1
|
Serbinova E, Kagan V, Han D, Packer L. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med 1991; 10:263-75. [PMID: 1649783 DOI: 10.1016/0891-5849(91)90033-y] [Citation(s) in RCA: 387] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
d-Alpha-tocopherol (2R,4'R,8'R-Alpha-tocopherol) and d-alpha-tocotrienol are two vitamin E constituents having the same aromatic chromanol "head" but differing in their hydrocarbon "tail": tocopherol with a saturated and toctrienol with an unsaturated isoprenoid chain. d-Alpha-tocopherol has the highest vitamin E activity, while d-alpha-tocotrienol manifests only about 30% of this activity. Since vitamin E is considered to be physiologically the most important lipid-soluble chain-breaking antioxidant of membranes, we studied alpha-tocotrienol as compared to alpha-tocopherol under conditions which are important for their antioxidant function. d-Alpha-tocotrienol possesses 40-60 times higher antioxidant activity against (Fe2+ + ascorbate)- and (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomal membranes and 6.5 times better protection of cytochrome P-450 against oxidative damage than d-alpha-tocopherol. To clarify the mechanisms responsible for the much higher antioxidant potency of d-alpha-tocotrienol compared to d-alpha-tocopherol, ESR studies were performed of recycling efficiency of the chromanols from their chromanoxyl radicals. 1H-NMR measurements of lipid molecular mobility in liposomes containing chromanols, and fluorescence measurements which reveal the uniformity of distribution (clusterizations) of chromanols in the lipid bilayer. From the results, we concluded that this higher antioxidant potency of d-alpha-tocotrienol is due to the combined effects of three properties exhibited by d-alpha-tocotrienol as compared to d-alpha-tocopherol: (i) its higher recycling efficiency from chromanoxyl radicals, (ii) its more uniform distribution in membrane bilayer, and (iii) its stronger disordering of membrane lipids which makes interaction of chromanols with lipid radicals more efficient. The data presented show that there is a considerable discrepancy between the relative in vitro antioxidant activity of d-alpha-tocopherol and d-alpha-tocotrienol with the conventional bioassays of their vitamin activity.
Collapse
|
Comparative Study |
34 |
387 |
2
|
Shindo Y, Witt E, Han D, Epstein W, Packer L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol 1994; 102:122-4. [PMID: 8288904 DOI: 10.1111/1523-1747.ep12371744] [Citation(s) in RCA: 351] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We measured enzymic and non-enzymic antioxidants in human epidermis and dermis from six healthy volunteers undergoing surgical procedures. Epidermis was separated from dermis by curettage and antioxidants were measured by high-performance liquid chromatography (HPLC) or standard spectrophotometric methods. The concentration of every antioxidant (referenced to skin wet weight) was higher in the epidermis than in the dermis. Among the enzymic antioxidants, the activities of superoxide dismutase, glutathione peroxidase, and glutathione reductase were higher in the epidermis compared to the dermis by 126, 61 and 215%, respectively. Catalase activity in particular was much higher (720%) in the epidermis. Glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, which provide reduced nicotinamide adenine dinucleotide phosphate (NADPH), also showed higher activity in the epidermis than the dermis by 111% and 313%, respectively. Among the lipophilic antioxidants, the concentration of alpha-tocopherol was higher in the epidermis than the dermis by 90%. The concentration of ubiquinol 10 was especially higher in the epidermis, by 900%. Among the hydrophilic antioxidants, concentrations of ascorbic acid and uric acid were also higher in the epidermis than in the dermis by 425 and 488%, respectively. Reduced glutathione and total glutathione were higher in the epidermis than in the dermis by 513 and 471%. Thus the antioxidant capacity of the human epidermis is far greater than that of dermis. As the epidermis composes the outermost 10% of the skin and acts as the initial barrier to oxidant assault, it is perhaps not surprising that it has higher levels of antioxidants.
Collapse
|
Comparative Study |
31 |
351 |
3
|
Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 2001; 353:411-6. [PMID: 11139407 PMCID: PMC1221585 DOI: 10.1042/0264-6021:3530411] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has been generally accepted that superoxide anion generated by the mitochondrial respiratory transport chain are vectorially released into the mitochondrial matrix, where they are converted to hydrogen peroxide through the catalytic action of Mn-superoxide dismutase. Release of superoxide anion into the intermembrane space is a controversial topic, partly unresolved by the reaction of superoxide anion with cytochrome c, which faces the intermembrane space and is present in this compartment at a high concentration. This study was aimed at assessing the topological site(s) of release of superoxide anion during respiratory chain activity. To address this issue, mitoplasts were prepared from isolated mitochondria by digitonin treatment to remove portions of the outer membrane along with portions of cytochrome c. EPR analysis in conjunction with spin traps of antimycin-supplemented mitoplasts revealed the formation of a spin adduct of superoxide anion. The EPR signal was (i) abrogated by superoxide dismutase, (ii) decreased competitively by exogenous ferricytochrome c and (iii) broadened by the membrane-impermeable spin-broadening agent chromium trioxalate. These results confirm the production and release of superoxide anion towards the cytosolic side of the inner mitochondrial membrane. In addition, co-treatment of mitoplasts with myxothiazol and antimycin A, resulting in an inhibition of the oxidation of ubiquinol to ubisemiquinone, abolished the EPR signal, thus suggesting that ubisemiquinone autoxidation at the outer site of the complex-III ubiquinone pool is a pathway for superoxide anion formation and subsequent release into the intermembrane space. The generation of superoxide anion towards the intermembrane space requires consideration of the mitochondrial steady-state values for superoxide anion and hydrogen peroxide, the decay pathways of these oxidants in this compartment and the implications of these processes for cytosolic events.
