1
|
Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 1984; 312:724-9. [PMID: 6392892 DOI: 10.1038/312724a0] [Citation(s) in RCA: 1180] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human tumour necrosis factor has about 30% homology in its amino acid sequence with lymphotoxin, a lymphokine that has similar biological properties. Recombinant tumour necrosis factor can be obtained by expression of its complementary DNA in Escherichia coli and induces the haemorrhagic necrosis of transplanted methylcholanthrene-induced sarcomas in syngeneic mice.
Collapse
|
Comparative Study |
41 |
1180 |
2
|
Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 1983; 301:214-21. [PMID: 6337343 DOI: 10.1038/301214a0] [Citation(s) in RCA: 854] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
42 |
854 |
3
|
Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F, Rosenthal A. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 1996; 384:129-34. [PMID: 8906787 DOI: 10.1038/384129a0] [Citation(s) in RCA: 849] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The protein Sonic hedgehog (Shh) controls patterning and growth during vertebrate development. Here we demonstrate that it binds Patched (vPtc), which has been identified as a tumour-suppressor protein in basal cell carcinoma, with high affinity. We show that Ptc can form a physical complex with a newly cloned vertebrate homologue of the Drosophila protein Smoothened (vSmo), and that vSmo is coexpressed with vPtc in many tissues but does not bind Shh directly. These findings, combined with available genetic evidence from Drosophila, support the hypothesis that Ptc is a receptor for Shh, and that vSmo could be a signalling component that is linked to Ptc.
Collapse
|
|
29 |
849 |
4
|
Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KC, Yin L, Pennica D, Johnson EM, Schreiber RD. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998; 93:373-83. [PMID: 9590172 DOI: 10.1016/s0092-8674(00)81166-6] [Citation(s) in RCA: 634] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein we report the generation of mice lacking the ubiquitously expressed Janus kinase, Jak1. Jak1-/- mice are runted at birth, fail to nurse, and die perinatally. Although Jak1-/- cells are responsive to many cytokines, they fail to manifest biologic responses to cytokines that bind to three distinct families of cytokine receptors. These include all class II cytokine receptors, cytokine receptors that utilize the gamma(c) subunit for signaling, and the family of cytokine receptors that depend on the gp130 subunit for signaling. Our results thus demonstrate that Jak1 plays an essential and nonredundant role in promoting biologic responses induced by a select subset of cytokine receptors, including those in which Jak utilization was thought to be nonspecific.
Collapse
|
|
27 |
634 |
5
|
Gray PW, Leung DW, Pennica D, Yelverton E, Najarian R, Simonsen CC, Derynck R, Sherwood PJ, Wallace DM, Berger SL, Levinson AD, Goeddel DV. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature 1982; 295:503-8. [PMID: 6173769 DOI: 10.1038/295503a0] [Citation(s) in RCA: 524] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
43 |
524 |
6
|
Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, Brush J, Taneyhill LA, Deuel B, Lew M, Watanabe C, Cohen RL, Melhem MF, Finley GG, Quirke P, Goddard AD, Hillan KJ, Gurney AL, Botstein D, Levine AJ. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A 1998; 95:14717-22. [PMID: 9843955 PMCID: PMC24515 DOI: 10.1073/pnas.95.25.14717] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1-8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22-6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12-20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis.
Collapse
|
research-article |
27 |
410 |
7
|
Pennica D, King KL, Shaw KJ, Luis E, Rullamas J, Luoh SM, Darbonne WC, Knutzon DS, Yen R, Chien KR. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci U S A 1995; 92:1142-6. [PMID: 7862649 PMCID: PMC42654 DOI: 10.1073/pnas.92.4.1142] [Citation(s) in RCA: 403] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heart failure continues to be a leading cause of mortality worldwide. A hallmark of this disease is dilated cardiac hypertrophy, which is accompanied by a reactivation of genes expressed in fetal heart development. Reasoning that fetal or embryonic growth factors may mediate the onset of cardiac hypertrophy, we have coupled expression cloning with an embryonic stem cell-based model of cardiogenesis to isolate a 21.5-kDa protein, cardiotrophin 1, that potently induces cardiac myocyte hypertrophy in vitro. Amino acid similarity data indicate that cardiotrophin 1 is a member of the leukemia inhibitory factor/ciliary neurotrophic factor/oncostatin M/interleukin 6/interleukin 11 family of cytokines. Several members of this family that are known to signal through the transmembrane protein gp130 stimulate cardiac myocyte hypertrophy, like cardiotrophin 1, suggesting that the gp130 signaling pathway may play a role in cardiac hypertrophy. A 1.4-kb cardiotrophin 1 mRNA is expressed in the heart and several other mouse tissues.
