1
|
Craig MC, Catani M, Deeley Q, Latham R, Daly E, Kanaan R, Picchioni M, McGuire PK, Fahy T, Murphy DGM. Altered connections on the road to psychopathy. Mol Psychiatry 2009; 14:946-53, 907. [PMID: 19506560 DOI: 10.1038/mp.2009.40] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Psychopathy is strongly associated with serious criminal behaviour (for example, rape and murder) and recidivism. However, the biological basis of psychopathy remains poorly understood. Earlier studies suggested that dysfunction of the amygdala and/or orbitofrontal cortex (OFC) may underpin psychopathy. Nobody, however, has ever studied the white matter connections (such as the uncinate fasciculus (UF)) linking these structures in psychopaths. Therefore, we used in vivo diffusion tensor magnetic resonance imaging (DT-MRI) tractography to analyse the microstructural integrity of the UF in psychopaths (defined by a Psychopathy Checklist Revised (PCL-R) score of > or = 25) with convictions that included attempted murder, manslaughter, multiple rape with strangulation and false imprisonment. We report significantly reduced fractional anisotropy (FA) (P<0.003), an indirect measure of microstructural integrity, in the UF of psychopaths compared with age- and IQ-matched controls. We also found, within psychopaths, a correlation between measures of antisocial behaviour and anatomical differences in the UF. To confirm that these findings were specific to the limbic amygdala-OFC network, we also studied two 'non-limbic' control tracts connecting the posterior visual and auditory areas to the amygdala and the OFC, and found no significant between-group differences. Lastly, to determine that our findings in UF could not be totally explained by non-specific confounds, we carried out a post hoc comparison with a psychiatric control group with a past history of drug abuse and institutionalization. Our findings remained significant. Taken together, these results suggest that abnormalities in a specific amygdala-OFC limbic network underpin the neurobiological basis of psychopathy.
Collapse
|
|
16 |
211 |
2
|
Henry JC, van Amelsvoort T, Morris RG, Owen MJ, Murphy DGM, Murphy KC. An investigation of the neuropsychological profile in adults with velo-cardio-facial syndrome (VCFS). Neuropsychologia 2002; 40:471-8. [PMID: 11749977 DOI: 10.1016/s0028-3932(01)00136-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Velo-cardio-facial syndrome (VCFS) is associated with deletions on the long arm of chromosome 22, mild intellectual disability, poor social interaction and a high prevalence of psychosis. However, to date there have been no studies investigating the neuropsychological functioning of adults with VCFS. We compared 19 adults with VCFS with 19 age, gender and IQ matched controls using a comprehensive neuropsychological battery. Compared to controls, adults with VCFS had significant impairments in visuoperceptual ability (Visual Object and Space Perception Battery), problem solving and planning (Tower of London) and abstract and social thinking (Comprehension WAIS-R). It is likely that haploinsufficiency (reduced gene dosage) of a neurodevelopmental gene or genes mapping to chromosome 22q11 underlies the cognitive deficits observed in individuals with VCFS.
Collapse
|
|
23 |
94 |
3
|
Toal F, Daly EM, Page L, Deeley Q, Hallahan B, Bloemen O, Cutter WJ, Brammer MJ, Curran S, Robertson D, Murphy C, Murphy KC, Murphy DGM. Clinical and anatomical heterogeneity in autistic spectrum disorder: a structural MRI study. Psychol Med 2010; 40:1171-1181. [PMID: 19891805 DOI: 10.1017/s0033291709991541] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Autistic spectrum disorder (ASD) is characterized by stereotyped/obsessional behaviours and social and communicative deficits. However, there is significant variability in the clinical phenotype; for example, people with autism exhibit language delay whereas those with Asperger syndrome do not. It remains unclear whether localized differences in brain anatomy are associated with variation in the clinical phenotype. METHOD We used voxel-based morphometry (VBM) to investigate brain anatomy in adults with ASD. We included 65 adults diagnosed with ASD (39 with Asperger syndrome and 26 with autism) and 33 controls who did not differ significantly in age or gender. RESULTS VBM revealed that subjects with ASD had a significant reduction in grey-matter volume of medial temporal, fusiform and cerebellar regions, and in white matter of the brainstem and cerebellar regions. Furthermore, within the subjects with ASD, brain anatomy varied with clinical phenotype. Those with autism demonstrated an increase in grey matter in frontal and temporal lobe regions that was not present in those with Asperger syndrome. CONCLUSIONS Adults with ASD have significant differences from controls in the anatomy of brain regions implicated in behaviours characterizing the disorder, and this differs according to clinical subtype.