Collapse
|
research-article |
24 |
261 |
4
|
Han D, Handelman G, Marcocci L, Sen CK, Roy S, Kobuchi H, Tritschler HJ, Flohé L, Packer L. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 1997; 6:321-38. [PMID: 9288403 DOI: 10.1002/biof.5520060303] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lipoic acid (thiotic acid) is being used as a dietary supplement, and as a therapeutic agent, and is reported to have beneficial effects in disorders associated with oxidative stress, but its mechanism of action remains unclear. We present evidence that lipoic acid induces a substantial increase in cellular reduced glutathione in cultured human Jurkat T cells human erythrocytes, C6 glial cells, NB41A3 neuroblastoma cells, and peripheral blood lymphocytes. The effect depends on metabolic reduction of lipoic acid to dihydrolipoic acid. Dihydrolipoic acid is released into the culture medium where it reduces cystine. Cysteine thus formed is readily taken up by the neutral amino acid transport system and utilized for glutathione synthesis. By this mechanism lipoic acid enables cystine to bypass the xc- transport system, which is weakly expressed in lymphocytes and inhibited by glutamate. Thereby lipoic acid enables the key enzyme of glutathione synthesis, gamma-glutamylcysteine synthetase, which is regulated by uptake-limited cysteine supply, to work at optimum conditions. Flow cytometric analysis of freshly prepared human peripheral blood lymphocytes, using monobromobimane labeling of cellular thiols, reveals that lipoic acid acts mainly to normalize a subpopulation of cells severely compromised in thiol status rather than to increase thiol content beyond physiological levels. Hence lipoic acid may have clinical relevance in restoration of severely glutathione deficient cells.
Collapse
|
|
28 |
227 |
5
|
Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T. Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci 1999; 11:83-90. [PMID: 9987013 DOI: 10.1046/j.1460-9568.1999.00408.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid beta-peptide (A beta), the major constituent of the senile plaques in the brains of patients with Alzheimer's disease, is cytotoxic to neurons and has a central role in the pathogenesis of the disease. Previous studies have suggested that oxidative stress is involved in the mechanisms of A beta-induced neurotoxicity in vitro. In the present study, we examined whether oxidative stress contributes to learning and memory deficits caused by continuous intracerebroventricular infusion of A beta-(1-42). In the A beta-(1-42)-infused rats, spontaneous alternation behaviour in a Y-maze and spatial memory in a water maze task were significantly impaired, as compared with A beta-(40-1)-infused control rats. The retention of passive avoidance learning was also significantly impaired by treatment with A beta-(1-42). Potent antioxidants idebenone and alpha-tocopherol prevented the behavioural deficits in Y-maze and water maze, but not passive avoidance, tasks in A beta-(1-42)-infused rats when they were repeatedly administered by mouth once a day from 3 days before the start of A beta infusion to the end of behavioural experiments. Lipid peroxide levels in the hippocampus and cerebral cortex of A beta-(1-42)-infused rats did not differ from those in control animals, and neither idebenone nor alpha-tocopherol affected the lipid peroxide levels. These results suggest that treatment with antioxidants such as idebenone and alpha-tocopherol prevents learning and memory deficits caused by A beta.
Collapse
|
|
26 |
182 |
6
|
Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, Zhao R, Huang H, Wang X, Qiao Y, Li F, Han D, Wang L, Zhang G, Gao X. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 2013; 33:378-86. [DOI: 10.1038/onc.2012.575] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/09/2012] [Accepted: 10/23/2012] [Indexed: 12/15/2022]
|
|
12 |
167 |
7
|
Kenyon NS, Fernandez LA, Lehmann R, Masetti M, Ranuncoli A, Chatzipetrou M, Iaria G, Han D, Wagner JL, Ruiz P, Berho M, Inverardi L, Alejandro R, Mintz DH, Kirk AD, Harlan DM, Burkly LC, Ricordi C. Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154. Diabetes 1999; 48:1473-81. [PMID: 10389857 DOI: 10.2337/diabetes.48.7.1473] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinical islet cell transplantation has resulted in insulin independence in a limited number of cases. Rejection, recurrence of autoimmunity, and impairment of normal islet function by conventional immunosuppressive drugs, e.g., steroids, tacrolimus, and cyclosporin A, may all contribute to islet allograft loss. Furthermore, intraportal infusion of allogeneic islets results in the activation of intrahepatic macrophages and endothelial cells, followed by production of proinflammatory mediators that can contribute to islet primary nonfunction. We reasoned that the beneficial effects of anti-CD154 treatment on autoimmunity, alloreactivity, and proinflammatory events mediated by macrophages and endothelial cells made it an ideal agent for the prevention of islet allograft failure. In this study, a nonhuman primate model (Papio hamadryas) was used to assess the effect of humanized anti-CD154 (hu5c8) on allogeneic islet engraftment and function. Nonimmunosuppressed and tacrolimus-treated recipients were insulin independent posttransplant, but rejected their islet allografts in 8 days. Engraftment and insulin independence were achieved in seven of seven baboon recipients of anti-CD154 induction therapy administered on days -1, 3, and 10 relative to the islet transplant. Three of three baboons treated with 20 mg/kg anti-CD154 induction therapy experienced delayed rejection episodes, first detected by elevations in postprandial blood glucose levels, on postoperative day (POD) 31 for one and on POD 58 for the other two. Re-treatment with three doses of anti-CD154 resulted in reversal of rejection in all three animals and in a return to normoglycemia and insulin independence in two of three baboons. It was possible to reverse multiple episodes of rejection with this approach. A loss of functional islet mass, as detected by reduced first-phase insulin release in response to intravenous glucose tolerance testing, was observed after each episode of rejection. One of two baboons treated with 10 mg/kg induction therapy became insulin independent post-transplant but rejected the islet graft on POD 10; the other animal experienced a reversible rejection episode on POD 58 and remained insulin independent and normoglycemic until POD 264. Two additional baboon recipients of allogeneic islets and donor bone marrow (infused on PODs 5 and 11) were treated with induction therapy (PODs -1, 3, 10), followed by initiation of monthly maintenance therapy (for a period of 6 months) on POD 28. Rejection-free graft survival and insulin independence was maintained for 114 and 238 days, with preservation of functional islet mass observed in the absence of rejection. Prevention and reversal of rejection, in the absence of the deleterious effects associated with the use of conventional immunosuppressive drugs, make anti-CD154 a unique agent for further study in islet cell transplantation.