Collapse
|
research-article |
30 |
403 |
8
|
Nedwin GE, Naylor SL, Sakaguchi AY, Smith D, Jarrett-Nedwin J, Pennica D, Goeddel DV, Gray PW. Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res 1985; 13:6361-73. [PMID: 2995927 PMCID: PMC321958 DOI: 10.1093/nar/13.17.6361] [Citation(s) in RCA: 362] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human Tumor Necrosis Factor and Lymphotoxin are cytotoxic proteins which have similar biological activities and share 30 percent amino acid homology. The single copy genes which encode these proteins share several structural features: each gene is approximately three kilobase pairs in length and is interrupted by three introns. In addition, these genes are closely linked and have been mapped to human chromosome 6. However, only the last exons of both genes, which code for more than 80 percent of each secreted protein, are significantly homologous (56 percent).
Collapse
|
|
40 |
362 |
9
|
Pennica D, Shaw KJ, Swanson TA, Moore MW, Shelton DL, Zioncheck KA, Rosenthal A, Taga T, Paoni NF, Wood WI. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J Biol Chem 1995; 270:10915-22. [PMID: 7738033 DOI: 10.1074/jbc.270.18.10915] [Citation(s) in RCA: 334] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cardiotrophin-1 (CT-1) is a newly isolated cytokine that was identified based on its ability to induce cardiac myocyte hypertrophy. It is a member of the family of cytokines that includes interleukins-6 and -11, leukemia inhibitory factor (LIF), ciliary neurotrophic factor, and oncostatin M. These cytokines induce a pleiotropic set of growth and differentiation activities via receptors that use a common signaling subunit, gp130. In this work we determine the activity of CT-1 in six in vitro biological assays and examine the composition of its cell surface receptor. We find that CT-1 is inactive in stimulating the growth of the hybridoma cell line, B9 and inhibits the growth of the mouse myeloid leukemia cell line, M1. CT-1 induces a phenotypic switch in rat sympathetic neurons and promotes the survival of rat dopaminergic and chick ciliary neurons. CT-1 also inhibits the differentiation of mouse embryonic stem cells. CT-1 and LIF cross-compete for binding to M1 cells, Kd [CT-1] approximately 0.7 nM, and this binding is inhibited by an anti-gp130 monoclonal antibody. Both ligands can be specifically cross-linked to a protein on M1 cells with the mobility of the LIF receptor (approximately 200 kDa). In addition, CT-1 binds directly to a purified, soluble form of the LIF receptor in solution (Kd approximately 2 nM). These data show that CT-1 has a wide range of hematopoietic, neuronal, and developmental activities and that it can act via the LIF receptor and the gp130 signaling subunit.