Collapse
|
|
15 |
88 |
4
|
Sarkar S, Craig MC, Catani M, Dell'acqua F, Fahy T, Deeley Q, Murphy DGM. Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: a diffusion tensor imaging study. Psychol Med 2013; 43:401-411. [PMID: 22617495 DOI: 10.1017/s003329171200116x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Children with conduct disorder (CD) are at increased risk of developing antisocial personality disorder (ASPD) and psychopathy in adulthood. The biological basis for this is poorly understood. A preliminary diffusion tensor magnetic resonance imaging (DT-MRI) study of psychopathic antisocial adults reported significant differences from controls in the fractional anisotropy (FA) of the uncinate fasciculus (UF), a white-matter tract that connects the amygdala to the frontal lobe. However, it is unknown whether developmental abnormalities are present in the UF of younger individuals with CD. METHOD We used DT-MRI tractography to investigate, for the first time, the microstructural integrity of the UF in adolescents with CD, and age-related differences in this tract. We compared FA and perpendicular diffusivity of the UF in 27 adolescents with CD and 16 healthy controls (12 to 19 years old) who did not differ significantly in age, IQ or substance use history. To confirm that these findings were specific to the UF, the same measurements were extracted from two non-limbic control tracts. Participants in the CD group had a history of serious aggressive and violent behaviour, including robbery, burglary, grievous bodily harm and sexual assault. RESULTS Individuals with CD had a significantly increased FA (p = 0.006), and reduced perpendicular diffusivity (p = 0.002), in the left UF. Furthermore, there were significant age-related between-group differences in perpendicular diffusivity of the same tract (Z obs = 2.40, p = 0.01). Controls, but not those with CD, showed significant age-related maturation. There were no significant between-group differences in any measure within the control tracts. CONCLUSIONS Adolescents with CD have significant differences in the 'connectivity' and maturation of UF.
Collapse
|
|
12 |
88 |
5
|
Ajram LA, Horder J, Mendez MA, Galanopoulos A, Brennan LP, Wichers RH, Robertson DM, Murphy CM, Zinkstok J, Ivin G, Heasman M, Meek D, Tricklebank MD, Barker GJ, Lythgoe DJ, Edden RAE, Williams SC, Murphy DGM, McAlonan GM. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl Psychiatry 2017; 7:e1137. [PMID: 28534874 PMCID: PMC5534939 DOI: 10.1038/tp.2017.104] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023] Open
Abstract
Currently, there are no effective pharmacologic treatments for the core symptoms of autism spectrum disorder (ASD). There is, nevertheless, potential for progress. For example, recent evidence suggests that the excitatory (E) glutamate and inhibitory (I) GABA systems may be altered in ASD. However, no prior studies of ASD have examined the 'responsivity' of the E-I system to pharmacologic challenge; or whether E-I modulation alters abnormalities in functional connectivity of brain regions implicated in the disorder. Therefore, we used magnetic resonance spectroscopy ([1H]MRS) to measure prefrontal E-I flux in response to the glutamate and GABA acting drug riluzole in adult men with and without ASD. We compared the change in prefrontal 'Inhibitory Index'-the GABA fraction within the pool of glutamate plus GABA metabolites-post riluzole challenge; and the impact of riluzole on differences in resting-state functional connectivity. Despite no baseline differences in E-I balance, there was a significant group difference in response to pharmacologic challenge. Riluzole increased the prefrontal cortex inhibitory index in ASD but decreased it in controls. There was also a significant group difference in prefrontal functional connectivity at baseline, which was abolished by riluzole within the ASD group. Our results also show, for we believe the first time in ASD, that E-I flux can be 'shifted' with a pharmacologic challenge, but that responsivity is significantly different from controls. Further, our initial evidence suggests that abnormalities in functional connectivity can be 'normalised' by targeting E-I, even in adults.
Collapse
|
Comparative Study |
8 |
85 |
6
|
Ecker C, Spooren W, Murphy DGM. Translational approaches to the biology of Autism: false dawn or a new era? Mol Psychiatry 2013; 18:435-42. [PMID: 22801412 PMCID: PMC3606942 DOI: 10.1038/mp.2012.102] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 02/04/2023]
Abstract
Discovering novel treatments for Autism Spectrum Disorders (ASD) is a challenge. Its etiology and pathology remain largely unknown, the condition shows wide clinical diversity, and case identification is still solely based on symptomatology. Hence clinical trials typically include samples of biologically and clinically heterogeneous individuals. 'Core deficits', that is, deficits common to all individuals with ASD, are thus inherently difficult to find. Nevertheless, recent reports suggest that new opportunities are emerging, which may help develop new treatments and biomarkers for the condition. Most important, several risk gene variants have now been identified that significantly contribute to ASD susceptibility, many linked to synaptic functioning, excitation-inhibition balance, and brain connectivity. Second, neuroimaging studies have advanced our understanding of the 'wider' neural systems underlying ASD; and significantly contributed to our knowledge of the complex neurobiology associated with the condition. Last, the recent development of powerful multivariate analytical techniques now enable us to use multi-modal information in order to develop complex 'biomarker systems', which may in the future be used to assist the behavioral diagnosis, aid patient stratification and predict response to treatment/intervention. The aim of this review is, therefore, to summarize some of these important new findings and highlight their potential significant translational value to the future of ASD research.
