1
|
MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, Adams DR, Altman RB, Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, Conrad DF, Cooper GM, Cox NJ, Daly MJ, Gerstein MB, Goldstein DB, Hirschhorn JN, Leal SM, Pennacchio LA, Stamatoyannopoulos JA, Sunyaev SR, Valle D, Voight BF, Winckler W, Gunter C. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508:469-76. [PMID: 24759409 PMCID: PMC4180223 DOI: 10.1038/nature13127] [Citation(s) in RCA: 957] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 02/05/2014] [Indexed: 11/26/2022]
Abstract
The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.
Collapse
|
Journal Article |
11 |
957 |
2
|
Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 1995; 9:115-25. [PMID: 7719337 DOI: 10.1038/ng0295-115] [Citation(s) in RCA: 317] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The peroxisome biogenesis disorders (PBDs) are lethal recessive diseases caused by defects in peroxisome assembly. We have isolated PXR1, a human homologue of the yeast P. pastoris PAS8 (peroxisome assembly) gene. PXR1, like PAS8, encodes a receptor for proteins with the type-1 peroxisomal targeting signal (PTS1). Mutations in PXR1 define complementation group 2 of PBDs and expression of PXR1 rescues the PTS1 import defect of fibroblasts from these patients. Based on the observation that PXR1 exists both in the cytosol and in association with peroxisomes, we propose that PXR1 protein recognizes PTS1-containing proteins in the cytosol and directs them to the peroxisome.
Collapse
|
|
30 |
317 |
3
|
Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M. A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 1996; 135:1-3. [PMID: 8858157 PMCID: PMC2121017 DOI: 10.1083/jcb.135.1.1] [Citation(s) in RCA: 310] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
research-article |
29 |
310 |
4
|
Patten JL, Johns DR, Valle D, Eil C, Gruppuso PA, Steele G, Smallwood PM, Levine MA. Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright's hereditary osteodystrophy. N Engl J Med 1990; 322:1412-9. [PMID: 2109828 DOI: 10.1056/nejm199005173222002] [Citation(s) in RCA: 301] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Albright's hereditary osteodystrophy is an autosomal dominant disorder characterized by a short stature, brachydactyly, subcutaneous ossifications, and reduced expression or function of the alpha subunit of the stimulatory G protein (Gs alpha) of adenylate cyclase, which is necessary for the action of parathyroid and other hormones that use cyclic AMP as an intracellular second messenger. We identified a unique Gs alpha protein in erythrocytes from two related patients with Albright's hereditary osteodystrophy and reduced Gs alpha bioactivity. The Gs alpha variant was recognized by a carboxyl terminal-specific Gs alpha antiserum but not by polyclonal antiserums specific for the amino terminus of Gs alpha. To investigate the molecular basis for this structurally abnormal Gs alpha protein, we studied the Gs alpha gene by restriction-endonuclease analysis. DNA from the two patients had an abnormal restriction-fragment pattern when digested with Ncol, which was consistent with loss of an Ncol restriction site in exon 1 of one Gs alpha allele. Amplification of a 260-base-pair region that includes exon 1 of the Gs alpha gene and direct sequencing of the amplified DNA revealed an A-to-G transition at position +1 in one Gs alpha allele from each of the two patients. This mutation converts the initiator ATG (methionine) codon to GTG (valine), blocking initiation of translation at the normal site. Translation of the abnormal Gs alpha messenger RNA would result in the synthesis of a truncated Gs alpha molecule lacking the amino terminus. We conclude that in at least some patients with Albright's hereditary osteodystrophy, the disease is caused by a single-base substitution in the Gs alpha gene and is thus due to an inherited mutation in a human G protein.
Collapse
|
Case Reports |
35 |
301 |
5
|
Abstract
Online Mendelian Inheritance In Man (OMIM) is a public database of bibliographic information about human genes and genetic disorders. Begun by Dr. Victor McKusick as the authoritative reference Mendelian Inheritance in Man, it is now distributed electronically by the National Center for Biotechnology Information (NCBI). Material in OMIM is derived from the biomedical literature and is written by Dr. McKusick and his colleagues at Johns Hopkins University and elsewhere. Each OMIM entry has a full text summary of a genetic phenotype and/or gene and has copious links to other genetic resources such as DNA and protein sequence, PubMed references, mutation databases, approved gene nomenclature, and more. In addition, NCBI's neighboring feature allows users to identify related articles from PubMed selected on the basis of key words in the OMIM entry. Through its many features, OMIM is increasingly becoming a major gateway for clinicians, students, and basic researchers to the ever-growing literature and resources of human genetics.
Collapse
|
|
26 |
301 |
6
|
Braverman N, Steel G, Obie C, Moser A, Moser H, Gould SJ, Valle D. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 1997; 15:369-76. [PMID: 9090381 DOI: 10.1038/ng0497-369] [Citation(s) in RCA: 297] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a rare autosomal recessive phenotype that comprises complementation group 11 of the peroxisome biogenesis disorders (PBD). PEX7, a candidate gene for RCDP identified in yeast, encodes the receptor for peroxisomal matrix proteins with the type-2 peroxisome targeting signal (PTS2). By homology probing we identified human and murine PEX7 genes and found that expression of either corrects the PTS2-import defect characteristic of RCDP cells. In a collection of 36 RCDP probands, we found two inactivating PEX7 mutations: one, L292ter, was present in 26 of the probands, all with a severe phenotype; the second, A218V, was present in three probands, including two with a milder phenotype. A third mutation, G217R, whose functional significance is yet to be determined, was present in five probands, all compound heterozygotes with L292ter. We conclude that PEX7 is responsible for RCDP (PBD CG11) and suggest a founder effect may explain the high frequency of L292ter.