Collapse
|
|
30 |
334 |
10
|
Wollert KC, Taga T, Saito M, Narazaki M, Kishimoto T, Glembotski CC, Vernallis AB, Heath JK, Pennica D, Wood WI, Chien KR. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996; 271:9535-45. [PMID: 8621626 DOI: 10.1074/jbc.271.16.9535] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cardiotrophin-1 (CT-1) was recently isolated by expression cloning based on its ability to induce an increase in cell size in neonatal rat ventricular cardiomyocytes. Sequence similarity data suggested that CT-1 is a novel member of a family of structurally related cytokines sharing the receptor component gp130. The present study documents that gp130 is required for CT-1 signaling in cardiomyocytes, by demonstrating that a monoclonal anti-gp130 antibody completely inhibits c-fos induction by CT-1. Similarly, a leukemia inhibitory factor receptor subunit beta (LIFRbeta) antagonist effectively blocks the CT-1 induction of c-fos, indicating a requirement for LIFRbeta in the hypertrophic response, as well. Upon stimulation with CT-1, both gpl30 and the LIFRbeta are tyrosine-phosphorylated, providing further evidence that CT-1 signals through the gp130/LIFRbeta heterodimer in cardiomyocytes. CT-1 induces a hypertrophic response in cardiomyocytes that is distinct from the phenotype seen after alpha-adrenergic stimulation, both with regard to cell morphology and gene expression pattern. Stimulation with CT-1 results in an increase in cardiac cell size that is characterized by an increase in cell length but no significant change in cell width. Confocal laser microscopy of CT-1 stimulated cells reveals the assembly of sarcomeric units in series rather than in parallel, as seen after alpha-adrenergic stimulation. CT-1 induces a distinct pattern of immediate early genes, and up-regulates the atrial natriuretic factor (ANF) gene, but does not affect skeletal alpha-actin or myosin light chain-2v expression. As evidenced by nuclear run-on transcription assays, both CT-1 and alpha-adrenergic stimulation lead to an increase in ANF gene transcription. Transient transfection analyses document that, in contrast to alpha-adrenergic stimulation, the CT-1 responsive cis-regulatory elements are located outside of the proximal 3 kilobase pairs of the ANF 5'-flanking region. These studies indicate that CT-1 can activate a distinct form of myocardial cell hypertrophy, characterized by the promotion of sarcomere assembly in series, via gpl30/LIFRbeta-dependent signaling pathways.
Collapse
|
|
29 |
273 |
11
|
Pennica D, Hayflick JS, Bringman TS, Palladino MA, Goeddel DV. Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc Natl Acad Sci U S A 1985; 82:6060-4. [PMID: 3898078 PMCID: PMC390699 DOI: 10.1073/pnas.82.18.6060] [Citation(s) in RCA: 271] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A murine tumor necrosis factor (MuTNF) cDNA was isolated from a cDNA library prepared by using mRNA from the murine macrophage-like cell line PU5-1.8 induced with 4 beta-phorbol 12 beta-myristate 13 alpha-acetate. The cDNA encodes a polypeptide consisting of a 79 amino acid pre sequence followed by a mature MuTNF sequence of 156 amino acids. The 235 amino acid murine pre-TNF polypeptide is 79% homologous to the human pre-TNF protein. There is one potential N-linked glycosylation site on MuTNF, in contrast to human TNF, which lacks any such site. The MuTNF cDNA, when engineered for expression in Escherichia coli, was found to direct the synthesis of biologically active MuTNF as determined by its cytotoxicity against several transformed cell lines.
Collapse
|
research-article |
40 |
271 |
12
|
Pennica D, Kohr WJ, Kuang WJ, Glaister D, Aggarwal BB, Chen EY, Goeddel DV. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 1987; 236:83-8. [PMID: 3453112 DOI: 10.1126/science.3453112] [Citation(s) in RCA: 207] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The primary structure of human uromodulin, a 616-amino acid, 85-kilodalton glycoprotein with in vitro immunosuppressive properties, was determined through isolation and characterization of complementary DNA and genomic clones. The amino acid sequence encoded by one of the exons of the uromodulin gene has homology to the low-density-lipoprotein receptor and the epidermal growth factor precursor. Northern hybridization analyses demonstrate that uromodulin is synthesized by the kidney. Evidence is provided that uromodulin is identical to the previously characterized Tamm-Horsfall glycoprotein, the most abundant protein in normal human urine.
