1
|
Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 1997; 16:1647-55. [PMID: 9130710 PMCID: PMC1169769 DOI: 10.1093/emboj/16.7.1647] [Citation(s) in RCA: 1139] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have analyzed ErbB receptor interplay induced by the epidermal growth factor (EGF)-related peptides in cell lines naturally expressing the four ErbB receptors. Down-regulation of cell surface ErbB-1 or ErbB-2 by intracellular expression of specific antibodies has allowed us to delineate the role of these receptors during signaling elicited by: EGF and heparin binding EGF (HB-EGF), ligands of ErbB-1; betacellulin (BTC), a ligand of ErbB-1 and ErbB-4; and neu differentiation factor (NDF), a ligand of ErbB-3 and ErbB-4. Ligand-induced ErbB receptor heterodimerization follows a strict hierarchy and ErbB-2 is the preferred heterodimerization partner of all ErbB proteins. NDF-activated ErbB-3 or ErbB-4 heterodimerize with ErbB-1 only when no ErbB-2 is available. If all ErbB receptors are present, NDF receptors preferentially dimerize with ErbB-2. Furthermore, EGF- and BTC-induced activation of ErbB-3 is impaired in the absence of ErbB-2, suggesting that ErbB-2 has a role in the lateral transmission of signals between other ErbB receptors. Finally, ErbB-1 activated by all EGF-related peptides (EGF, HB-EGF, BTC and NDF) couples to SHC, whereas only ErbB-1 activated by its own ligands associates with and phosphorylates Cbl. These results provide the first biochemical evidence that a given ErbB receptor has distinct signaling properties depending on its dimerization.
Collapse
|
research-article |
28 |
1139 |
2
|
Graus-Porta D, Blaess S, Senften M, Littlewood-Evans A, Damsky C, Huang Z, Orban P, Klein R, Schittny JC, Müller U. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 2001; 31:367-79. [PMID: 11516395 DOI: 10.1016/s0896-6273(01)00374-9] [Citation(s) in RCA: 454] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer. Surprisingly, beta1-class integrins are not essential for neuron-glia interactions and neuronal migration during corticogenesis. The phenotype of the beta1-deficient mice resembles pathological changes observed in human cortical dysplasias, suggesting that defective integrin-mediated signal transduction contributes to the development of some of these diseases.
Collapse
|
|
24 |
454 |
3
|
Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, Seger R, Hynes NE, Yarden Y. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 1996. [PMID: 8617201 DOI: 10.1002/j.1460-2075.1996.tb00356.x] [Citation(s) in RCA: 424] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Overexpression of the erbB-2 gene contributes to aggressive behavior of various human adenocarcinomas, including breast cancer, through an unknown molecular mechanism. The erbB-2-encoded protein is a member of the ErbB family of growth factor receptors, but no direct ligand of ErbB-2 has been reported. We show that in various cells ErbB-2 can form heterodimers with both EGF receptor (ErbB-1) and NDF receptors (ErbB-3 and ErbB-4), suggesting that it may affect the action of heterologous ligands without the involvement of a direct ErbB-2 ligand. This possibility was addressed in breast cancer cells through either overexpression of ErbB-2 or by blocking its delivery to the cell surface by means of an endoplasmic reticulum-trapped antibody. We report that ErbB-2 overexpression enhanced binding affinities to both EGF and NDF, through deceleration of ligand dissociation rates. Likewise, removal of ErbB-2 from the cell surface almost completely abolished ligand binding by accelerating dissociation of both growth factors. The kinetic effects resulted in enhancement and prolongation of the stimulation of two major cytoplasmic signaling pathways, namely: MAP kinase (ERK) and c-Jun kinase (SAPK), by either ligand. Our results imply that ErbB-2 is a pan-ErbB subunit of the high affinity heterodimeric receptors for NDF and EGF. Therefore, the oncogenic action of ErbB-2 in human cancers may be due to its ability to potentiate in trans growth factor signaling.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