Collapse
|
|
26 |
163 |
8
|
Shindo Y, Witt E, Han D, Packer L. Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. J Invest Dermatol 1994; 102:470-5. [PMID: 8151122 DOI: 10.1111/1523-1747.ep12373027] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There has not as yet been an integrated, comprehensive study of the responses of dermis and epidermis in vivo to a wide range of ultraviolet (UV) doses, encompassing all major antioxidants and a sensitive marker of oxidative damage. We have irradiated hairless mice with simulated solar light at doses of 2, 5, 12.5, and 25 J/cm2 combined UVA and UVB (0.8 to 10 MED) and measured enzymic and non-enzymic antioxidants as well as lipid hydroperoxides in both epidermis and dermis to elucidate the response of cutaneous antioxidant defense mechanisms to UV stress. Among the nonenzymic antioxidants two different dose-response patterns were seen. Ascorbate was rapidly depleted at doses between 0 and 5 J/cm2 but was less affected between 5 and 25 J/cm2. In contrast, glutathione, ubiquinol/one, and alpha-tocopherol levels remained approximately equal to control levels between 0 and 5 J/cm2, then decreased to varying degrees from 5 to 25 J/cm2; ubiquinol was almost completely depleted, whereas alpha-tocopherol dropped only 30%. The concentration of lipid hydroperoxides increased throughout the dose range. These results may be explained partly by direct destruction of some antioxidants by UV light, partly by the separate antioxidant functions of the compounds, and partly by recycling of some antioxidants (e.g., alpha-tocopherol) at the expense of others (e.g., ubiquinol). Even at the lowest dose (0.8 MED) lipid hydroperoxide formation was observed. Among the enzymic antioxidants, superoxide dismutase activity decreased significantly (to 63.6% of initial activity for epidermis and 51.5% for dermis at 25 J), whereas activities of glutathione peroxidase and glutathione reductase decreased slightly. Catalase activity decreased dramatically at doses above 5 J (to 11.8% of initial activity in epidermis and 27.7% in dermis at 25 J). The dramatic loss of catalase is almost entirely accounted for by direct destruction by the simulated solar light, but superoxide dismutase was unaffected by direct exposure; hence its destruction must be due to indirect effects, either mediated by free radicals or other harmful species formed upon irradiation. At low doses of UV light many components of the cutaneous antioxidant system were damaged, whereas at high doses all components were damaged and some were almost completely destroyed.
Collapse
|
|
31 |
160 |
9
|
Li JJ, Kwak SJ, Jung DS, Kim JJ, Yoo TH, Ryu DR, Han SH, Choi HY, Lee JE, Moon SJ, Kim DK, Han DS, Kang SW. Podocyte biology in diabetic nephropathy. Kidney Int 2007:S36-42. [PMID: 17653209 DOI: 10.1038/sj.ki.5002384] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glomerular visceral epithelial cells, namely podocytes, are highly specialized cells and give rise to primary processes, secondary processes, and finally foot processes. The foot processes of neighboring podocytes interdigitate, leaving between them filtration slits. These are bridged by an extracellular substance, known as the slit diaphragm, which plays a major role in establishing size-selective barrier to protein loss. Furthermore, podocytes are known to synthesize matrix molecules to the glomerular basement membrane (GBM), including type IV collagen, laminin, entactin, and agrin. Because diabetic nephropathy is clinically characterized by proteinuria and pathologically by glomerular hypertrophy and GBM thickening with foot process effacement, podocytes have been the focus in the field of research on diabetic nephropathy. As a result, many investigations have demonstrated that the diabetic milieu per se, hemodynamic changes, and local growth factors such as transforming growth factor-beta and angiotensin II, which are considered mediators in the pathogenesis of diabetic nephropathy, induce directly and/or indirectly hypertrophy, apoptosis, and structural changes, and increase type IV collagen synthesis in podocytes. This review explores some of the structural and functional changes of podocytes under diabetic conditions and their role in the development and progression of diabetic nephropathy.
