1
|
Di Stefano R, Kissling E, Chiarabba C, Amato A, Giardini D. Shallow subduction beneath Italy: Three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on high-qualityPwave arrival times. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jb005641] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
16 |
100 |
2
|
Husen S, Kissling E, Deichmann N, Wiemer S, Giardini D, Baer M. Probabilistic earthquake location in complex three-dimensional velocity models: Application to Switzerland. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jb001778] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
22 |
94 |
3
|
Armano M, Audley H, Auger G, Baird JT, Bassan M, Binetruy P, Born M, Bortoluzzi D, Brandt N, Caleno M, Carbone L, Cavalleri A, Cesarini A, Ciani G, Congedo G, Cruise AM, Danzmann K, de Deus Silva M, De Rosa R, Diaz-Aguiló M, Di Fiore L, Diepholz I, Dixon G, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fichter W, Fitzsimons ED, Flatscher R, Freschi M, García Marín AF, García Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Guzmán F, Grado A, Grimani C, Grynagier A, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Johann U, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Madden S, Mateos I, McNamara PW, Mendes J, Mendes L, Monsky A, Nicolodi D, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Raïs B, Ramos-Castro J, Reiche J, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sanjuán J, Sarra P, Schleicher A, Shaul D, Slutsky J, Sopuerta CF, Stanga R, Steier F, Sumner T, Texier D, et alArmano M, Audley H, Auger G, Baird JT, Bassan M, Binetruy P, Born M, Bortoluzzi D, Brandt N, Caleno M, Carbone L, Cavalleri A, Cesarini A, Ciani G, Congedo G, Cruise AM, Danzmann K, de Deus Silva M, De Rosa R, Diaz-Aguiló M, Di Fiore L, Diepholz I, Dixon G, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fichter W, Fitzsimons ED, Flatscher R, Freschi M, García Marín AF, García Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Guzmán F, Grado A, Grimani C, Grynagier A, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Johann U, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Madden S, Mateos I, McNamara PW, Mendes J, Mendes L, Monsky A, Nicolodi D, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Raïs B, Ramos-Castro J, Reiche J, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sanjuán J, Sarra P, Schleicher A, Shaul D, Slutsky J, Sopuerta CF, Stanga R, Steier F, Sumner T, Texier D, Thorpe JI, Trenkel C, Tröbs M, Tu HB, Vetrugno D, Vitale S, Wand V, Wanner G, Ward H, Warren C, Wass PJ, Wealthy D, Weber WJ, Wissel L, Wittchen A, Zambotti A, Zanoni C, Ziegler T, Zweifel P. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. PHYSICAL REVIEW LETTERS 2016; 116:231101. [PMID: 27341221 DOI: 10.1103/physrevlett.116.231101] [Show More Authors] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 05/27/2023]
Abstract
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1 fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15} g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3) fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.
Collapse
|
|
9 |
87 |
4
|
Meghraoui M, Delouis B, Ferry M, Giardini D, Huggenberger P, Spottke I, Granet M. Active normal faulting in the upper Rhine graben and paleoseismic identification of the 1356 Basel earthquake. Science 2001; 293:2070-3. [PMID: 11557888 DOI: 10.1126/science.1010618] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have identified an active normal fault in the epicentral area of the Basel (Switzerland) earthquake of 18 October 1356, the largest historical seismic event in central Europe. The event of 1356 and two prehistoric events have been characterized on the fault with geomorphological analysis, geophysical prospecting, and trenching. Carbon-14 dating indicates that the youngest event occurred in the interval 610 to 1475 A.D. and may correspond to the 1356 Basel earthquake. The occurrence of the three earthquakes induced a total of 1.8 meters of vertical displacement in the past 8500 years for a mean uplift rate of 0.21 millimeters per year. These successive ruptures on the normal fault indicate the potential for strong ground movements in the Basel region and should be taken into account to refine the seismic hazard estimates along the Rhine graben.
