neurons in two subdivisions of CA1 (CA1c and CA1a + b) of hippocampus from human brains obtained at autopsy were studied in Golgi Cox-stained tissue. Seventeen cases were a part of a normal aging series, ranging in age from 43 to 95 years; and 5 cases had Alzheimer's disease (AD). Dendritic extent of apical and basal trees was found to be stable in normal aging. In AD there was a significant loss of total dendritic length and/or average segment length for the apical and basal trees of both subdivisions of CA1. This finding is consistent with the findings of severe pathology in CA1 reported by others. The reductions in overall dendritic extent in CA1a + b in AD could be attributed largely to alterations in the lengths of the terminal segments. Apical and basal trees of CA1c were more severely affected by AD than those of CA1a + b and showed more widespread reductions in numbers of segments as well as lengths of segments.
Collapse
|
Comparative Study |
34 |
70 |
17
|
Flood DG, Finn JP, Walton KM, Dionne CA, Contreras PC, Miller MS, Bhat RV. Immunolocalization of the mitogen-activated protein kinases p42MAPK and JNK1, and their regulatory kinases MEK1 and MEK4, in adult rat central nervous system. J Comp Neurol 1998; 398:373-92. [PMID: 9714150 DOI: 10.1002/(sici)1096-9861(19980831)398:3<373::aid-cne6>3.0.co;2-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell survival, death, and stress signals are transduced from the cell surface to the cytoplasm and nucleus via a cascade of phosphorylation events involving the mitogen-activated protein kinase (MAPK) family. We compared the distribution of p42 mitogen-activated protein kinase (p42MAPK) and its activator MAPK or ERK kinase (MEK1; involved in transduction of growth and differentiation signals), with c-Jun N-terminal kinase (JNK1) and its activator MEK4 (involved in transduction of stress and death signals) in the adult rat central nervous system. All four kinases were present in the cytoplasm, dendrites, and axons of neurons. The presence of p42MAPK and JNK1 in dendrites and axons, as well as in cell bodies, suggests a role for these kinases in phosphorylation and regulation of cytoplasmic targets. A high degree of correspondence was found between the regional distribution of MEK1 and p42MAPK. Immunostaining for MEK1 and p42MAPK was intense in olfactory structures, neocortex, hippocampus, striatum, midline, and interlaminar thalamic nuclei, hypothalamus, brainstem, Purkinje cells, and spinal cord. In addition to neurons, p42MAPK was also present in oligodendrocytes. Whereas MEK4 was ubiquitously distributed, JNK1 was more selective. Immunostaining for MEK4 and JNK1 was intense in the olfactory bulb, lower cortical layers, the cholinergic basal forebrain, most nuclei of the thalamus, medial habenula, and cranial motor nuclei. The distribution of MEK1 and p42MAPK proteins only partially overlapped with that of MEK4 and JNK1. This suggests that the growth/differentiation and death/stress pathways affected by these kinases may not necessarily act to counterbalance each other in response to extracellular stimuli. The differential distribution of these kinases may control the specificity of neuronal function to extracellular signals.
Collapse
|
|
27 |
69 |
18
|
Coleman PD, Flood DG. Dendritic proliferation in the aging brain as a compensatory repair mechanism. PROGRESS IN BRAIN RESEARCH 1986; 70:227-37. [PMID: 3554351 DOI: 10.1016/s0079-6123(08)64307-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
Review |
39 |
69 |
19
|
Flood DG, Guarnaccia M, Coleman PD. Dendritic extent in human CA2-3 hippocampal pyramidal neurons in normal aging and senile dementia. Brain Res 1987; 409:88-96. [PMID: 3580872 DOI: 10.1016/0006-8993(87)90744-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The extent of dendritic trees of pyramidal neurons of the CA2-3 field of the hippocampus of 20 human brains obtained at autopsy was quantified in Golgi Cox-stained tissue. Fifteen cases were neurologically and psychiatrically normal and ranged in age from 43 to 95 years. Five cases had a progressive, dementing disease consistent with the diagnosis of senile dementia (SD) of the Alzheimer's type. Dendritic extent of both the apical and basal trees of CA2-3 pyramidal neurons was found to be unchanged from middle age to very old age. This finding of net stability of dendritic extent is in contrast to previous quantitative reports of either continued dendritic growth in human parahippocampal gyrus or of dendritic growth followed by regression in human dentate gyrus. This finding is consistent with the suggestion that changes in dendritic extent in normal aging are a function of the balance between regressive and proliferative influences and are region specific. In cases with SD, dendritic extent of both the apical and basal trees was found to be similar to that of the normal age-matched cases. These data are consistent with those of others suggesting relative sparing of the CA2-3 field from the degenerative changes in senile dementia.
Collapse
|
|
38 |
59 |
20
|
Coleman PD, Flood DG, West MJ. Volumes of the components of the hippocampus in the aging F344 rat. J Comp Neurol 1987; 266:300-6. [PMID: 3437077 DOI: 10.1002/cne.902660213] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much of the recent data on cells, synapses, and other structures in the dentate gyrus and hippocampus as a function of age are packing density or volume fraction data. In order to estimate total numbers, volumes, or surface areas of cells, synapses, vessels, etc., as a function of age, the total volumes of the subregions of the dentate gyrus and hippocampus must be known. The volumes of these subregions, visualized with the Timm stain, have been determined in 24 F344 rats from 4 to 37 months of age. Volumes of the various structures showed age-related increases which were statistically significant for the perforant path zone of the dentate gyrus molecular layer, as well as the total molecular layer, the hilus, and regio inferior and total mossy fiber systems. If the 4-month age group is eliminated from consideration, only the ratio of the volume of the mossy fiber zones to the volume of the perforant path zones of the dentate molecular layer increases significantly with age. Our general finding of lack of volumetric reorganization of the subdivisions of the hippocampal region between 12 and 37 months suggests that studies of the packing densities of structures in most of these zones may be considered comparable across ages, assuming comparability of sampling regions.