Collapse
|
Comparative Study |
38 |
207 |
13
|
Ashkenazi A, Marsters SA, Capon DJ, Chamow SM, Figari IS, Pennica D, Goeddel DV, Palladino MA, Smith DH. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci U S A 1991; 88:10535-9. [PMID: 1660140 PMCID: PMC52963 DOI: 10.1073/pnas.88.23.10535] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor necrosis factors (TNF) alpha and beta are structurally related cytokines that mediate a wide range of immunological, inflammatory, and cytotoxic effects. During bacterial infection of the bloodstream (sepsis), TNF-alpha induction by bacterial endotoxin is thought to be a major factor contributing to the cardiovascular collapse and critical organ failure that can develop. Despite antibiotic therapy, these consequences of sepsis continue to have a high mortality rate in humans. Here we describe a potent TNF antagonist, a TNF receptor (TNFR) immunoadhesin, constructed by gene fusion of the extracellular portion of human type 1 TNFR with the constant domains of human IgG heavy chain (TNFR-IgG). When expressed in transfected human cells, TNFR-IgG is secreted as a disulfide-bonded homodimer. Purified TNFR-IgG binds to both TNF-alpha and TNF-beta and exhibits 6- to 8-fold higher affinity for TNF-alpha than cell surface or soluble TNF receptors. In vitro, TNFR-IgG blocks completely the cytolytic effect of TNF-alpha or TNF-beta on actinomycin D-treated cells and is markedly more efficient than soluble TNFR (24-fold) or monoclonal anti-TNF-alpha antibodies (4-fold) in inhibiting TNF-alpha. In vitro, TNFR-IgG prevents endotoxin-induced lethality in mice when given 0.5 hr prior to endotoxin and provides significant protection when given up to 1 hr after endotoxin challenge. These results confirm the importance of TNF-alpha in the pathogenesis of septic shock and suggest a clinical potential for TNFR-IgG as a preventive and therapeutic treatment in sepsis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Cell Survival/drug effects
- Chimera
- Chromosome Deletion
- Cloning, Molecular
- Dactinomycin/pharmacology
- Female
- Humans
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/isolation & purification
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Heavy Chains/isolation & purification
- Kinetics
- L Cells
- Lymphotoxin-alpha/immunology
- Lymphotoxin-alpha/metabolism
- Lymphotoxin-alpha/pharmacology
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Site-Directed
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/isolation & purification
- Receptors, Tumor Necrosis Factor
- Restriction Mapping
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/prevention & control
- Shock, Septic/immunology
- Shock, Septic/prevention & control
- Transfection
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
|
research-article |
34 |
187 |
14
|
Pennica D, Arce V, Swanson TA, Vejsada R, Pollock RA, Armanini M, Dudley K, Phillips HS, Rosenthal A, Kato AC, Henderson CE. Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 1996; 17:63-74. [PMID: 8755479 DOI: 10.1016/s0896-6273(00)80281-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The muscle-derived factors required for survival of embryonic motoneurons are not clearly identified. Cardiotrophin-1 (CT-1), a cytokine related to ciliary neurotrophic factor (CNTF), is expressed at high levels in embryonic limb bud and is secreted by differentiated myotubes. In vitro, CT-1 kept 43% of purified E14 rat motoneurons alive for 2 weeks (EC50 = 20 pM). In vivo, CT-1 protected neonatal sciatic motoneurons against the effects of axotomy. CT-1 action on motoneurons was inhibited by phosphatidylinositol-specific phospholipase C (PIPLC), suggesting that CT-1 may act through a GPI-linked component. Since no binding of CT-1 to CNTFR alpha was detected, CT-1 may use a novel cytokine receptor alpha subunit. CT-1 may be important in normal motoneuron development and as a potential tool for slowing motoneuron degeneration in human diseases.
Collapse
|
|
29 |
171 |
15
|
Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 2001; 15:1796-807. [PMID: 11459829 PMCID: PMC312736 DOI: 10.1101/gad.894301] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2001] [Accepted: 05/22/2001] [Indexed: 11/25/2022]
Abstract
We report the isolation and cloning of the Wrch-1 (Wnt-1 responsive Cdc42 homolog) cDNA. Wrch-1 is a novel gene whose mRNA level increases in response to Wnt-1 signaling in Wnt-1 transformed cells, Wnt-1 transgene induced mouse mammary tumors, and Wnt-1 retrovirus infected cells. Wrch-1 encodes a homolog of the Rho family of GTPases. It shares 57% amino acid sequence identity with Cdc42, but possesses a unique N-terminal domain that contains several putative PXXP SH3-binding motifs. Like Cdc42, Wrch-1 can activate PAK-1 and JNK-1, and induce filopodium formation and stress fiber dissolution. Active Wrch-1 stimulates quiescent cells to reenter the cell cycle. Moreover, overexpression of Wrch-1 phenocopies Wnt-1 in morphological transformation of mouse mammary epithelial cells. Taken together, Wrch-1 could mediate the effects of Wnt-1 signaling in the regulation of cell morphology, cytoskeletal organization, and cell proliferation.