Collapse
|
Review |
12 |
62 |
7
|
Ecker C, Andrews D, Dell'Acqua F, Daly E, Murphy C, Catani M, Thiebaut de Schotten M, Baron-Cohen S, Lai MC, Lombardo MV, Bullmore ET, Suckling J, Williams S, Jones DK, Chiocchetti A, Murphy DGM. Relationship Between Cortical Gyrification, White Matter Connectivity, and Autism Spectrum Disorder. Cereb Cortex 2016; 26:3297-309. [PMID: 27130663 PMCID: PMC4898679 DOI: 10.1093/cercor/bhw098] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, which is accompanied by differences in gray matter neuroanatomy and white matter connectivity. However, it is unknown whether these differences are linked or reflect independent aetiologies. Using a multimodal neuroimaging approach, we therefore examined 51 male adults with ASD and 48 neurotypical controls to investigate the relationship between gray matter local gyrification (lGI) and white matter diffusivity in associated fiber tracts. First, ASD individuals had a significant increase in gyrification around the left pre- and post-central gyrus. Second, white matter fiber tracts originating and/or terminating in the cluster of increased lGI had a significant increase in axial diffusivity. This increase in diffusivity was predominantly observed in tracts in close proximity to the cortical sheet. Last, we demonstrate that the increase in lGI was significantly correlated with increased diffusivity of short tracts. This relationship was not significantly modulated by a main effect of group (i.e., ASD), which was more closely associated with gray matter gyrification than white matter diffusivity. Our findings suggest that differences in gray matter neuroanatomy and white matter connectivity are closely linked, and may reflect common rather than distinct aetiological pathways.
Collapse
|
research-article |
9 |
61 |
8
|
Lloyd‐Fox S, Blasi A, Pasco G, Gliga T, Jones EJH, Murphy DGM, Elwell CE, Charman T, Johnson MH, Baron‐Cohen S, Bedford R, Bolton P, Cheung HMC, Davies K, Elsabbagh M, Fernandes J, Gammer I, Guiraud J, Liew M, Maris H, O'Hara L, Pickles A, Ribeiro H, Salomone E, Tucker L, Yemane F. Cortical responses before 6 months of life associate with later autism. Eur J Neurosci 2018; 47:736-749. [PMID: 29057543 PMCID: PMC5900943 DOI: 10.1111/ejn.13757] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023]
Abstract
Autism spectrum disorder (ASD) is a common, highly heritable, developmental disorder and later-born siblings of diagnosed children are at higher risk of developing ASD than the general population. Although the emergence of behavioural symptoms of ASD in toddlerhood is well characterized, far less is known about development during the first months of life of infants at familial risk. In a prospective longitudinal study of infants at familial risk followed to 36 months, we measured functional near-infrared spectroscopy (fNIRS) brain responses to social videos of people (i.e. peek-a-boo) compared to non-social images (vehicles) and human vocalizations compared to non-vocal sounds. At 4-6 months, infants who went on to develop ASD at 3 years (N = 5) evidenced-reduced activation to visual social stimuli relative to low-risk infants (N = 16) across inferior frontal (IFG) and posterior temporal (pSTS-TPJ) regions of the cortex. Furthermore, these infants also showed reduced activation to vocal sounds and enhanced activation to non-vocal sounds within left lateralized temporal (aMTG-STG/pSTS-TPJ) regions compared with low-risk infants and high-risk infants who did not develop ASD (N = 15). The degree of activation to both the visual and auditory stimuli correlated with parent-reported ASD symptomology in toddlerhood. These preliminary findings are consistent with later atypical social brain responses seen in children and adults with ASD, and highlight the need for further work interrogating atypical processing in early infancy and how it may relate to later social interaction and communication difficulties characteristic of ASD.