Collapse
|
|
18 |
153 |
10
|
Mastrianni JA, Nixon R, Layzer R, Telling GC, Han D, DeArmond SJ, Prusiner SB. Prion protein conformation in a patient with sporadic fatal insomnia. N Engl J Med 1999; 340:1630-8. [PMID: 10341275 DOI: 10.1056/nejm199905273402104] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
Case Reports |
26 |
148 |
11
|
Baker NE, Yu S, Han D. Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr Biol 1996; 6:1290-301. [PMID: 8939576 DOI: 10.1016/s0960-9822(02)70715-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Receptors of the Notch family affect the determination of many cell types. In the Drosophila eye, Notch antagonises the basic helix-loop-helix (bHLH) protein atonal, which is required for R8 photoreceptor determination. Similar antagonism between Notch and proneural bHLH proteins regulates most neural cell determination, however, it is uncertain whether the mechanisms are similar in all cases. Here, we have analyzed the sensitivity of atonal expression to Notch signalling using a temperature-sensitive Notch allele, by the expression of activated Notch or of the ligand Serrate, and by monitoring expression of the atonal-dependant gene scabrous and of the Notch-dependent Enhancer of split genes. RESULTS The atonal expression pattern evolves from general "prepattern' expression, through transient "intermediate groups' to R8 precursor-specific expression. Successive phases of atonal expression differ in sensitivity to Notch. Prepattern expression of atonal is not inhibited. Inhibition begins at the intermediate group stage, corresponding to the period when atonal gene function is required for its own expression. At the transition to R8 cell-specific expression, Notch is activated in all intermediate group cells except the R8 cell precursor. R8 cells remain sensitive to inhibition in columns 0 and 1, but become less sensitive thereafter; non-R8 cells do not require Notch activity to keep atonal expression inactive. Thus, Notch signaling is coupled to atonal repression for only part of the atonal expression pattern. Accordingly, the Enhancer-of-split m delta protein is expressed reciprocally to atonal at the intermediate group and early R8 stages, but is expressed in other patterns before and after. CONCLUSIONS In eye development, inhibition by Notch activity is restricted to specific phases of proneural gene expression, beginning when prepattern decays and is replaced by autoregulation. We suggest that Notch signalling inhibits atonal autoregulation, but not expression by other mechanisms, and that a transition from prepattern to autoregulation is necessary for patterning neural cell determination. Distinct neural tissues might differ in their proneural prepatterns, but use Notch in a similar mechanism.
Collapse
|
|
29 |
142 |
12
|
Sokol RJ, McKim JM, Goff MC, Ruyle SZ, Devereaux MW, Han D, Packer L, Everson G. Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochenodeoxycholic acid in the rat. Gastroenterology 1998; 114:164-74. [PMID: 9428230 DOI: 10.1016/s0016-5085(98)70644-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Hydrophobic bile acids have been implicated in the pathogenesis of cholestatic liver injury. The hypothesis that hydrophobic bile acid toxicity is mediated by oxidant stress in an in vivo rat model was tested in this study. METHODS A dose-response study of bolus intravenous (i.v.) taurochenodeoxycholic acid (TCDC) in rats was conducted. Rats were then pretreated with parenteral alpha-tocopherol, and its effect on i.v. TCDC toxicity was evaluated by liver blood tests and by assessing mitochondrial lipid peroxidation. RESULTS Four hours after an i.v. bolus of TCDC (10 mumol/100 g weight), serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels peaked, hepatic mitochondria showed evidence of increased lipid peroxidation, and serum bile acid analysis was consistent with a cholestatic injury. Liver histology at 4 hours showed hepatocellular necrosis and swelling and mild portal tract inflammation. Treatment with parenteral alpha-tocopherol was associated with a 60%-70% reduction in AST and ALT levels, improved histology, and a 60% reduction in mitochondrial lipid peroxidation in rats receiving TCDC. CONCLUSIONS These data show that hepatocyte injury and oxidant damage to mitochondria caused by i.v. TCDC can be significantly reduced by pretreatment with the antioxidant vitamin E. These in vivo findings support the role for oxidant stress in the pathogenesis of bile acid hepatic toxicity.
Collapse
|
|
27 |
133 |
13
|
Lopez-Torres M, Thiele JJ, Shindo Y, Han D, Packer L. Topical application of alpha-tocopherol modulates the antioxidant network and diminishes ultraviolet-induced oxidative damage in murine skin. Br J Dermatol 1998; 138:207-15. [PMID: 9602862 DOI: 10.1046/j.1365-2133.1998.02062.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the effects of topical alpha-tocopherol application on epidermal and dermal antioxidants and its ability to prevent ultraviolet (UV)-induced oxidative damage. Hairless mice received topical applications of alpha-tocopherol 24 h before a single, acute UV irradiation (10 x minimal erythemal dose). The four major antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase), hydrophilic and lipophilic antioxidants, and lipid hydroperoxides, markers of oxidative damage, were assayed in both epidermis and dermis of hairless mice. Topical alpha-tocopherol treatment increased dermal superoxide dismutase activity by 30% (P < 0.01) and protected epidermal glutathione peroxidase and superoxide dismutase from depletion after UV irradiation. Total and reduced glutathione levels in the epidermis increased by 50% after the topical treatment (P < 0.05), as did dermal ascorbate levels (by 40%: P < 0.01). The topical treatment increased alpha-tocopherol levels both in the epidermis (62-fold) and the dermis (22-fold: P < 0.001 in each layer). Furthermore, alpha-tocopherol treatment significantly reduced the formation of epidermal lipid hydroperoxides after UV irradiation (P < 0.05). These results demonstrate that topical administration of alpha-tocopherol protects cutaneous tissues against oxidative damage induced by UV irradiation in vivo, and suggest that the underlying mechanism of this effect involves the up-regulation of a network of enzymatic and non-enzymatic antioxidants.