Collapse
|
research-article |
24 |
169 |
16
|
Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene. Genes Dev 2000. [PMID: 10716946 DOI: 10.1101/gad.14.5.585] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
WISP-1 (Wnt-1 induced secreted protein 1) is a member of the CCN family of growth factors. This study identifies WISP-1 as a beta-catenin-regulated gene that can contribute to tumorigenesis. The promoter of WISP-1 was cloned and shown to be activated by both Wnt-1 and beta-catenin expression. TCF/LEF sites played a minor role, whereas the CREB site played an important role in this transcriptional activation. WISP-1 demonstrated oncogenic activities; overexpression of WISP-1 in normal rat kidney fibroblast cells (NRK-49F) induced morphological transformation, accelerated cell growth, and enhanced saturation density. Although these cells did not acquire anchorage-independent growth in soft agar, they readily formed tumors in nude mice, suggesting that appropriate cellular attachment is important for signaling oncogenic events downstream of WISP-1.
Collapse
|
Research Support, Non-U.S. Gov't |
25 |
151 |
17
|
Goeddel DV, Aggarwal BB, Gray PW, Leung DW, Nedwin GE, Palladino MA, Patton JS, Pennica D, Shepard HM, Sugarman BJ. Tumor necrosis factors: gene structure and biological activities. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1986; 51 Pt 1:597-609. [PMID: 3472740 DOI: 10.1101/sqb.1986.051.01.072] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
Comparative Study |
39 |
147 |
18
|
Sheng Z, Pennica D, Wood WI, Chien KR. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 1996; 122:419-28. [PMID: 8625793 DOI: 10.1242/dev.122.2.419] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently isolated a novel cytokine, cardiotrophin-1 (CT-1), from an in vitro embryonic stem cell system of cardiogenesis that can activate embryonic markers in neonatal rat cardiac myocytes. CT-1 is a new member of the interleukin 6 (IL-6)/leukemia inhibitory factor (LIF) cytokines, which activate downstream signals via gp130-dependent pathways. To define the developmental pattern of expression of CT-1 during murine embryogenesis, we have developed antibodies directed against a CT-1 fusion protein. As assessed by immunolocalization, CT-1 is predominantly expressed in the early mouse embryonic heart tube (E8.5-10.5). In the heart, CT-1 is primarily expressed in myocardial cells, and not in endocardial cushion or outflow tract tissues. After E12.5, CT-1 expression is found in other tissues, including skeletal, liver and dorsal root ganglia. Given the effects of a related family member (ciliary neurotrophic factor, CNTF) on neuronal cell survival, we studied the ability of CT-1 to promote cardiac myocyte survival and proliferation in vitro. Both CT-1 and LIF, which share the same receptors, dramatically promote neonatal cardiac myocyte survival, while IL-6 and CNTF are without effect. A cell proliferation assay documents that CT-1 provokes an approximate 2-fold increase in embryonic cardiac myocyte proliferation. Thus, CT-1 may play an autocrine role during cardiac chamber growth and morphogenesis by promoting the survival and proliferation of immature myocytes, most likely via gp130-dependent signaling pathways.
Collapse
|
|
29 |
128 |
19
|
Abstract
Wnt-1-induced secreted protein 1 (WISP-1) is a member of the CCN (connective tissue growth factor, Cyr61, NOV) family of growth factors. Structural and experimental evidence suggests that CCN family member activities are modulated by their interaction with sulfated glycoconjugates. To elucidate the mechanism of action for WISP-1, we characterized the specificity of its tissue and cellular interaction and identified binding factors. WISP-1 binding was restricted to the stroma of colon tumors and to cells with a fibroblastic phenotype. By using a solid phase assay, we showed that human skin fibroblast conditioned media contained WISP-1 binding factors. Competitive inhibition with different glycosaminoglycans and treatment with glycosaminoglycan lyases and proteases demonstrated that binding to the conditioned media was mediated by dermatan sulfate proteoglycans. Mass spectrometric analysis identified the isolated binding factors as decorin and biglycan. Decorin and biglycan interacted directly with WISP-1 and inhibited its binding to components in the conditioned media. Similarly, WISP-1 interaction with human skin fibroblasts was inhibited by dermatan sulfate, decorin, and biglycan or by treatment of the cell surface with dermatan sulfate-specific lyases. Together these results demonstrate that decorin and biglycan are WISP-1 binding factors that can mediate and modulate its interaction with the surface of fibroblasts. We propose that this specific interaction plays a role in the regulation of WISP-1 function.