Collapse
|
research-article |
7 |
56 |
9
|
Deoni SCL, Zinkstok JR, Daly E, Ecker C, Williams SCR, Murphy DGM. White-matter relaxation time and myelin water fraction differences in young adults with autism. Psychol Med 2015; 45:795-805. [PMID: 25111948 DOI: 10.1017/s0033291714001858] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Increasing evidence suggests that autism is associated with abnormal white-matter (WM) anatomy and impaired brain 'connectivity'. While myelin plays a critical role in synchronized brain communication, its aetiological role in autistic symptoms has only been indirectly addressed by WM volumetric, relaxometry and diffusion tensor imaging studies. A potentially more specific measure of myelin content, termed myelin water fraction (MWF), could provide improved sensitivity to myelin alteration in autism. METHOD We performed a cross-sectional imaging study that compared 14 individuals with autism and 14 age- and IQ-matched controls. T 1 relaxation times (T 1), T 2 relaxation times (T 2) and MWF values were compared between autistic subjects, diagnosed using the Autism Diagnostic Interview - Revised (ADI-R), with current symptoms assessed using the Autism Diagnostic Observation Schedule (ADOS) and typical healthy controls. Correlations between T 1, T 2 and MWF values with clinical measures [ADI-R, ADOS, and the Autism Quotient (AQ)] were also assessed. RESULTS Individuals with autism showed widespread WM T 1 and MWF differences compared to typical controls. Within autistic individuals, worse current social interaction skill as measured by the ADOS was related to reduced MWF although not T 1. No significant differences or correlations with symptoms were observed with respect to T 2. CONCLUSIONS Autistic individuals have significantly lower global MWF and higher T 1, suggesting widespread alteration in tissue microstructure and biochemistry. Areas of difference, including thalamic projections, cerebellum and cingulum, have previously been implicated in the disorder; however, this is the first study to specifically indicate myelin alteration in these regions.
Collapse
|
|
10 |
53 |
10
|
Hallahan B, Daly EM, McAlonan G, Loth E, Toal F, O'Brien F, Robertson D, Hales S, Murphy C, Murphy KC, Murphy DGM. Brain morphometry volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychol Med 2009; 39:337-346. [PMID: 18775096 DOI: 10.1017/s0033291708003383] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Several prior reports have found that some young children with autism spectrum disorder [ASD; including autism and Asperger's syndrome and pervasive developmental disorder - not otherwise specified (PDD-NOS)] have a significant increase in head size and brain weight. However, the findings from older children and adults with ASD are inconsistent. This may reflect the relatively small sample sizes that were studied, clinical heterogeneity, or age-related brain differences. METHOD Hence, we measured head size (intracranial volume), and the bulk volume of ventricular and peripheral cerebrospinal fluid (CSF), lobar brain, and cerebellum in 114 people with ASD and 60 controls aged between 18 and 58 years. The ASD sample included 80 people with Asperger's syndrome, 28 with autism and six with PDD-NOS. RESULTS There was no significant between-group difference in head and/or lobar brain matter volume. However, compared with controls, each ASD subgroup had a significantly smaller cerebellar volume, and a significantly larger volume of peripheral CSF. CONCLUSIONS Within ASD adults, the bulk volume of cerebellum is reduced irrespective of diagnostic subcategory. Also the significant increase in peripheral CSF may reflect differences in cortical maturation and/or ageing.
Collapse
|
|
16 |
51 |
11
|
Surguladze SA, Elkin A, Ecker C, Kalidindi S, Corsico A, Giampietro V, Lawrence N, Deeley Q, Murphy DGM, Kucharska-Pietura K, Russell TA, McGuffin P, Murray R, Phillips ML. Genetic variation in the serotonin transporter modulates neural system-wide response to fearful faces. GENES BRAIN AND BEHAVIOR 2008; 7:543-51. [PMID: 18266983 DOI: 10.1111/j.1601-183x.2008.00390.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A distributed, serotonergically innervated neural system comprising extrastriate cortex, amygdala and ventral prefrontal cortex is critical for identification of socially relevant emotive stimuli. The extent to which a genetic variation of serotonin transporter gene 5-HTTLPR impacts functional connectivity between the amygdala and the other components of this neural system remains little examined. In our study, neural activity was measured using event-related functional magnetic resonance imaging in 29 right-handed, white Caucasian healthy subjects as they viewed mild or prototypical fearful and neutral facial expressions. 5-HTTLPR genotype was classified as homozygous for the short allele (S/S), homozygous for the long allele (L/L) or heterozygous (S/L). S/S showed greater activity than L/L within right fusiform gyrus (FG) to prototypically fearful faces. To these fearful faces, S/S more than other genotype subgroups showed significantly greater positive functional connectivity between right amygdala and FG and between right FG and right ventrolateral prefrontal cortex (VLPFC). There was a positive association between measure of psychoticism and degree of functional connectivity between right FG and right VLPFC in response to prototypically fearful faces. Our data are the first to show that genotypic variation in 5-HTTLPR modulates both the amplitude within and the functional connectivity between different components of the visual object-processing neural system to emotionally salient stimuli. These effects may underlie the vulnerability to mood and anxiety disorders potentially triggered by socially salient, emotional cues in individuals with the S allele of 5-HTTLPR.