Collapse
|
|
27 |
122 |
14
|
Jobin C, Morteau O, Han DS, Balfour Sartor R. Specific NF-kappaB blockade selectively inhibits tumour necrosis factor-alpha-induced COX-2 but not constitutive COX-1 gene expression in HT-29 cells. Immunology 1998; 95:537-43. [PMID: 9893042 PMCID: PMC1364349 DOI: 10.1046/j.1365-2567.1998.00646.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclo-oxygenase (COX) is the key regulatory enzyme of the prostaglandin/eicosanoid pathway. While COX-1 is mostly constitutively expressed, the COX-2 isoform is inducible by proinflammatory cytokines. We used an adenoviral vector containing an NF-kappaB super-repressor (Ad5IkappaB) to investigate the role of NF-kappaB in tumour necrosis factor-alpha (TNF-alpha)-mediated COX-2 gene expression in a colonic epithelial cell line. COX-1 mRNA and protein were constitutively expressed in uninfected, control Ad5LacZ- or Ad5IkappaB-infected HT-29 cells with no apparent change following TNF-alpha exposure. COX-2 mRNA and protein expression was undetectable in unstimulated cells but was strongly up-regulated after TNF-alpha stimulation in uninfected and Ad5LacZ-infected HT-29 cells. This induction was prevented in Ad5IkappaB cells. TNF-alpha increased prostaglandin E2 production by 20-fold in Ad5LacZ-infected HT-29 cells compared with uninfected cells and was significantly inhibited in Ad5IkappaB-infected cells in agreement with the COX-2 mRNA findings. We conclude that NF-kappaB activation is critical in mediating COX-2, but not COX-1 gene expression in HT-29 cells. Selective inhibition of COX-2 expression with the NF-kappaB super-repressor may be useful in distinguishing the role of inducible versus constitutive prostaglandins in intestinal function and provides greater specificity than pharmacological inhibitors.
Collapse
|
research-article |
27 |
118 |
15
|
Handelman GJ, Han D, Tritschler H, Packer L. Alpha-lipoic acid reduction by mammalian cells to the dithiol form, and release into the culture medium. Biochem Pharmacol 1994; 47:1725-30. [PMID: 8204089 DOI: 10.1016/0006-2952(94)90298-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipoic acid has been reported recently to be an effective antioxidant in biological systems. It may act in vivo through reduction to its dithiol form, dihydrolipoic acid. Using a dual Hg/Au electrode, and HPLC with electrochemical detection, a method was developed which allowed simultaneous measurement of lipoic acid and dihydrolipoic acid, at nanomolar levels. (RS)-alpha-Lipoic acid was added to human cells in tissue culture (Jurkat T-lymphocytes and primary neonatal diploid fibroblasts). Lipoic acid was converted rapidly by the cells to dihydrolipoic acid, which accumulated in the cell pellet. Monitored over a 2-hr interval, dihydrolipoic acid was released, and several-fold more dihydrolipoic acid could be found in the medium than in the pellet.
Collapse
|
|
31 |
113 |
16
|
Lee JY, Kim SH, Cho JY, Han D. Color and power Doppler twinkling artifacts from urinary stones: clinical observations and phantom studies. AJR Am J Roentgenol 2001; 176:1441-5. [PMID: 11373210 DOI: 10.2214/ajr.176.6.1761441] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether color and power Doppler twinkling artifacts could be considered an additional diagnostic sonographic feature of urinary stones. SUBJECTS AND METHODS A prospective study was performed in 32 patients with 20 renal stones and 16 ureteral stones to assess how often urinary stones show twinkling artifacts on Doppler sonography. Gray-scale images and color, power, and spectral Doppler images were obtained in all patients. All sonographic examinations were performed with a 3.5- or 5-MHz curvilinear phased array probe. The images were then analyzed for the presence, appearance, and intensity of the artifacts. Phantom experiments were performed with various kinds of urinary stones with high-megahertz linear phased array probes. The effects on the artifacts of the composition of the stones, of the Doppler velocity scale, and of the focal zone were investigated. RESULTS Thirty (83%) of 36 urinary stones showed color and power Doppler twinkling artifacts, which appeared as a rapidly changing color complex seen persistently behind stones like a comet's tail. Twenty-two of 30 stones with the twinkling artifacts showed strong intensity artifacts. Spectra with saturated amplitude were obtained from all 30 stones showing color Doppler artifacts. In phantom experiments, the artifacts originated from all stones. The velocity range did not affect the artifacts, whereas focal zone did. CONCLUSION Color Doppler twinkling artifacts from urinary stones occur frequently and may be considered an additional sonographic feature of urinary stones. The observation of these artifacts may be helpful in determining the presence of urinary stones.