Collapse
|
|
38 |
51 |
21
|
Flood DG, Coleman PD. Hippocampal plasticity in normal aging and decreased plasticity in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 1990; 83:435-43. [PMID: 2203107 DOI: 10.1016/s0079-6123(08)61267-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different patterns of age-related dendritic change have been reported in different zones of the human hippocampal region in the normal and Alzheimer's disease (AD) brain. In normal aging there is an increase in average (net) dendritic extent (which we interpret as plasticity) in the parahippocampal gyrus and dentate gyrus. There is net stability of dendritic extent in CA2-3, CA1, and subiculum. In regions that show plasticity in normal aging, dendrites in AD show reduced or aberrant plasticity. In regions that show stability in normal aging, dendrites either are stable or regress in AD, depending upon how severely involved the region is with the pathology of AD.
Collapse
|
Review |
35 |
49 |
22
|
Flood DG. Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. II. Subiculum. Brain Res 1991; 540:83-95. [PMID: 2054635 DOI: 10.1016/0006-8993(91)90494-g] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The dendritic trees of pyramidal neurons of layer III or the external pyramidal layer of the subiculum have been studied in Golgi Cox-stained human tissue obtained at autopsy. Fifteen cases were neurologically and psychiatrically normal and ranged in age from 43 to 95 years; and 5 cases had clinically and neuropathologically defined Alzheimer's disease (AD). Measures of dendritic extent did not change in normal aging in either the apical or basal trees. In AD there was a significant reduction in dendritic extent of the apical trees and a non-significant reduction in extent of the basal trees. These alterations of the dendritic trees in AD are consistent with the findings of severe pathology in the subiculum reported by others. Changes in AD were mainly a reduction in numbers of segments, rather than in the lengths of segments.
Collapse
|
|
34 |
46 |
23
|
West MJ, Coleman PD, Flood DG. Estimating the number of granule cells in the dentate gyrus with the disector. Brain Res 1988; 448:167-72. [PMID: 3292009 DOI: 10.1016/0006-8993(88)91114-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A practical example is given of how a newly developed stereological estimator of particle number, the disector, can be used to make estimates of neuron number in the dentate gyrus of rats. The estimates are free of biases related to lost caps, overprojection and assumptions about size, shape and orientation of the objects that are counted. The disector principle and the practical considerations relating to histological preparations and sampling are presented.
Collapse
|
|
37 |
43 |
24
|
Kazee AM, Han LY, Spongr VP, Walton JP, Salvi RJ, Flood DG. Synaptic loss in the central nucleus of the inferior colliculus correlates with sensorineural hearing loss in the C57BL/6 mouse model of presbycusis. Hear Res 1995; 89:109-20. [PMID: 8600115 DOI: 10.1016/0378-5955(95)00128-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Between 3 and 25 months of age, light and electron microscopic features of principal neurons in the central nucleus of the inferior colliculus of the C57BL/6 mouse were quantitated. This mouse strain has a genetic defect producing progressive sensorineural hearing loss which starts during young adulthood (2 months of age) with high-frequency sounds. During the second year of life, hearing is severely impaired, progressively involving all frequencies. The hearing loss was documented in the present study by auditory brainstem recordings of the mice at various ages. The cochleas from many of the same animals showed massive loss of both inner and outer hair cells beginning at the base (high-frequency region) and progressing with age along the entire length to the apex (low-frequency region). In the inferior colliculi, there was a significant decrease in the size of principal neurons in the central nucleus. There was a dramatic decrease in the number of synapses of all morphologic types on principal neuronal somas. The percentage of somatic membrane covered by synapses decreased by 67%. A ventral (high frequency) to dorsal (low frequency) gradient of synaptic loss could not be identified within the central nucleus. These synaptic changes may be related to the equally dramatic physiologic changes which have been noted in the central nucleus of the inferior colliculus, in which response properties of neurons normally sensitive to high-frequency sounds become more sensitive to low-frequency sounds. The synaptic loss noted in this study may be due to more than the loss of primary afferent pathways. It may represent alterations of the complex synaptic circuitry related to the central deficits of presbycusis.
Collapse
|
|
30 |
41 |
25
|
Abstract
The study was designed to examine Herman and Polivy's restrained eating theory (Journal of Abnormal Psychology, 84, 666-672, 1975) using two different methods: situational-experimental and dispositional-correlational. Fifty-eight female college students were administered the revised UCLA Loneliness Scale, the Beck Depression Inventory (Short Form), and the Restraint scale. Subsequently, the students were subjected to either a neutral, sad, or loneliness mood induction and then ate cookies under the pretext of participating in a taste test. Consistent with expectation, dieters tended to consume more food in the loneliness than neutral mood condition, whereas nondieters displayed the opposite pattern. A comparable pattern was found in the relation between the revised UCLA Loneliness Scale and food consumption with respect to Restraint; the amount of food consumed increased as a function of loneliness for high restrained eaters, whereas the amount of food consumed decreased as a function of loneliness for low restrained eaters. There were no appreciable effects of the sad mood induction, nor prediction by dispositional depression, regarding the amount of food consumed as a function of dietary restraint. The findings were discussed with respect to the motivational role that loneliness may play in inhibiting and disinhibiting food consumption.
Collapse
|
|
26 |
40 |