Collapse
|
Journal Article |
17 |
46 |
12
|
Abstract
Previous studies in postmenopausal women have reported that estrogen treatment (ET) modulates the risk for developing Alzheimer's disease (AD). It has recently been hypothesized that there may be a "critical period" around the time of menopause during which the prescription of ET may reduce the risk of developing AD in later life. This effect may be most significant in women under 49 years old. Furthermore, prescription of ET after this point may have a neutral or negative effect, particularly when initiated in women over 60-65 years old. In this paper, we review recent studies that use in vivo techniques to analyze the neurobiological mechanisms that might underpin estrogen's effects on the brain postmenopause. Consistent with the "critical period" hypothesis, these studies suggest that the positive effects of estrogen are most robust in young women and in older women who had initiated ET around the time of menopause.
Collapse
|
Review |
15 |
44 |
13
|
Beacher F, Daly E, Simmons A, Prasher V, Morris R, Robinson C, Lovestone S, Murphy K, Murphy DGM. Brain anatomy and ageing in non-demented adults with Down's syndrome: an in vivo MRI study. Psychol Med 2010; 40:611-619. [PMID: 19671216 DOI: 10.1017/s0033291709990985] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND People with Down's syndrome (DS) are at high risk for developing dementia in middle age. The biological basis for this is unknown. It has been proposed that non-demented adults with DS may undergo accelerated brain ageing. METHOD We used volumetric magnetic resonance imaging (MRI) and manual tracing to compare brain anatomy and ageing in 39 non-demented adults with DS and 42 healthy controls. RESULTS Individuals with DS had significant differences in brain anatomy. Furthermore, individuals with DS had a significantly greater age-related reduction in volume of frontal, temporal and parietal lobes, and a significantly greater age-related increase in volume of peripheral cerebrospinal fluid (CSF). CONCLUSIONS Non-demented adults with DS have differences in brain anatomy and 'accelerated' ageing of some brain regions. This may increase their risk for age-related cognitive decline and Alzheimer's disease (AD).
Collapse
|
|
15 |
40 |
14
|
Bramham J, Murphy DGM, Xenitidis K, Asherson P, Hopkin G, Young S. Adults with attention deficit hyperactivity disorder: an investigation of age-related differences in behavioural symptoms, neuropsychological function and co-morbidity. Psychol Med 2012; 42:2225-2234. [PMID: 22369977 DOI: 10.1017/s0033291712000219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The outcomes of attention deficit hyperactivity disorder (ADHD) have been studied extensively in the first decades of life, but less is known about ADHD in adulthood. Hence we investigated cross-sectional age-related differences in behavioural symptoms, neuropsychological function and severity of co-morbid disorders within a clinically referred adult ADHD population. METHOD We subdivided 439 referrals of individuals with ADHD (aged 16-50 years) into four groups based on decade of life and matched for childhood ADHD severity. We compared the groups on measures of self- and informant-rated current behavioural ADHD symptoms, neuropsychological performance, and self-rated co-morbid mood and anxiety symptoms. RESULTS There was a significant age-related reduction in the severity of all ADHD symptoms based on informant-ratings. In contrast, according to self-ratings, inattentive symptoms increased with age. Neuropsychological function improved across age groups on measures of selective attention and response inhibition. There was a mild correlation between the severity of depression symptoms and increasing age. CONCLUSIONS This observational study suggests that, in adulthood, ADHD symptoms as measured using informant-ratings and neuropsychological measures continue to improve with increasing age. However the subjective experience of people with ADHD is that their symptoms worsen. This dichotomy may be partially explained by the presence of co-morbid affective symptoms. The main limitation of the study is that it is cross-sectional rather than longitudinal, and the latter design would provide more conclusive evidence regarding age-related changes in an adult ADHD population.
Collapse
|
|
13 |
35 |
15
|
van Amelsvoort T, Zinkstok J, Figee M, Daly E, Morris R, Owen MJ, Murphy KC, De Haan L, Linszen DH, Glaser B, Murphy DGM. Effects of a functional COMT polymorphism on brain anatomy and cognitive function in adults with velo-cardio-facial syndrome. Psychol Med 2008; 38:89-100. [PMID: 17493297 DOI: 10.1017/s0033291707000700] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Velo-cardio-facial syndrome (VCFS) is associated with deletions at chromosome 22q11, abnormalities in brain anatomy and function, and schizophrenia-like psychosis. Thus it is assumed that one or more genes within the deleted region are crucial to brain development. However, relatively little is known about how genetic variation at 22q11 affects brain structure and function. One gene on 22q11 is catechol-O-methyltransferase (COMT): an enzyme that degrades dopamine and contains a functional polymorphism (Val158Met) affecting enzyme activity. Here, we investigated the effect of COMT Val158Met polymorphism on brain anatomy and cognition in adults with VCFS. METHOD The COMT Val158Met polymorphism was genotyped for 26 adults with VCFS on whom DNA was available. We explored its effects on regional brain volumes using hand tracing approaches; on regional grey- and white-matter density using computerized voxel-based analyses; and measures of attention, IQ, memory, executive and visuospatial function using a comprehensive neuropsychological test battery. RESULTS After corrections for multiple comparisons Val-hemizygous subjects, compared with Met-hemizygotes, had a significantly larger volume of frontal lobes. Also, Val-hemizygotes had significantly increased grey matter density in cerebellum, brainstem, and parahippocampal gyrus, and decreased white matter density in the cerebellum. No significant effects of COMT genotype on neurocognitive performance were found. CONCLUSIONS COMT genotype effects on brain anatomy in VCFS are not limited to frontal regions but also involve other structures previously implicated in VCFS. This suggests variation in COMT activity is implicated in brain development in VCFS.