Collapse
|
|
24 |
90 |
20
|
Robledo O, Fourcin M, Chevalier S, Guillet C, Auguste P, Pouplard-Barthelaix A, Pennica D, Gascan H. Signaling of the cardiotrophin-1 receptor. Evidence for a third receptor component. J Biol Chem 1997; 272:4855-63. [PMID: 9030543 DOI: 10.1074/jbc.272.8.4855] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cardiotrophin-1 (CT-1) is a recently isolated cytokine belonging to the interleukin-6 cytokine family. In the present study we show that CT-1 activates its receptor expressed at the surface of a human neural cell line by recruiting gp130 and gp190/leukemia inhibitory factor receptor beta, as shown by analyzing their tyrosine phosphorylation level. Neutralizing antibody directed against gp130 and reconstitution experiments performed in the COS-7 cell line demonstrate that gp130-gp190 heterocomplex formation is essential for CT-1 signaling. Analysis of the subsequent activation events revealed that CT-1 induces and utilizes Jak1-, Jak2-, and Tyk2-associated tyrosine kinases, which are in turn relayed by STAT-3 transcription factor. Cross-linking of iodinated CT-1 to the cell surface led to the identification of a third alpha component in addition to gp130 and gp190, with an apparent molecular mass of 80 kDa. Removal of N-linked carbohydrates from the protein backbone of the alpha component resulted in a protein of 45 kDa. Our results provide evidence that the CT-1 receptor is composed of a tripartite complex, a situation similar to the high affinity receptor for ciliary neurotrophic factor.
Collapse
|
|
28 |
89 |
21
|
Richards CD, Langdon C, Deschamps P, Pennica D, Shaughnessy SG. Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: synergy with dexamethasone. Cytokine 2000; 12:613-21. [PMID: 10843736 DOI: 10.1006/cyto.1999.0635] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of oncostatin M in bone metabolism is not clearly defined, and the actions of mouse oncostatin M (mOSM) on osteoclast development has not been previously determined. We therefore examined the ability of recombinant mOSM to stimulate osteoclast formation and activity using cocultures of murine calvaria and bone marrow cells, and compared the responses to other members of the interleukin 6 family of cytokines including mouse leukaemia inhibitory factor (LIF), cardiotrophin-1 (CT-1) and IL-6. Mouse OSM, LIF and CT-1 strongly induced the formation of tartrate resistant acid phosphatase positive (TRAP(+)) multinucleated cells (MNC) in a dose-dependent fashion. OSM, LIF or CT-1 also elevated the number and size of resorptive pits when cocultures were added to smooth cortical bone slices, indicating enhancement of osteoclast activity. The activity of OSM was reduced by indomethacin (10(-8)-10(-6) M), whereas addition of dexamethasone (DEX) at 10(-7)-10(-5) M synergistically enhanced OSM-induced numbers of TRAP(+)MNC. DEX (10(-7) M) costimulation also synergistically enhanced TRAP(+)cell numbers of LIF, and CT-1 treated cocultures. IL-6 had no activity alone, but further enhanced TRAP(+)cell formation in mOSM or DEX (10(-7) M) treated cocultures. When added to mouse calvarial osteoblast cultures, mOSM induced secretion of IL-6 protein and elevation of mRNA whereas LIF or CT-1 did not. IL-6 mRNA levels and protein secretion were reduced in osteoblasts by costimulation with DEX. These results show that mouse OSM, LIF and CT-1 induce osteoclast differentiation and activation, that DEX synergizes with each in this activity, and that mouse OSM induces responses in osteoblasts that are not shown by LIF or CT-1. Collectively these data suggest an important role of these cytokines in osteoporosis caused by high levels of corticosteroid.