Collapse
|
|
24 |
80 |
5
|
Ripperger J, Ampuero JP, Mai PM, Giardini D. Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004515] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
18 |
65 |
6
|
Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Castelli E, Cavalleri A, Cesarini A, Cruise AM, Danzmann K, de Deus Silva M, Diepholz I, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons ED, Freschi M, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Meshksar N, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Ramos-Castro J, Reiche J, Robertson DI, Rivas F, Russano G, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe JI, Vetrugno D, Vitale S, Wanner G, Ward H, Wass PJ, Weber WJ, Wissel L, Wittchen A, Zweifel P. Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μHz. PHYSICAL REVIEW LETTERS 2018; 120:061101. [PMID: 29481269 DOI: 10.1103/physrevlett.120.061101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Indexed: 06/08/2023]
Abstract
In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 μHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05) fm s^{-2}/sqrt[Hz] above 2 mHz and (6±1)×10 fm s^{-2}/sqrt[Hz] at 20 μHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.
Collapse
|
|
7 |
35 |
7
|
Salichon J, Delouis B, Lundgren P, Giardini D, Costantini M, Rosen P. Joint inversion of broadband teleseismic and interferometric synthetic aperture radar (InSAR) data for the slip history of the Mw = 7.7, Nazca ridge (Peru) earthquake of 12 November 1996. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jb000913] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
22 |
30 |
8
|
Lognonné P, Banerdt WB, Giardini D, Pike WT, Christensen U, Laudet P, de Raucourt S, Zweifel P, Calcutt S, Bierwirth M, Hurst KJ, Ijpelaan F, Umland JW, Llorca-Cejudo R, Larson SA, Garcia RF, Kedar S, Knapmeyer-Endrun B, Mimoun D, Mocquet A, Panning MP, Weber RC, Sylvestre-Baron A, Pont G, Verdier N, Kerjean L, Facto LJ, Gharakanian V, Feldman JE, Hoffman TL, Klein DB, Klein K, Onufer NP, Paredes-Garcia J, Petkov MP, Willis JR, Smrekar SE, Drilleau M, Gabsi T, Nebut T, Robert O, Tillier S, Moreau C, Parise M, Aveni G, Ben Charef S, Bennour Y, Camus T, Dandonneau PA, Desfoux C, Lecomte B, Pot O, Revuz P, Mance D, tenPierick J, Bowles NE, Charalambous C, Delahunty AK, Hurley J, Irshad R, Liu H, Mukherjee AG, Standley IM, Stott AE, Temple J, Warren T, Eberhardt M, Kramer A, Kühne W, Miettinen EP, Monecke M, Aicardi C, André M, Baroukh J, Borrien A, Bouisset A, Boutte P, Brethomé K, Brysbaert C, Carlier T, Deleuze M, Desmarres JM, Dilhan D, Doucet C, Faye D, Faye-Refalo N, Gonzalez R, Imbert C, Larigauderie C, Locatelli E, Luno L, Meyer JR, Mialhe F, Mouret JM, Nonon M, Pahn Y, Paillet A, Pasquier P, Perez G, Perez R, et alLognonné P, Banerdt WB, Giardini D, Pike WT, Christensen U, Laudet P, de Raucourt S, Zweifel P, Calcutt S, Bierwirth M, Hurst KJ, Ijpelaan F, Umland JW, Llorca-Cejudo R, Larson SA, Garcia RF, Kedar S, Knapmeyer-Endrun B, Mimoun D, Mocquet A, Panning MP, Weber RC, Sylvestre-Baron A, Pont G, Verdier N, Kerjean L, Facto LJ, Gharakanian V, Feldman JE, Hoffman TL, Klein DB, Klein K, Onufer NP, Paredes-Garcia J, Petkov MP, Willis JR, Smrekar SE, Drilleau M, Gabsi T, Nebut T, Robert O, Tillier S, Moreau C, Parise M, Aveni G, Ben Charef S, Bennour Y, Camus T, Dandonneau PA, Desfoux C, Lecomte B, Pot O, Revuz P, Mance D, tenPierick J, Bowles NE, Charalambous C, Delahunty AK, Hurley J, Irshad R, Liu H, Mukherjee AG, Standley IM, Stott AE, Temple J, Warren T, Eberhardt M, Kramer A, Kühne W, Miettinen EP, Monecke M, Aicardi C, André M, Baroukh J, Borrien A, Bouisset A, Boutte P, Brethomé K, Brysbaert C, Carlier T, Deleuze M, Desmarres JM, Dilhan D, Doucet