Collapse
|
Comparative Study |
17 |
33 |
16
|
Beacher F, Daly E, Simmons A, Prasher V, Morris R, Robinson C, Lovestone S, Murphy K, Murphy DGM. Alzheimer's disease and Down's syndrome: an in vivo MRI study. Psychol Med 2009; 39:675-684. [PMID: 18667098 DOI: 10.1017/s0033291708004054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Individuals with Down's syndrome (DS) are at high risk of developing Alzheimer's disease (AD). However, few studies have investigated brain anatomy in DS individuals with AD. METHOD We compared whole brain anatomy, as measured by volumetric magnetic resonance imaging (MRI), in DS individuals with and without AD. We also investigated whether volumetric differences could reliably classify DS individuals according to AD status. We used volumetric MRI and manual tracing to examine regional brain anatomy in 19 DS adults with AD and 39 DS adults without AD. RESULTS DS individuals with AD had significantly smaller corrected volumes bilaterally of the hippocampus and caudate, and right amygdala and putamen, and a significantly larger corrected volume of left peripheral cerebrospinal fluid (CSF), compared to DS individuals without AD. The volume of the hippocampus and caudate nucleus correctly categorized 92% and 92% respectively of DS individuals without AD, and 75% and 80% respectively of DS individuals with AD. CONCLUSIONS DS individuals with AD have significant medial temporal and striatal volume reductions, and these may provide markers of clinical AD.
Collapse
|
|
16 |
33 |
17
|
Craig MC, Cutter WJ, Wickham H, van Amelsvoort TAMJ, Rymer J, Whitehead M, Murphy DGM. Effect of long-term estrogen therapy on dopaminergic responsivity in post-menopausal women--a preliminary study. Psychoneuroendocrinology 2004; 29:1309-16. [PMID: 15288710 DOI: 10.1016/j.psyneuen.2004.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/05/2004] [Accepted: 03/28/2004] [Indexed: 10/26/2022]
Abstract
Females have a higher prevalence than men of neuropsychiatric disorders in which dopaminergic abnormalities play a prominent role, e.g. very late-onset schizophrenia and Parkinson's disease (PD). The biological basis of these sex differences is unknown but may include modulation of the dopaminergic system by sex hormones, as there is preliminary evidence that estrogen modulates treatment response in these disorders. Furthermore, sex differences in dopamine-mediated cognitive decline suggest estrogen may also play a role in healthy aging. However, the effects of estrogen on the dopaminergic system are poorly understood, and nobody has examined the effect of long-term estrogen therapy (ET) on this system. We compared dopaminergic responsivity (growth hormone (GH) response to apomorphine) in post-menopausal women on ET to women who were ET-naïve. GH response to subcutaneous apomorphine (0.005 mg/kg) was measured in two groups of healthy post-menopausal women aged between 55 and 70 years: those taking ET (n = 13) and those who had never taken ET (n = 13). Neither group was taking any other medication. GH was measured at 15 min intervals from -30 min before administration of apomorphine to 90 min post-administration. GH response was measured in two ways: area under the curve (AUC) and maximum response over baseline (GH). There were no between-group differences in demographic or baseline variables. The ET treated women had a significantly greater (p = 0.03) AUC than ET naïve women (mean +/- S.D.; 5.3 +/- 4.7 vs. 2.6 +/- 2.3). However, (GH) did not differ significantly between groups (6.1 mU/l +/- 6.2 vs. 2.7 mU/l +/- S.D. = 4.1). Also, analysis of GH response over time revealed a significant main effect of time (p < 0.0005), and a group by time interaction (p = 0.004) , but no significant main effect of group. Our results suggest that ET may enhance dopaminergic responsivity in post-menopausal women. Estrogen deficiency following menopause may partly explain age and gender differences in late-onset neuropsychiatric disorders.