Collapse
|
|
24 |
110 |
17
|
Ke G, Liang L, Yang JM, Huang X, Han D, Huang S, Zhao Y, Zha R, He X, Wu X. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene 2012; 32:3019-27. [PMID: 22847611 DOI: 10.1038/onc.2012.323] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to define the roles of miR-181a in determining sensitivity of cervical cancer to radiation therapy, to explore the underlying mechanism and to evaluate the potential of miR-181a as a biomarker for predicting radio-sensitivity. Tumor specimens from 18 patients with a histological diagnosis of squamous cervical carcinoma (stage IIIB) were used in the micro-RNA profiling and comparison. These patients never received any chemotherapy before radiation therapy. Human cervical cancer cell lines, SiHa and Me180, were used in vitro (cell culture) and in vivo (animal) studies. Transfection of tumor cells with the mimic or inhibitor of miR-181a, and reporter gene assay, were performed to investigate the role of miR-181a in determining radio-sensitivity and the target gene. Higher expression of miR-181a was observed in human cervical cancer specimens and cell lines that were insensitive to radiation therapy, as compared with sensitive cancer specimens and the cell lines. We also found that miR-181a negatively regulated the expression of PRKCD, a pro-apoptotic protein kinase, via targeting its 3'-untranslated region (UTR), thereby inhibiting irradiation-induced apoptosis and decreasing G2/M block. The role of miR-181a in conferring cellular resistance to radiation treatment was validated both in cell culture models and in mouse tumor xenograft models. The effect of miR-181a on radio-resistance was mediated through targeting the 3'-UTR of PRKCD gene. Thus, the expression level of miR-181a in cervical cancer may serve as a biomarker for sensitivity to radiation therapy, and targeting miR-181a may represent a new approach to sensitizing cervical cancer to radiation treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
102 |
18
|
Park CH, Cheon JH, Kim JO, Shin JE, Jang BI, Shin SJ, Jeen YT, Lee SH, Ji JS, Han DS, Jung SA, Park DI, Baek IH, Kim SH, Chang DK. Criteria for decision making after endoscopic resection of well-differentiated rectal carcinoids with regard to potential lymphatic spread. Endoscopy 2011; 43:790-5. [PMID: 21735371 DOI: 10.1055/s-0030-1256414] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND STUDY AIM Rectal carcinoids are low-grade malignancies that are usually treated by endoscopic resection. However, on pathologic examination, resection margins that are positive for carcinoid cells are frequently found. Patient outcomes were reviewed after endoscopic resection of rectal carcinoids and the clinical significance of possible residual disease, as defined by pathologic and endoscopic examination, was evaluated. PATIENTS AND METHODS The medical records and endoscopic findings of 347 patients presenting with rectal carcinoids to 14 university hospitals in Korea between January 1999 and June 2007 were retrospectively analyzed. RESULTS A total of 304 patients were treated with endoscopic resection, and 43 patents were treated with surgery. In the endoscopic resection group, the complete resection rate was 88.2% based on endoscopic appearance (CR-E) and 60.2% based on pathologic evaluation (CR-P). The agreement between CR-E and CR-P was low (κ=0.192). No residual tumors were found in 77 of 85 patients (90.6%) who were CR-E but not CR-P and who had endoscopic biopsy taken at 24-month follow-up. The receiver-operating characteristic curve identified an optimal cut-off value of 10.5 mm, at which the sensitivity and the specificity for metastasis were 100% and 89%, respectively. The risk factors for metastasis by multivariate analysis were tumor size, increased mitotic rate, and lymphovascular invasion. CONCLUSIONS Endoscopic resection is a safe and effective modality for treating well-differentiated rectal carcinoids smaller than 10 mm in diameter. Discrepancies were observed between CR-E and CR-P. The risk factors for metastasis were tumor size, increased mitotic rate, and lymphovascular invasion.
Collapse
|
Multicenter Study |
14 |
99 |
19
|
Sen CK, Roy S, Han D, Packer L. Regulation of cellular thiols in human lymphocytes by alpha-lipoic acid: a flow cytometric analysis. Free Radic Biol Med 1997; 22:1241-57. [PMID: 9098099 DOI: 10.1016/s0891-5849(96)00552-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modulation of cellular thiols is an effective therapeutic strategy, particularly in the treatment of AIDS. Lipoic acid, a metabolic antioxidant, functions as a redox modulator and has proven clinically beneficial effects. It is also used as a dietary supplement. We utilized the specific capabilities of N-ethylmaleimide to block total cellular thiols, phenylarsine oxide to block vicinal dithiols, and buthionine sulfoximine to deplete cellular GSH to flow cytometrically investigate how these thiol pools are influenced by exogenous lipoate treatment. Low concentrations of lipoate and its analogue lipoamide increased Jurkat cell GSH in a dose-dependent manner between 10 (25 microM for lipoamide) to 100 microM. This was also observed in mitogenically stimulated peripheral blood lymphocytes (PBL). Studies with Jurkat cells and its Wurzburg subclone showed that lipoate dependent increase in cellular GSH was similar in CD4+ and - cells. Chronic (16 week) exposure of cells to lipoate resulted in further increase of total cellular thiols, vicinal dithiols, and GSH. High concentration (2 and 5 mM) of lipoate exhibited cell shrinkage, thiol depletion, and DNA fragmentation effects. Based on similar effects of octanoic acid, the cytotoxic effects of lipoate at high concentration could be attributed to its fatty acid structure. In certain diseases such as AIDS and cancer, elevated plasma glutamate lowers cellular GSH by inhibiting cystine uptake. Low concentrations of lipoate and lipoamide were able to bypass the adverse effect of elevated extracellular glutamate. A heterogeneity in the thiol status of PBL was observed. Lipoate, lipoamide, or N-acetylcysteine corrected the deficient thiol status of cell subpopulations. Hence, the favorable effects of low concentrations of lipoate treatment appears clinically relevant.