29 |
424 |
4
|
Graus-Porta D, Beerli RR, Hynes NE. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol 1995; 15:1182-91. [PMID: 7532277 PMCID: PMC230341 DOI: 10.1128/mcb.15.3.1182] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ErbB-2 becomes rapidly phosphorylated and activated following treatment of many cell lines with epidermal growth factor (EGF) or Neu differentiation factor (NDF). However, these factors do not directly bind ErbB-2, and its activation is likely to be mediated via transmodulation by other members of the type I/EGF receptor (EGFR)-related family of receptor tyrosine kinases. The precise role of ErbB-2 in the transduction of the signals elicited by EGF and NDF is unclear. We have used a novel approach to study the role of ErbB-2 in signaling through this family of receptors. An ErbB-2-specific single-chain antibody, designed to prevent transit through the endoplasmic reticulum and cell surface localization of ErbB-2, has been expressed in T47D mammary carcinoma cells, which express all four known members of the EGFR family. We show that cell surface expression of ErbB-2 was selectively suppressed in these cells and that the activation of the mitogen-activated protein kinase pathway and p70/p85S6K, induction of c-fos expression, and stimulation of growth by NDF were dramatically impaired. Activation of mitogen-activated protein kinase and p70/p85S6K and induction of c-fos expression by EGF were also significantly reduced. We conclude that in T47D cells, ErbB-2 is a major NDF signal transducer and a potentiator of the EGF signal. Thus, our observations demonstrate that ErbB-2 plays a central role in the type I/EGFR-related family of receptors and that receptor transmodulation represents a crucial step in growth factor signaling.
Collapse
|
research-article |
30 |
222 |
5
|
Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE. ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol 1998; 18:5042-51. [PMID: 9710588 PMCID: PMC109089 DOI: 10.1128/mcb.18.9.5042] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1998] [Accepted: 06/12/1998] [Indexed: 12/31/2022] Open
Abstract
The different epidermal growth factor (EGF)-related peptides elicit a diverse array of biological responses as the result of their ability to activate distinct subsets of ErbB receptor dimers, leading to the recruitment of different intracellular signaling networks. To specifically examine dimerization-dependent modulation of receptor signaling, we constructed NIH 3T3 cell lines expressing ErbB-1 and ErbB-2 singly and in pairwise combinations with each other ErbB family member. This model system allowed the comparison of EGF-activated ErbB-1 with ErbB-1 activated by Neu differentiation factor (NDF)-induced heterodimerization with ErbB-4. In both cases, ErbB-1 coupled to the adaptor protein Shc, but only when activated by EGF was it able to interact with Grb2. Compared to the rapid internalization of EGF-activated ErbB-1, NDF-activated ErbB-1 showed delayed internalization characteristics. Furthermore, the p85 subunit of phosphatidylinositol kinase (PI3-K) associated with EGF-activated ErbB-1 in a biphasic manner, whereas association with ErbB-1 transactivated by ErbB-4 was monophasic. The signaling properties of ErbB-2 following heterodimerization with the other ErbB receptors or homodimerization induced by point mutation or monoclonal antibody treatment were also analyzed. ErbB-2 binding to peptides containing the Src homology 2 domain of Grb2 or p85 and the phosphotyrosine binding domain of Shc varied according to the mode of receptor activation. Finally, tryptic phosphopeptide mapping of both ErbB-1 and ErbB-2 revealed that receptor phosphorylation is dependent on the dimerization partner. Differential receptor phosphorylation may, therefore, be the basis for the differences in the signaling properties observed.