Collapse
|
Clinical Trial |
21 |
32 |
18
|
Zeestraten EA, Gudbrandsen MC, Daly E, de Schotten MT, Catani M, Dell'Acqua F, Lai MC, Ruigrok ANV, Lombardo MV, Chakrabarti B, Baron-Cohen S, Ecker C, Murphy DGM, Craig MC. Sex differences in frontal lobe connectivity in adults with autism spectrum conditions. Transl Psychiatry 2017; 7:e1090. [PMID: 28398337 PMCID: PMC5416715 DOI: 10.1038/tp.2017.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/04/2023] Open
Abstract
Autism spectrum conditions (ASC) are more prevalent in males than females. The biological basis of this difference remains unclear. It has been postulated that one of the primary causes of ASC is a partial disconnection of the frontal lobe from higher-order association areas during development (that is, a frontal 'disconnection syndrome'). Therefore, in the current study we investigated whether frontal connectivity differs between males and females with ASC. We recruited 98 adults with a confirmed high-functioning ASC diagnosis (61 males: aged 18-41 years; 37 females: aged 18-37 years) and 115 neurotypical controls (61 males: aged 18-45 years; 54 females: aged 18-52 years). Current ASC symptoms were evaluated using the Autism Diagnostic Observation Schedule (ADOS). Diffusion tensor imaging was performed and fractional anisotropy (FA) maps were created. Mean FA values were determined for five frontal fiber bundles and two non-frontal fiber tracts. Between-group differences in mean tract FA, as well as sex-by-diagnosis interactions were assessed. Additional analyses including ADOS scores informed us on the influence of current ASC symptom severity on frontal connectivity. We found that males with ASC had higher scores of current symptom severity than females, and had significantly lower mean FA values for all but one tract compared to controls. No differences were found between females with or without ASC. Significant sex-by-diagnosis effects were limited to the frontal tracts. Taking current ASC symptom severity scores into account did not alter the findings, although the observed power for these analyses varied. We suggest these findings of frontal connectivity abnormalities in males with ASC, but not in females with ASC, have the potential to inform us on some of the sex differences reported in the behavioral phenotype of ASC.
Collapse
|
Comparative Study |
8 |
29 |
19
|
Russell AJ, Mataix-Cols D, Anson MAW, Murphy DGM. Psychological treatment for obsessive-compulsive disorder in people with autism spectrum disorders--a pilot study. PSYCHOTHERAPY AND PSYCHOSOMATICS 2009; 78:59-61. [PMID: 19018159 DOI: 10.1159/000172622] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022]
|
Letter |
16 |
29 |
20
|
Cutter WJ, Norbury R, Murphy DGM. Oestrogen, brain function, and neuropsychiatric disorders. J Neurol Neurosurg Psychiatry 2003; 74:837-40. [PMID: 12810759 PMCID: PMC1738534 DOI: 10.1136/jnnp.74.7.837] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
Editorial |
22 |
26 |
21
|
van Amelsvoort T, Murphy DGM, Robertson D, Daly E, Whitehead M, Abel K. Effects of long-term estrogen replacement therapy on growth hormone response to pyridostigmine in healthy postmenopausal women. Psychoneuroendocrinology 2003; 28:101-12. [PMID: 12445839 DOI: 10.1016/s0306-4530(02)00012-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE There is growing evidence that estrogen may protect against age-related cognitive decline and reduce the risk of developing Alzheimer's disease (AD) in healthy, postmenopausal women. The underlying biological basis for this is not known but may include preservation of cholinergic systems. Cholinergic dysfunction has been implicated in the aetiology of age-related memory impairment and AD. We studied the effect of prolonged use of estrogen replacement therapy (ERT) on central cholinergic tone in healthy postmenopausal women. METHOD Growth hormone (GH) responses to oral pyridostigmine (120 mg) were measured over a 3 h period in thirty healthy postmenopausal women, 15 on long-term ERT and 15 ERT naïve. RESULTS GH release following pyridostigmine was significantly larger in ERT treated women than in ERT naïve women. In addition within the ERT treated group there was a significant positive correlation between duration of estrogen treatment and GH response. CONCLUSIONS Long-term ERT can enhance cholinergic function in postmenopausal women and this may be related to duration of estrogen treatment. Modulation of central cholinergic function may be one mechanism by which long-term ERT could preserve cognitive function in healthy, postmenopausal women.
Collapse
|
|
22 |
22 |
22
|
Compton J, Travis MJ, Norbury R, Erlandsson K, van Amelsvoort T, Daly E, Waddington W, Matthiasson P, Eersels JLH, Whitehead M, Kerwin RW, Ell PJ, Murphy DGM. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study. Horm Behav 2008; 53:61-8. [PMID: 17956758 DOI: 10.1016/j.yhbeh.2007.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 08/20/2007] [Accepted: 08/21/2007] [Indexed: 11/23/2022]
Abstract
Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.