Collapse
|
|
28 |
92 |
20
|
Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edström L, Anvret M, Prusiner SB. Huntington disease phenocopy is a familial prion disease. Am J Hum Genet 2001; 69:1385-8. [PMID: 11593450 PMCID: PMC1235549 DOI: 10.1086/324414] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Accepted: 09/17/2001] [Indexed: 11/03/2022] Open
Abstract
Huntington disease (HD) is a common autosomal dominant neurodegenerative disease with early adult-onset motor abnormalities and dementia. Many studies of HD show that huntingtin (CAG)n repeat-expansion length is a sensitive and specific marker for HD. However, there are a significant number of examples of HD in the absence of a huntingtin (CAG)n expansion, suggesting that mutations in other genes can provoke HD-like disorders. The identification of genes responsible for these "phenocopies" may greatly improve the reliability of genetic screens for HD and may provide further insight into neurodegenerative disease. We have examined an HD phenocopy pedigree with linkage to chromosome 20p12 for mutations in the prion protein (PrP) gene (PRNP). This reveals that affected individuals are heterozygous for a 192-nucleotide (nt) insertion within the PrP coding region, which encodes an expanded PrP with eight extra octapeptide repeats. This reveals that this HD phenocopy is, in fact, a familial prion disease and that PrP repeat-expansion mutations can provoke an HD "genocopy." PrP repeat expansions are well characterized and provoke early-onset, slowly progressive atypical prion diseases with an autosomal dominant pattern of inheritance and a remarkable range of clinical features, many of which overlap with those of HD. This observation raises the possibility that an unknown number of HD phenocopies are, in fact, familial prion diseases and argues that clinicians should consider screening for PrP mutations in individuals with HD-like diseases in which the characteristic HD (CAG)n repeat expansions are absent.
Collapse
|
case-report |
24 |
89 |
21
|
Haramaki N, Han D, Handelman GJ, Tritschler HJ, Packer L. Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of alpha-lipoic acid. Free Radic Biol Med 1997; 22:535-42. [PMID: 8981046 DOI: 10.1016/s0891-5849(96)00400-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In cellular, tissue, and organismal systems, exogenously supplied alpha-lipoic acid (thioctic acid) has a variety of significant effects, including direct radical scavenging, redox modulation of cell metabolism, and potential to inhibit oxidatively-induced injury. Because reduction of lipoate to dihydrolipoate is a crucial step in many of these processes, we investigated mechanisms of its reduction. The mitochondrial NADH-dependent dihydrolipoamide dehydrogenase exhibits a marked preference for R(+)-lipoate, whereas NADPH-dependent glutathione reductase shows slightly greater activity toward the S(-)-lipoate stereoisomer. Rat liver mitochondria also reduced exogenous lipoic acid. The rate of reduction was stimulated by substrates which increased the NADH content of the mitochondria, and was inhibited by methoxyindole-2-carboxylic acid, a dihydrolipoamide dehydrogenase inhibitor. In rat liver cytosol, NADPH-dependent reduction was greater than NADH, and lipoate reduction was inhibited by glutathione disulfide. In rat heart, kidney, and brain whole cell-soluble fractions, NADH contributed more to reduction (70-90%) than NADPH, whereas with liver, NADH and NADPH were about equally active. An intact organ, the isolated perfused rat heart, reduced R-lipoate six to eight times more rapidly than S-lipoate, consistent with high mitochondrial dihydrolipoamide dehydrogenase activity and results with isolated cardiac mitochondria. On the other hand, erythrocytes, which lack mitochondria, somewhat more actively reduced S- than R-lipoate. These results demonstrate differing stereospecific reduction by intact cells and tissues. Thus, mechanisms of reduction of alpha-lipoate are highly tissue-specific and effects of exogenously supplied alpha-lipoate are determined by tissue glutathione reductase and dihydrolipoamide dehydrogenase activity.
Collapse
|
|
28 |
87 |
22
|
Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y. Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer's disease in subjects with mild cognitive impairment. Int J Clin Pract 2012; 66:185-198. [PMID: 22257044 DOI: 10.1111/j.1742-1241.2011.02845.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, the role of PET imaging in the prediction of mild cognitive impairment (MCI) to Alzheimer's disease (AD) conversion has been the subject of many longitudinal studies. The purpose of this study was to perform a meta-analysis to estimate the diagnostic accuracy of (18) F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET) and (11) C-Pittsburgh Compound B-positron emission tomography (PIB-PET) for prediction of short-term conversion to AD in patients with MCI. The MEDLINE and EMBASE databases were systematically searched for relevant studies. Methodological quality of the included studies was assessed. Sensitivities and specificities of PET in individual studies were calculated and meta-analysis was undertaken with a random-effects model. A summary receiver operating characteristic (SROC) curve was constructed with the Moses-Shapiro-Littenberg method. Heterogeneity was tested, and the presence of publication bias was assessed. Potential sources for heterogeneity were explored by assessing whether or not certain covariates significantly influenced the relative diagnostic odds ratio (DOR). Pooled estimates of sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), DOR and the SROC curve of each PET imaging were determined. A total of 13 research studies (seven FDG-PET and six PIB-PET) met inclusion criteria and had sufficient data for statistical analysis. FDG-PET pooled estimates had 78.7% sensitivity (95% CI, 68.7-86.6%),74.0% specificity (95% CI, 67.0-80.3%), 18.1 LR+(95% CI, 7.3-45.0) and 0.32 LR-(95% CI, 0.16-0.61); and PIB-PET pooled estimates had 93.5% sensitivity (95%CI, 71.3-99.9%), 56.2% specificity (95% CI, 47.2-64.8%), 2.01 LR+ (95% CI, 1.57-2.58) and 0.17 LR-(95% CI, 0.08-0.36). Overall DOR was 17.3 (95% CI, 5.08-59.2) for FDG-PET and 12.8 (95% CI, 5.35-30.54) for PIB-PET. Area under the SROC curve was 0.88 ± 0.05 for FDG-PET and 0.85 ± 0.04 for PIB-PET. The data from FDG-PET research studies had high heterogeneity and funnel plot suggested a publication bias. The diagnostic accuracy determined for both FDG-PET and PIB-PET in this meta-analysis suggests that they are potentially valuable techniques for prediction of progression in patients with MCI. Both have their advantages and their combined use is a promising option for prediction purposes depending on availability and experience.