C, Faye D, Faye-Refalo N, Gonzalez R, Imbert C, Larigauderie C, Locatelli E, Luno L, Meyer JR, Mialhe F, Mouret JM, Nonon M, Pahn Y, Paillet A, Pasquier P, Perez G, Perez R, Perrin L, Pouilloux B, Rosak A, Savin de Larclause I, Sicre J, Sodki M, Toulemont N, Vella B, Yana C, Alibay F, Avalos OM, Balzer MA, Bhandari P, Blanco E, Bone BD, Bousman JC, Bruneau P, Calef FJ, Calvet RJ, D’Agostino SA, de los Santos G, Deen RG, Denise RW, Ervin J, Ferraro NW, Gengl HE, Grinblat F, Hernandez D, Hetzel M, Johnson ME, Khachikyan L, Lin JY, Madzunkov SM, Marshall SL, Mikellides IG, Miller EA, Raff W, Singer JE, Sunday CM, Villalvazo JF, Wallace MC, Banfield D, Rodriguez-Manfredi JA, Russell CT, Trebi-Ollennu A, Maki JN, Beucler E, Böse M, Bonjour C, Berenguer JL, Ceylan S, Clinton J, Conejero V, Daubar I, Dehant V, Delage P, Euchner F, Estève I, Fayon L, Ferraioli L, Johnson CL, Gagnepain-Beyneix J, Golombek M, Khan A, Kawamura T, Kenda B, Labrot P, Murdoch N, Pardo C, Perrin C, Pou L, Sauron A, Savoie D, Stähler S, Stutzmann E, Teanby NA, Tromp J, van Driel M, Wieczorek M, Widmer-Schnidrig R, Wookey J. SEIS: Insight's Seismic Experiment for Internal Structure of Mars. SPACE SCIENCE REVIEWS 2019; 215:12. [PMID: 30880848 PMCID: PMC6394762 DOI: 10.1007/s11214-018-0574-6] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/29/2018] [Indexed: 05/23/2023]
Abstract
UNLABELLED By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of M w ∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users.
Collapse
|
Review |
6 |
29 |
9
|
Gritti P, Carrara B, Khotcholava M, Bortolotti G, Giardini D, Lanterna LA, Benigni A, Sonzogni V. The use of desflurane or propofol in combination with remifentanil in myasthenic patients undergoing a video-assisted thoracoscopic-extended thymectomy. Acta Anaesthesiol Scand 2009; 53:380-9. [PMID: 19243323 DOI: 10.1111/j.1399-6576.2008.01853.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although several studies of the use of desflurane in anesthesia have revealed many desirable qualities, there are no data on the use and effects especially on the neuromuscular function of desflurane on myasthenia gravis (MG) patients. The purpose of this study was to evaluate the use of either desflurane or propofol, both combined with remifentanil, in patients with MG undergoing a video-assisted thoracoscopic-extended thymectomy (VATET). METHODS Thirty-six MG patients who underwent VATET were enrolled. Nineteen patients were anesthetized with remifentanil and propofol infused with a target-controlled infusion plasma model, and 17 patients with desflurane and remifentanil. No muscle relaxant was used. The intubating conditions, hemodynamic and respiratory changes, neuromuscular transmission and post-operative complications were evaluated. RESULTS Neuromuscular transmission was significantly decreased in the desflurane group (6.7%, from 3% to 9% during anesthesia P=or<0.05). The intubating conditions were good in all 36 patients and 35 patients were successfully extubated in the operating room. The time-to-awakening, post-operatory pH and base excess were significantly different in the two groups, with a decreasing mean arterial pressure in the group administered with desflurane. No patients required reintubation due to myasthenic or cholinergic crisis, or respiratory failure. No other significant differences between the two groups studied were observed. CONCLUSION Our experience indicates that anesthesia with desflurane plus remifentanil in patients with MG could determine a reversible muscle relaxation effect, but with no clinical implication, allowing a faster recovery with no difference in extubation time and post-operative complications in the two groups.