Collapse
|
research-article |
27 |
196 |
6
|
Beerli RR, Graus-Porta D, Woods-Cook K, Chen X, Yarden Y, Hynes NE. Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol Cell Biol 1995; 15:6496-505. [PMID: 8524214 PMCID: PMC230902 DOI: 10.1128/mcb.15.12.6496] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neu differentiation factor (NDF)-induced signaling involves the activation of members of the ErbB family of receptor tyrosine kinases. Although ectopic expression of recombinant ErbB receptors has yielded valuable insight into their signaling properties, the biological function and in vivo interplay of these receptors are still poorly understood. We addressed this issue by studying NDF signaling in various human cell lines expressing moderate levels of all known ErbB receptors. NDF-induced phosphorylation of ErbB-2 and ErbB-3 was found in the breast epithelial cell line MCF10A, the breast tumor cell lines T47D and MCF7, and the ovarian tumor cell line OVCAR3. Despite similar expression levels, NDF-induced phosphorylation of ErbB-4 was cell specific and only detected in T47D and OVCAR3 cells. Blocking cell surface expression of ErbB-2 by intracellular expression of a single-chain antibody revealed that in these two cell lines, ErbB-2 significantly enhanced phosphorylation of ErbB-4. Efficient NDF-induced phosphorylation of ErbB-3 was strictly ErbB-2 dependent in the breast tumor cell lines T47D and MCF7, while it was largely ErbB-2 independent in MCF10A and OVCAR3 cells. Consequently, NDF-stimulated intracellular signaling and induction of a biological response displayed a cell-specific requirement for ErbB-2. Thus, while ErbB-2 cooperates with NDF receptors in the breast tumor cell lines, ErbB-2 independent mechanisms seem to prevail in other cellular contexts.
Collapse
|
research-article |
30 |
143 |
7
|
Marte BM, Jeschke M, Graus-Porta D, Taverna D, Hofer P, Groner B, Yarden Y, Hynes NE. Neu differentiation factor/heregulin modulates growth and differentiation of HC11 mammary epithelial cells. Mol Endocrinol 1995; 9:14-23. [PMID: 7760847 DOI: 10.1210/mend.9.1.7760847] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The HC11 mouse mammary epithelial cell line has proven to be a valuable in vitro model to study the roles of peptide factors and hormones involved in the growth and differentiation of mammary cells. Treatment of HC11 cells with the lactogenic hormones, dexamethasone, insulin, and PRL (DIP), leads to cellular differentiation and production of the milk protein beta-casein. We have analyzed the effects of Neu differentiation factor (NDF)/heregulin, a newly described activating ligand for erbB-2 and other members of the epidermal growth factor (EGF) receptor family, on cell growth and the expression of milk proteins in HC11 cells. In these cells, NDF induces tyrosine phosphorylation of erbB-2 and erbB-3. Both NDF and EGF stimulate HC11 cell proliferation and promote the responsiveness of HC11 cells to lactogenic hormones. NDF induces the expression of a 22-kilodalton milk protein. This protein is up-regulated by other factors, including dexamethasone, EGF, and basic fibroblast growth factor, and is controlled in a manner distinct from that of beta-casein. Like EGF, NDF inhibits the DIP-induced expression of beta-casein at the level of transcription. The inhibition is due to the negative effect of NDF on the activation of mammary gland factor (MGF/Stat5), a member of the Stat family of transcription factors, which is essential for beta-casein gene expression.
Collapse
|
|
30 |
36 |
8
|
Marte BM, Graus-Porta D, Jeschke M, Fabbro D, Hynes NE, Taverna D. NDF/heregulin activates MAP kinase and p70/p85 S6 kinase during proliferation or differentiation of mammary epithelial cells. Oncogene 1995; 10:167-75. [PMID: 7824269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neu differentiation factors (NDF) are a novel family of polypeptide factors which activate sub-class I tyrosine kinase receptors. In all mammary epithelial cells analysed in this study, NDF activates the same signalling pathways while it induces different, cell-specific biological effects. In AU565 cells which are growth inhibited, as well as in T47D or HC11 cells which proliferate in response to NDF, the MAP kinase isoforms p44ERK1 and p42ERK2 and the p70/p85 S6 kinase are activated. NDF stimulates tyrosine phosphorylation and the in vitro kinase activity of ErbB-2. When PKC is activated by TPA, NDF is no longer able to activate ErbB-2 in T47D cells, leading to a blockage of cell proliferation. Activation of ErbB-2 by point mutation, or by monoclonal antibodies, also stimulates both the MAPK and the p70/p85 S6 kinase pathways. The same monoclonal antibodies can induce AU565 cell differentiation. In summary, during growth or differentiation of mammary epithelial cells, NDF stimulates several independent signalling pathways which can also be triggered by ErbB-2 stimulation alone. PKC activation blocks the biological effect induced by NDF through negative modulation of ErbB-2.