Collapse
|
|
25 |
77 |
22
|
Marsters SA, Pennica D, Bach E, Schreiber RD, Ashkenazi A. Interferon gamma signals via a high-affinity multisubunit receptor complex that contains two types of polypeptide chain. Proc Natl Acad Sci U S A 1995; 92:5401-5. [PMID: 7777519 PMCID: PMC41702 DOI: 10.1073/pnas.92.12.5401] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Signaling by interferon gamma (IFN-gamma) requires two structurally related cell surface proteins: a ligand-binding polypeptide, known as the IFN-gamma receptor (IFN-gamma R), and an accessory factor. However, it is not known whether IFN-gamma forms a ternary complex with the IFN-gamma R and accessory factor to initiate signaling. Here we demonstrate complex formation between IFN-gamma and the two proteins, both in solution and at the cell surface. We observe complexes containing ligand, two molecules of IFN-gamma R (designated the IFN-gamma R alpha chain), and one or two molecules of accessory factor (designated the IFN-gamma R beta chain). Transfected cells expressing both IFN-gamma R chains bind IFN-gamma with higher affinity than do cells expressing alpha chain alone. Anti-beta-chain antibodies prevent the beta chain from participating in the ligand-receptor complex, reduce the affinity for IFN-gamma, and block signaling. Soluble alpha- or beta-chain extracellular domains also inhibit function. These results demonstrate that IFN-gamma signals via a high-affinity multisubunit complex that contains two types of receptor chain and suggest a potential approach to inhibiting specific actions of IFN-gamma by blocking the association of receptor subunits.
Collapse
|
research-article |
30 |
75 |
23
|
Pennica D, Wood WI, Chien KR. Cardiotrophin-1: a multifunctional cytokine that signals via LIF receptor-gp 130 dependent pathways. Cytokine Growth Factor Rev 1996; 7:81-91. [PMID: 8864356 DOI: 10.1016/1359-6101(96)00007-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In a search for novel factors that induce cardiac myocyte hypertrophy, cardiotrophin-1 (CT-1) was identified by coupling expression cloning with an embryonic stem cell-based model of cardiogenesis. CT-1 is a new member of the IL-6 family of cytokines that induce their biological effects through the shared signaling subunit, gp 130. The expression pattern of CT-1 and its range of activities in the hematopoietic, neuronal, and developmental assays suggest that CT-1 may play an important role in other organ systems, in addition to its actions in cardiac development and hypertrophy.
Collapse
|
Review |
29 |
72 |
24
|
Pennica D, Goeddel DV, Hayflick JS, Reich NC, Anderson CW, Levine AJ. The amino acid sequence of murine p53 determined from a c-DNA clone. Virology 1984; 134:477-82. [PMID: 6400059 DOI: 10.1016/0042-6822(84)90316-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A c-DNA clone containing the complete sequence information for the murine p53 protein, from embryonal carcinoma cells, has been isolated. The nucleotide sequence of this clone reveals an open reading frame encoding a protein of 390 amino acids with a molecular weight of 43,364 Da. The NH2-terminal domain of this protein is acidic whereas the carboxyl terminus is rich in basic amino acid residues. These terminal domains are separated by a proline-rich, hydrophobic run of amino acids. Proline comprises approximately 10% of the total amino acid residues. Two tryptic peptides, derived from p53 protein radiolabeled with either methionine or proline, were purified and the position of these labeled residues in the peptide was determined. The positions of three methionine and five proline residues in these two peptides matched the amino acid sequence of the predicted open reading frame determined from the c-DNA clone.
Collapse
|
|
41 |
72 |
25
|
Stephanou A, Brar B, Heads R, Knight RD, Marber MS, Pennica D, Latchman DS. Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. J Mol Cell Cardiol 1998; 30:849-55. [PMID: 9602434 DOI: 10.1006/jmcc.1998.0651] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiotrophin-1 (CT-1) was originally identified as a molecule capable of inducing cardiac hypertrophy. We show here that treatment of cultured neonatal cardiocytes with CT-1 induces enhanced synthesis of the heat shock proteins hsp70 and hsp90, with hsp70 levels being enhanced three-fold and hsp90 levels being enhanced seven-fold. Such CT-1-treated cells are protected against subsequent exposure to severe thermal or ischaemic stress, as assayed both by measures of total cell death, such as trypan blue exclusion and LDH release, and by measures of apoptosis, such as propidium-iodide-staining and TUNEL-labelling. Hence, CT-1 can induce the protective hsps and protect cardiac cells from diverse stresses.
Collapse
|
|
27 |
70 |