Collapse
|
Controlled Clinical Trial |
16 |
23 |
10
|
Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Castelli E, Cavalleri A, Cesarini A, Cruise A, Danzmann K, de Deus Silva M, Diepholz I, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Karnesis N, Kaune B, Korsakova N, Killow C, Lobo J, Lloro I, Liu L, López-Zaragoza J, Maarschalkerweerd R, Mance D, Meshksar N, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Ramos-Castro J, Reiche J, Robertson D, Rivas F, Russano G, Slutsky J, Sopuerta C, Sumner T, Texier D, Thorpe J, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P, Weber W, Wissel L, Wittchen A, Zweifel P. Calibrating the system dynamics of LISA Pathfinder. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.97.122002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
7 |
13 |
11
|
|
|
24 |
12 |
12
|
Morricone L, Ferrari M, Enrini R, Inglese L, Giardini D, Garancini P, Caviezel F. The role of central fat distribution in coronary artery disease in obesity: comparison of nondiabetic obese, diabetic obese, and normal weight subjects. Int J Obes (Lond) 1999; 23:1129-35. [PMID: 10578202 DOI: 10.1038/sj.ijo.0801042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the degree of coronary artery disease (CAD) in relation to obesity and fat distribution in obese patients with normal glucose tolerance, in comparison with CAD of diabetic obese patients and of normal weight subjects with CAD. DESIGN Patients listed for coronary angiography with different body mass index (BMI) with or without diabetes: study of the correlation between severity of coronary damage and fat distribution. SUBJECTS 92 patients subdivided into: 30 normal glucose tolerant obese (BMI 31.7+/-0.5, aged 53+/-1.7 y), 28 type 2 diabetic obese (BMI 30.7+/-0. 3, aged 57+/-1.2 y), and 34 normal weight patients (BMI 23.1+/-0.3, aged 54+/-1.7 y). MEASUREMENTS CAD assessed by angiography and evaluated according to the method of Gensini. Fat mass and fat distribution assessed by bioelectrical impedance and anthropometry. Clinical, biochemical and hormonal variables, as well as smoking habits and alcohol intake. RESULTS The angiographic coronary scores were similar in nondiabetic obese and in diabetic obese patients, and were significantly higher than those of normal weight subjects. In the entire population coronary score correlated with indices of abdominal fat distribution. In the stepwise analysis of each group separately, waist hip ratio (WHR) correlated with coronary score only in normal weight nondiabetic patients. CAD was inversely associated with BMI only in nondiabetic obese patients. CONCLUSION CAD of obese patients: 1) is similar to that of diabetic obese patients; 2) is more severe than that of normal weight individuals; and 3) is inversely correlated with BMI. CAD appears to be associated with WHR, not with BMI, only in nondiabetic patients with normal body weight. On the contrary, CAD of diabetic obese patients is unrelated to BMI and parameters of fat distribution, but is associated with smoking habits.
Collapse
|
|
26 |
12 |
13
|
Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Castelli E, Cavalleri A, Cesarini A, Cruise AM, Danzmann K, de Deus Silva M, Diepholz I, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons ED, Flatscher R, Freschi M, García A, Gerndt R, Gesa L, Giardini D, Gibert F, Giusteri R, Grimani C, Grzymisch J, Guzman F, Harrison I, Hartig MS, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Johann U, Johlander B, Karnesis N, Kaune B, Killow CJ, Korsakova N, Lobo JA, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Martín V, Martin-Polo L, Martin-Porqueras F, Martino J, McNamara PW, Mendes J, Mendes L, Meshksar N, Monsky A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Ramos-Castro J, Reiche J, Rivas F, Robertson DI, Russano G, Sanjuan J, Slutsky J, Sopuerta CF, Steier F, Sumner T, Texier D, Thorpe JI, Vetrugno D, Vitale S, Wand V, Wanner G, Ward H, Wass PJ, Weber WJ, Wissel L, Wittchen A, Zweifel P. Sensor Noise in LISA Pathfinder: In-Flight Performance of the Optical Test Mass Readout. PHYSICAL REVIEW LETTERS 2021; 126:131103. [PMID: 33861094 DOI: 10.1103/physrevlett.126.131103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
We report on the first subpicometer interferometer flown in space. It was part of ESA's Laser Interferometer Space Antenna (LISA) Pathfinder mission and performed the fundamental measurement of the positional and angular motion of two free-falling test masses. The interferometer worked immediately, stably, and reliably from switch on until the end of the mission with exceptionally low residual noise of 32.0_{-1.7}^{+2.4} fm/sqrt[Hz], significantly better than required. We present an upper limit for the sensor performance at millihertz frequencies and a model for the measured sensitivity above 200 mHz.