Collapse
|
|
30 |
|
9
|
Merlo GR, Graus-Porta D, Cella N, Marte BM, Taverna D, Hynes NE. Growth, differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur J Cell Biol 1996; 70:97-105. [PMID: 8793381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The HC11 mouse mammary epithelial cells are a useful in vitro model of mammary cell differentiation. When treated with the lactogenic hormones mix dexamethasone, insulin and prolactin (DIP) these cells synthesize the milk protein beta-casein. HC11 cells express receptor tyrosine kinases (RTK) of various subclasses. Here we present an analysis of the effect of their stimulation on growth, differentiation and survival. Growth conditions are an important part in the HC11 cell differentiation program. In order to respond optimally to DIP, cells must be grown to confluency in medium containing epidermal growth factor (EGF) plus insulin, at which stage the cells are defined as competent. During the growth phase all the peptide factors rested in this study: EGF, fibroblast growth factor (FGF)-2, insulin, IGF-I, platelet-derived growth factor (PDGF) and stem cell factor (SCF), stimulated MAP kinase (ERK2) activity and-DNA synthesis. However, not all factors were equivalent in promoting competency. Only FGF-2 replaced EGF during growth, while IGF-1 or SCF were able to substitute for insulin. PDGF replaced neither EGF nor insulin and was ineffective as a competence factor. The only peptide which could substitute for insulin in the lactogenic DIP mix and induce beta-casein synthesis was IGF-1, albeit at a high concentration. Competent cultures of HC11 cells maintained in serum-free medium in the presence of only dexamethasone and prolactin undergo apoptosis, which is prevented by the addition of either insulin, IGF-1, FGF-2, or EGF, but not PDGF or SCF. We conclude that in HC11 cells all peptide factors induce DNA synthesis but have distinct effects on differentiation and survival in HC11 cells.
Collapse
|
Comparative Study |
29 |
|
10
|
Hynes N, Beerli R, Graus-Porta D, Weis W. 1014 Type I receptor tyrosine kinases as targets for cancer therapy. Eur J Cancer 1995. [DOI: 10.1016/0959-8049(95)96262-c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
30 |
|
11
|
Previtali S, Nodari A, Pardini C, Taveggia C, Dina G, Villa A, Graus-Porta D, Mueller U, Wrabetz L, Quattrini A, Feltri ML. DISTINCT ROLES FOR LAMININ RECEPTORS IN THE DEVELOPMENT OF THE PERIPHERAL NERVOUS SYSTEM. J Peripher Nerv Syst 2002. [DOI: 10.1046/j.1529-8027.2002.7011_39.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
|
23 |
|
12
|
Daly JM, Jannot CB, Beerli RR, Graus-Porta D, Maurer FG, Hynes NE. Neu differentiation factor induces ErbB2 down-regulation and apoptosis of ErbB2-overexpressing breast tumor cells. Cancer Res 1997; 57:3804-11. [PMID: 9288791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neu differentiation factor (NDF), a member of the epidermal growth factor (EGF)-related peptide family, activates ErbB2 via heterodimerization with the NDF receptors ErbB3 and ErbB4. In a similar fashion, EGF receptor (EGFR) agonists induce heterodimers of EGFR and ErbB2. In this paper, we show that the ErbB2-overexpressing breast tumor cells SKBR3, AU565, and MDA-MB453 are growth inhibited by NDF. Cells with elevated levels of ErbB2 but little or no NDF receptors (SKOV3 and MDA-MB361) or cells with low levels of ErbB2 (T47D and MCF7) are not growth inhibited. None of the EGFR agonists tested (EGF, beta-cellulin, or heparin-binding EGF) inhibited growth of ErbB2-overexpressing cells. These results suggest that formation of an ErbB2/NDF receptor heterodimer, but not of an ErbB2/EGFR heterodimer, promotes growth inhibition. In addition, NDF caused a down-regulation of ErbB2 but not of ErbB3. The mechanism underlying the inhibitory effect was examined further in SKBR3 cells, which are 95% growth inhibited by NDF. A G2-M arrest is seen 24 h after NDF treatment, and increased apoptosis is detectable from day 2 onward. The results demonstrate for the first time that NDF induces apoptosis of tumor cells overexpressing ErbB2.
Collapse
|
|
28 |
|