Collapse
|
Comparative Study |
17 |
19 |
23
|
Norbury R, Travis MJ, Erlandsson K, Waddington W, Owens J, Pimlott S, Ell PJ, Murphy DGM. In vivo imaging of muscarinic receptors in the aging female brain with (,)[I]-I-QNB and single photon emission tomography. Exp Gerontol 2005; 40:137-45. [PMID: 15763390 DOI: 10.1016/j.exger.2004.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/27/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
The effect of age on brain muscarinic receptor density is unclear. Some in vivo neuroimaging studies have reported a large age-related reduction in muscarinic receptor density; however, others have reported increases or no change. The variability in these results most likely arises because of the heterogeneity of the populations studied, differences in quantification methods employed, and a paucity of subtype selective ligands. Thus, we used the m(1)/m(4) selective probe (R,R)[(123)I]-I-QNB to investigate age-related differences in brain muscarinic receptors in healthy females. We included 10 younger subjects (age range 26-37) and 22 older women (age range 57-82 years). The older women had significantly lower (R,R)[(123)I]-I-QNB binding in widespread brain regions including cerebral cortex and hippocampus. Across all subjects, regional binding was significantly negatively correlated with age. Thus, in this population of healthy women, there was an age-related reduction in muscarinic receptor density. This may contribute to age-related differences in cognitive function and risk for Alzheimer's disease.
Collapse
|
|
20 |
18 |
24
|
Gudbrandsen M, Daly E, Murphy CM, Wichers RH, Stoencheva V, Perry E, Andrews D, Blackmore CE, Rogdaki M, Kushan L, Bearden CE, Murphy DGM, Craig MC, Ecker C. The Neuroanatomy of Autism Spectrum Disorder Symptomatology in 22q11.2 Deletion Syndrome. Cereb Cortex 2019; 29:3655-3665. [PMID: 30272146 PMCID: PMC6644859 DOI: 10.1093/cercor/bhy239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/10/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS) is a genetic condition associated with a high prevalence of neuropsychiatric conditions that include autism spectrum disorder (ASD). While evidence suggests that clinical phenotypes represent distinct neurodevelopmental outcomes, it remains unknown whether this translates to the level of neurobiology. To fractionate the 22q11.2DS phenotype on the level of neuroanatomy, we examined differences in vertex-wise estimates of cortical volume, surface area, and cortical thickness between 1) individuals with 22q11.2DS (n = 62) and neurotypical controls (n = 57) and 2) 22q11.2DS individuals with ASD symptomatology (n = 30) and those without (n = 25). We firstly observed significant differences in surface anatomy between 22q11.2DS individuals and controls for all 3 neuroanatomical features, predominantly in parietotemporal regions, cingulate and dorsolateral prefrontal cortices. We also established that 22q11.2DS individuals with ASD symptomatology were neuroanatomically distinct from 22q11.2DS individuals without ASD symptoms, particularly in brain regions that have previously been linked to ASD (e.g., dorsolateral prefrontal cortices and the entorhinal cortex). Our findings indicate that different clinical 22q11.2DS phenotypes, including those with ASD symptomatology, may represent different neurobiological subgroups. The spatially distributed patterns of neuroanatomical differences associated with ASD symptomatology in 22q11.2DS may thus provide useful information for patient stratification and the prediction of clinical outcomes.
Collapse
|
research-article |
6 |
8 |
25
|
Gudbrandsen M, Daly E, Murphy CM, Blackmore CE, Rogdaki M, Mann C, Bletsch A, Kushan L, Bearden CE, Murphy DGM, Craig MC, Ecker C. Brain morphometry in 22q11.2 deletion syndrome: an exploration of differences in cortical thickness, surface area, and their contribution to cortical volume. Sci Rep 2020; 10:18845. [PMID: 33139857 PMCID: PMC7606591 DOI: 10.1038/s41598-020-75811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS) is the most common microdeletion in humans, with a heterogenous clinical presentation including medical, behavioural and psychiatric conditions. Previous neuroimaging studies examining the neuroanatomical underpinnings of 22q11.2DS show alterations in cortical volume (CV), cortical thickness (CT) and surface area (SA). The aim of this study was to identify (1) the spatially distributed networks of differences in CT and SA in 22q11.2DS compared to controls, (2) their unique and spatial overlap, as well as (3) their relative contribution to observed differences in CV. Structural MRI scans were obtained from 62 individuals with 22q11.2DS and 57 age-and-gender-matched controls (aged 6-31). Using FreeSurfer, we examined differences in vertex-wise estimates of CV, CT and SA at each vertex, and compared the frequencies of vertices with a unique or overlapping difference for each morphometric feature. Our findings indicate that CT and SA make both common and unique contributions to volumetric differences in 22q11.2DS, and in some areas, their strong opposite effects mask differences in CV. By identifying the neuroanatomic variability in 22q11.2DS, and the separate contributions of CT and SA, we can start exploring the shared and distinct mechanisms that mediate neuropsychiatric symptoms across disorders, e.g. 22q11.2DS-related ASD and/or psychosis/schizophrenia.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
4 |