Collapse
|
|
4 |
12 |
14
|
Armano M, Audley H, Baird J, Born M, Bortoluzzi D, Cardines N, Castelli E, Cavalleri A, Cesarini A, Cruise AM, Danzmann K, de Deus Silva M, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons ED, Freschi M, Gesa L, Giardini D, Gibert F, Giusteri R, Grimani C, Grzymisch J, Harrison I, Hartig MS, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Karnesis N, Kaune B, Killow CJ, Korsakova N, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Meshksar N, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Ramos-Castro J, Reiche J, Rivas F, Robertson DI, Russano G, Slutsky J, Sopuerta CF, Sumner T, Texier D, Ten Pierick J, Thorpe JI, Vetrugno D, Vitale S, Wanner G, Ward H, Wass PJ, Weber WJ, Wissel L, Wittchen A, Zweifel P. Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:045003. [PMID: 32357757 DOI: 10.1063/1.5140406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.
Collapse
|
|
5 |
5 |
15
|
Khan A, Huang D, Durán C, Sossi PA, Giardini D, Murakami M. Evidence for a liquid silicate layer atop the Martian core. Nature 2023; 622:718-723. [PMID: 37880439 PMCID: PMC10600012 DOI: 10.1038/s41586-023-06586-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
Seismic recordings made during the InSight mission1 suggested that Mars's liquid core would need to be approximately 27% lighter than pure liquid iron2,3, implying a considerable complement of light elements. Core compositions based on seismic and bulk geophysical constraints, however, require larger quantities of the volatile elements hydrogen, carbon and sulfur than those that were cosmochemically available in the likely building blocks of Mars4. Here we show that multiply diffracted P waves along a stratified core-mantle boundary region of Mars in combination with first-principles computations of the thermoelastic properties of liquid iron-rich alloys3 require the presence of a fully molten silicate layer overlying a smaller, denser liquid core. Inverting differential body wave travel time data with particular sensitivity to the core-mantle boundary region suggests a decreased core radius of 1,675 ± 30 km associated with an increased density of 6.65 ± 0.1 g cm-3, relative to previous models2,4-8, while the thickness and density of the molten silicate layer are 150 ± 15 km and 4.05 ± 0.05 g cm-3, respectively. The core properties inferred here reconcile bulk geophysical and cosmochemical requirements, consistent with a core containing 85-91 wt% iron-nickel and 9-15 wt% light elements, chiefly sulfur, carbon, oxygen and hydrogen. The chemical characteristics of a molten silicate layer above the core may be revealed by products of Martian magmatism.
Collapse
|
research-article |
2 |
4 |
16
|
Armano M, Audley H, Auger G, Baird JT, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, de Deus Silva M, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons ED, Flatscher R, Freschi M, Gallegos J, García Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspé H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Killow CJ, Korsakova N, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Madden S, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Romera Perez JA, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta C, Sumner TJ, Texier D, Thorpe JI, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Wass PJ, Wealthy D, Weber WJ, Wittchen A, Zanoni C, Ziegler T, Zweifel P. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder. PHYSICAL REVIEW LETTERS 2017; 118:171101. [PMID: 28498710 DOI: 10.1103/physrevlett.118.171101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 06/07/2023]
Abstract
We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.
Collapse
|
|
8 |
4 |
17
|
Kim D, Lekić V, Irving JCE, Schmerr N, Knapmeyer‐Endrun B, Joshi R, Panning MP, Tauzin B, Karakostas F, Maguire R, Huang Q, Ceylan S, Khan A, Giardini D, Wieczorek MA, Lognonné P, Banerdt WB. Improving Constraints on Planetary Interiors With PPs Receiver Functions. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006983. [PMID: 34824966 PMCID: PMC8597591 DOI: 10.1029/2021je006983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free-surface multiple of the P-wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs-RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P-to-S (Ps)- and PPs-RFs with InSight recordings of five marsquakes. Our Ps-RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps-RFs, our PPs-RFs lack an arrival at 7.2 s lag time. Whereas Ps-RFs on Mars could be equally well fit by a two- or three-layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three-layer crust, and is highly sensitive to velocity and thickness of intra-crustal layers. We show that a three-layer crust is also preferred by S-to-P (Sp)-RFs. While the deepest interface of the three-layer crust represents the crust-mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre-existing crustal materials. PPs-RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data-constrained circumstances such as planetary missions.