Collapse
|
Evaluation Study |
13 |
85 |
23
|
Yoo TH, Li JJ, Kim JJ, Jung DS, Kwak SJ, Ryu DR, Choi HY, Kim JS, Kim HJ, Han SH, Lee JE, Han DS, Kang SW. Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int 2007; 71:1019-27. [PMID: 17361112 DOI: 10.1038/sj.ki.5002195] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The autocrine and paracrine activation of the renin-angiotensin system (RAS) within cells of the kidney plays a role in the overall pathophysiology of the renal disease due to diabetes. In this study, we focus on components of the RAS in the podocyte as these cells are important in the pathogenesis of glomerulosclerosis and proteinuria. Immortalized mouse podocytes were exposed to media containing normal glucose (NG) or high glucose (HG) for in vitro studies. In vivo studies utilized kidney tissue obtained from rats treated for 3 months with streptozotocin to induce diabetes. Angiotensinogen (AGT) and the angiotensin II (AII) type 1 receptor mRNA and protein were significantly increased in the podocytes cultured under the high glucose conditions. Both angiotensins I and II levels were significantly higher in cell lysates and the conditioned media of cells grown in high glucose. There were no differences in renin activity, angiotensin-converting enzyme level, or AII type 2 receptor level. Glomerular AGT and AII type 1 receptor assessed by means of immunohistochemistry were increased in diabetic rats compared with the control rats. Other measured components of the RAS within the glomeruli were not different. We suggest that increased AGT, an attendant increase in AII and increased AII type 1 receptor in podocytes experiencing diabetic conditions play an important role in the pathogenesis of diabetic nephropathy.
Collapse
MESH Headings
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Cells, Cultured
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Diabetes Mellitus, Experimental/metabolism
- Immunohistochemistry/methods
- Kidney Glomerulus/metabolism
- Male
- Mice
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Podocytes/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System
- Staining and Labeling
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
84 |
24
|
Han D, Tritschler HJ, Packer L. Alpha-lipoic acid increases intracellular glutathione in a human T-lymphocyte Jurkat cell line. Biochem Biophys Res Commun 1995; 207:258-64. [PMID: 7857274 DOI: 10.1006/bbrc.1995.1181] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The addition of exogenous alpha-lipoic acid to cellular medium causes a rapid increase of intracellular unbound thiols in Jurkat cells, a human T-lymphocyte cell line. The rise of cellular thiols is a result of the cellular uptake and reduction of lipoic acid to dihydrolipoic acid and a rise in intracellular glutathione. Although the level of dihydrolipoic acid is 100-fold lower than glutathione, the cellular concentration of dihydrolipoic acid might be responsible for the modulation of total cellular thiol levels. Rises in glutathione correlate with the levels of intracellular dihydrolipoic acid (p < .01). This increase in glutathione is not the result of expression of new proteins like gamma-glutamylcysteine synthetase, since the rise in glutathione was not inhibited by cycloheximide, a protein synthesis inhibitor. Lipoic acid administration is therefore a potential therapeutic agent in an array of diseases with glutathione anomalies including HIV infection.
Collapse
|
|
30 |
82 |
25
|
Chung YW, Han DS, Park YK, Son BK, Paik CH, Lee HL, Jeon YC, Sohn JH. Association of obesity, serum glucose and lipids with the risk of advanced colorectal adenoma and cancer: a case-control study in Korea. Dig Liver Dis 2006; 38:668-72. [PMID: 16790371 DOI: 10.1016/j.dld.2006.05.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/03/2006] [Accepted: 05/12/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies on colorectal cancer risk suggest that obesity, serum lipids and glucose might be related to colorectal carcinogenesis. This case-control study was conducted to investigate the association between obesity, serum lipids and glucose, and the risk of advanced colorectal adenoma and cancer. METHODS Patients with histologically confirmed colorectal cancers (n=105), same number of patients with advanced colorectal adenomas matched by age and sex, and the same number of controls matched by age and sex were selected in Hanyang University Guri Hospital between January 2002 and June 2004. RESULTS Adenoma and cancer group showed significantly higher levels of mean body mass index and serum glucose. Cancer group also showed significantly lower mean serum lipids levels than controls. We used an unordered polytomous logistic model to calculate multivariate odds ratios for advanced adenoma and cancer relative to controls. Higher serum glucose level was more strongly associated with increased risk of cancer relative to controls (odds ratio, 3.0; 95% confidence interval, 0.9-9.8) than with increased risk of advanced adenoma (odds ratio, 2.1; 95% confidence interval, 0.9-5.4). Higher body mass index was strongly associated with increased risk of advanced adenoma (odds ratio, 10.8; 95% confidence interval, 4.6-25.3), but associated with attenuated risk of cancer (odds ratio, 2.3; 95% confidence interval, 0.9-5.8). Serum triglycerides and cholesterol levels were strongly associated with reduced risk of cancer (odds ratio, 0.3; 95% confidence interval, 0.1-0.8 and odds ratio, 0.2; 95% confidence interval, 0.1-0.6, respectively). CONCLUSIONS Obesity and hyperglycaemia are positively related to advanced colorectal adenoma formation. Furthermore, hyperglycaemia plays an important role in progression to cancer. Findings on an inverse relationship between serum triglyceride and cholesterol levels and the risk of colorectal cancer may be the secondary results from metabolic or nutritional changes in advanced colorectal cancer patients and should be clarified in further studies.
Collapse
|
|
19 |
74 |