Collapse
|
research-article |
4 |
3 |
18
|
Kim D, Banerdt WB, Ceylan S, Giardini D, Lekić V, Lognonné P, Beghein C, Beucler É, Carrasco S, Charalambous C, Clinton J, Drilleau M, Durán C, Golombek M, Joshi R, Khan A, Knapmeyer-Endrun B, Li J, Maguire R, Pike WT, Samuel H, Schimmel M, Schmerr NC, Stähler SC, Stutzmann E, Wieczorek M, Xu Z, Batov A, Bozdag E, Dahmen N, Davis P, Gudkova T, Horleston A, Huang Q, Kawamura T, King SD, McLennan SM, Nimmo F, Plasman M, Plesa AC, Stepanova IE, Weidner E, Zenhäusern G, Daubar IJ, Fernando B, Garcia RF, Posiolova LV, Panning MP. Surface waves and crustal structure on Mars. Science 2022; 378:417-421. [DOI: 10.1126/science.abq7157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
Collapse
|
|
3 |
3 |
19
|
Kim D, Davis P, Lekić V, Maguire R, Compaire N, Schimmel M, Stutzmann E, Irving J, Lognonné P, Scholz JR, Clinton J, Zenhäusern G, Dahmen N, Deng S, Levander A, Panning MP, Garcia RF, Giardini D, Hurst K, Knapmeyer-Endrun B, Nimmo F, Pike WT, Pou L, Schmerr N, Stähler SC, Tauzin B, Widmer-Schnidrig R, Banerdt WB. Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars InSight Mission. THE BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA : BSSA 2021; 111:2982-3002. [PMID: 35001979 PMCID: PMC8739436 DOI: 10.1785/0120210123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Seismic Experiment for Interior Structure (SEIS) of the InSight mission to Mars, has been providing direct information on Martian interior structure and dynamics of that planet since it landed. Compared to seismic recordings on Earth, ground motion measurements acquired by SEIS on Mars are made under dramatically different ambient noise conditions, but include idiosyncratic signals that arise from coupling between different InSight sensors and spacecraft components. This work is to synthesize what is known about these signal types, illustrate how they can manifest in waveforms and noise correlations, and present pitfalls in structural interpretations based on standard seismic analysis methods. We show that glitches, a type of prominent transient signal, can produce artifacts in ambient noise correlations. Sustained signals that vary in frequency, such as lander modes which are affected by variations in temperature and wind conditions over the course of the Martian Sol, can also contaminate ambient noise results. Therefore, both types of signals have the potential to bias interpretation in terms of subsurface layering. We illustrate that signal processing in the presence of identified nonseismic signals must be informed by an understanding of the underlying physical processes in order for high fidelity waveforms of ground motion to be extracted. While the origins of most idiosyncratic signals are well understood, the 2.4 Hz resonance remains debated and the literature does not contain an explanation of its fine spectral structure. Even though the selection of idiosyncratic signal types discussed in this paper may not be exhaustive, we provide guidance on best practices for enhancing the robustness of structural interpretations.
Collapse
|
research-article |
4 |
3 |
20
|
Posiolova LV, Lognonné P, Banerdt WB, Clinton J, Collins GS, Kawamura T, Ceylan S, Daubar IJ, Fernando B, Froment M, Giardini D, Malin MC, Miljković K, Stähler SC, Xu Z, Banks ME, Beucler É, Cantor BA, Charalambous C, Dahmen N, Davis P, Drilleau M, Dundas CM, Durán C, Euchner F, Garcia RF, Golombek M, Horleston A, Keegan C, Khan A, Kim D, Larmat C, Lorenz R, Margerin L, Menina S, Panning M, Pardo C, Perrin C, Pike WT, Plasman M, Rajšić A, Rolland L, Rougier E, Speth G, Spiga A, Stott A, Susko D, Teanby NA, Valeh A, Werynski A, Wójcicka N, Zenhäusern G. Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation. Science 2022; 378:412-417. [DOI: 10.1126/science.abq7704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two >130-meter-diameter impact craters formed on Mars during the later half of 2021. These are the two largest fresh impact craters discovered by the Mars Reconnaissance Orbiter since operations started 16 years ago. The impacts created two of the largest seismic events (magnitudes greater than 4) recorded by InSight during its 3-year mission. The combination of orbital imagery and seismic ground motion enables the investigation of subsurface and atmospheric energy partitioning of the impact process on a planet with a thin atmosphere and the first direct test of martian deep-interior seismic models with known event distances. The impact at 35°N excavated blocks of water ice, which is the lowest latitude at which ice has been directly observed on Mars.
Collapse
|
|
3 |
2 |
21
|
Spohn T, Hudson TL, Marteau E, Golombek M, Grott M, Wippermann T, Ali KS, Schmelzbach C, Kedar S, Hurst K, Trebi-Ollennu A, Ansan V, Garvin J, Knollenberg J, Müller N, Piqueux S, Lichtenheldt R, Krause C, Fantinati C, Brinkman N, Sollberger D, Delage P, Vrettos C, Reershemius S, Wisniewski L, Grygorczuk J, Robertsson J, Edme P, Andersson F, Krömer O, Lognonné P, Giardini D, Smrekar SE, Banerdt WB. The InSight HP 3 Penetrator (Mole) on Mars: Soil Properties Derived from the Penetration Attempts and Related Activities. SPACE SCIENCE REVIEWS 2022; 218:72. [PMID: 36514324 PMCID: PMC9734249 DOI: 10.1007/s11214-022-00941-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The NASA InSight Lander on Mars includes the Heat Flow and Physical Properties Package HP3 to measure the surface heat flow of the planet. The package uses temperature sensors that would have been brought to the target depth of 3-5 m by a small penetrator, nicknamed the mole. The mole requiring friction on its hull to balance remaining recoil from its hammer mechanism did not penetrate to the targeted depth. Instead, by precessing about a point midway along its hull, it carved a 7 cm deep and 5-6 cm wide pit and reached a depth of initially 31 cm. The root cause of the failure - as was determined through an extensive, almost two years long campaign - was a lack of friction in an unexpectedly thick cohesive duricrust. During the campaign - described in detail in this paper - the mole penetrated further aided by friction applied using the scoop at the end of the robotic Instrument Deployment Arm and by direct support by the latter. The mole tip finally reached a depth of about 37 cm, bringing the mole back-end 1-2 cm below the surface. It reversed its downward motion twice during attempts to provide friction through pressure on the regolith instead of directly with the scoop to the mole hull. The penetration record of the mole was used to infer mechanical soil parameters such as the penetration resistance of the duricrust of 0.3-0.7 MPa and a penetration resistance of a deeper layer ( > 30 cm depth) of 4.9 ± 0.4 MPa . Using the mole's thermal sensors, thermal conductivity and diffusivity were measured. Applying cone penetration theory, the resistance of the duricrust was used to estimate a cohesion of the latter of 2-15 kPa depending on the internal friction angle of the duricrust. Pushing the scoop with its blade into the surface and chopping off a piece of duricrust provided another estimate of the cohesion of 5.8 kPa. The hammerings of the mole were recorded by the seismometer SEIS and the signals were used to derive P-wave and S-wave velocities representative of the topmost tens of cm of the regolith. Together with the density provided by a thermal conductivity and diffusivity measurement using the mole's thermal sensors, the elastic moduli were calculated from the seismic velocities. Using empirical correlations from terrestrial soil studies between the shear modulus and cohesion, the previous cohesion estimates were found to be consistent with the elastic moduli. The combined data were used to derive a model of the regolith that has an about 20 cm thick duricrust underneath a 1 cm thick unconsolidated layer of sand mixed with dust and above another 10 cm of unconsolidated sand. Underneath the latter, a layer more resistant to penetration and possibly containing debris from a small impact crater is inferred. The thermal conductivity increases from 14 mW/m K to 34 mW/m K through the 1 cm sand/dust layer, keeps the latter value in the duricrust and the sand layer underneath and then increases to 64 mW/m K in the sand/gravel layer below. Supplementary Information The online version contains supplementary material available at 10.1007/s11214-022-00941-z.
Collapse
|
Review |
3 |
2 |
22
|
Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Castelli E, Cavalleri A, Cesarini A, Cruise A, Danzmann K, de Deus Silva M, Diepholz I, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Flatscher R, Freschi M, García A, Gerndt R, Gesa L, Giardini D, Gibert F, Giusteri R, Grimani C, Grzymisch J, Guzman F, Harrison I, Hartig MS, Hechenblaikner G, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Johann U, Johlander B, Karnesis N, Kaune B, Killow C, Korsakova N, Lobo J, López-Zaragoza J, Maarschalkerweerd R, Mance D, Martín V, Martin-Polo L, Martin-Porqueras F, Martino J, McNamara P, Mendes J, Mendes L, Meshksar N, Monsky A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Plagnol E, Ramos-Castro J, Reiche J, Rivas F, Robertson D, Russano G, Sanjuan J, Slutsky J, Sopuerta C, Steier F, Sumner T, Texier D, Thorpe J, Vetrugno D, Vitale S, Wand V, Wanner G, Ward H, Wass P, Weber W, Wissel L, Wittchen A, Zweifel P. Sensor noise in
LISA Pathfinder
: An extensive in-flight review of the angular and longitudinal interferometric measurement system. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.082001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
3 |
|
23
|
Meshksar N, Ferraioli L, Mance D, Ten Pierick J, Giardini D. Analysis of the accuracy of actuation electronics for the laser interferometer space antenna. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:095003. [PMID: 33003792 DOI: 10.1063/5.0018536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Electrostatic actuation of a free-floating test-mass was tested in the Laser Interferometer Space Antenna (LISA) Pathfinder mission, and it will be integrated into the LISA. We have investigated the LISA Pathfinder actuation accuracy with respect to the precision of fractional digits in the field programmable gate array (FPGA) code of actuation electronics. The LISA Pathfinder data showed that the rounding errors in the FPGA code result in an erroneous force that contaminated the main mission observable, and this error was compensated in the post-processing of the LISA Pathfinder data. To avoid a similar issue for the LISA, the LISA actuation accuracy can be improved by increasing the number of fractional digits in the FPGA code. However, this is restricted by some hardware limitations. In this paper, we investigate the necessary enlargement of the FPGA to fulfill the LISA acceleration requirements and propose a design optimization for LISA actuation electronics.
Collapse
|
|
5 |
|
24
|
Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Castelli E, Cavalleri A, Cesarini A, Cruise AM, Danzmann K, de Deus Silva M, Diepholz I, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons ED, Freschi M, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Hartig MS, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Meshksar N, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Ramos-Castro J, Reiche J, Robertson DI, Rivas F, Russano G, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe JI, Vetrugno D, Vitale S, Wanner G, Ward H, Wass PJ, Weber WJ, Wissel L, Wittchen A, Zweifel P. LISA Pathfinder Performance Confirmed in an Open-Loop Configuration: Results from the Free-Fall Actuation Mode. PHYSICAL REVIEW LETTERS 2019; 123:111101. [PMID: 31573236 PMCID: PMC7810161 DOI: 10.1103/physrevlett.123.111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Indexed: 06/10/2023]
Abstract
We report on the results of the LISA Pathfinder (LPF) free-fall mode experiment, in which the control force needed to compensate the quasistatic differential force acting on two test masses is applied intermittently as a series of "impulse" forces lasting a few seconds and separated by roughly 350 s periods of true free fall. This represents an alternative to the normal LPF mode of operation in which this balancing force is applied continuously, with the advantage that the acceleration noise during free fall is measured in the absence of the actuation force, thus eliminating associated noise and force calibration errors. The differential acceleration noise measurement presented here with the free-fall mode agrees with noise measured with the continuous actuation scheme, representing an important and independent confirmation of the LPF result. An additional measurement with larger actuation forces also shows that the technique can be used to eliminate actuation noise when this is a dominant factor.
Collapse
|
research-article |
6 |
|
25
|
Chassefière E, Bertaux JL, Berthelier JJ, Cabane M, Ciarletti V, Durry G, Forget F, Hamelin M, Leblanc F, Menvielle M, Gerasimov M, Korablev O, Linkin S, Managadze G, Jambon A, Manhès G, Lognonné P, Agrinier P, Cartigny P, Giardini D, Pike T, Kofman W, Herique A, Coll P, Person A, Costard F, Sarda P, Paillou P, Chaussidon M, Marty B, Robert F, Maurice S, Blanc M, d'Uston C, Sabroux JC, Pineau JF, Rochette P. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 34:1702-9. [PMID: 15934176 DOI: 10.1016/j.asr.2003.08.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration.
Collapse
|
|
21 |
|