Collapse
|
|
28 |
297 |
7
|
Dietz HC, Valle D, Francomano CA, Kendzior RJ, Pyeritz RE, Cutting GR. The skipping of constitutive exons in vivo induced by nonsense mutations. Science 1993; 259:680-3. [PMID: 8430317 DOI: 10.1126/science.8430317] [Citation(s) in RCA: 294] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nonsense mutations create a premature signal for the termination of translation of messenger RNA. Such mutations have been observed to cause a severe reduction in the amount of mutant allele transcript or to generate a peptide truncated at the carboxyl end. Analysis of fibrillin transcript from a patient with Marfan syndrome revealed the skipping of a constitutive exon containing a nonsense mutation. Similar results were observed for two nonsense mutations in the gene encoding ornithine delta-aminotransferase from patients with gyrate atrophy. All genomic DNA sequences flanking these exons that are known to influence RNA splicing were unaltered, which suggests that nonsense mutations can alter splice site selection in vivo.
Collapse
|
|
32 |
294 |
8
|
Abstract
The complete human genome sequence will facilitate the identification of all genes that contribute to disease. We propose that the functional classification of disease genes and their products will reveal general principles of human disease. We have determined functional categories for nearly 1,000 documented disease genes, and found striking correlations between the function of the gene product and features of disease, such as age of onset and mode of inheritance. As knowledge of disease genes grows, including those contributing to complex traits, more sophisticated analyses will be possible; their results will yield a deeper understanding of disease and an enhanced integration of medicine with biology.
Collapse
|
|
24 |
291 |
9
|
Abstract
Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease and rhizomelic chondrodysplasia punctata are progressive disorders characterized by loss of multiple peroxisomal metabolic functions. These diseases are inherited in an autosomal recessive manner, are caused by defects in the import of peroxisomal matrix proteins and are referred to as the peroxisome biogenesis disorders (PBDs). Recent studies have identified the PEX genes that are mutated in 11 of the 12 known complementation groups of PBD patients. This article reviews these advances in PBD genetics and discusses how studies of human PEX genes, their protein products and PBD cell lines are shaping current models of peroxisome biogenesis.
Collapse
|
Review |
25 |
234 |
10
|
Braverman N, Lin P, Moebius FF, Obie C, Moser A, Glossmann H, Wilcox WR, Rimoin DL, Smith M, Kratz L, Kelley RI, Valle D. Mutations in the gene encoding 3 beta-hydroxysteroid-delta 8, delta 7-isomerase cause X-linked dominant Conradi-Hünermann syndrome. Nat Genet 1999; 22:291-4. [PMID: 10391219 DOI: 10.1038/10357] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked dominant Conradi-Hünermann syndrome (CDPX2; MIM 302960) is one of a group of disorders with aberrant punctate calcification in cartilage, or chondrodysplasia punctata (CDP). This is most prominent around the vertebral column, pelvis and long bones in CPDX2. Additionally, CDPX2 patients may have asymmetric rhizomesomelia, sectorial cataracts, patchy alopecia, ichthyosis and atrophoderma. The phenotype in CDPX2 females ranges from stillborn to mildly affected individuals identified in adulthood. CDPX2 is presumed lethal in males, although a few affected males have been reported. We found increased 8(9)-cholestenol and 8-dehydrocholesterol in tissue samples from seven female probands with CDPX2 (ref. 4). This pattern of accumulated cholesterol intermediates suggested a deficiency of 3beta-hydroxysteroid-delta8,delta7-isomerase (sterol-delta8-isomerase), which catalyses an intermediate step in the conversion of lanosterol to cholesterol. A candidate gene encoding a sterol-delta8-isomerase (EBP) has been identified and mapped to Xp11.22-p11.23 (refs 5,6). Using SSCP analysis and sequencing of genomic DNA, we found EBP mutations in all probands. We confirmed the functional significance of two missense alleles by expressing them in a sterol-delta8-isomerase-deficient yeast strain. Our results indicate that defects in sterol-delta8-isomerase cause CDPX2 and suggest a role for sterols in bone development.
Collapse
|
|
26 |
223 |
11
|
Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ. Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 1998; 273:29607-14. [PMID: 9792670 DOI: 10.1074/jbc.273.45.29607] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells typically contain hundreds of peroxisomes but can increase peroxisome abundance further in response to extracellular stimuli. We report here the identification and characterization of two novel human peroxisomal membrane proteins, PEX11alpha and PEX11beta. Overexpression of the human PEX11beta gene alone was sufficient to induce peroxisome proliferation, demonstrating that proliferation can occur in the absence of extracellular stimuli and may be mediated by a single gene. Time course studies indicated that PEX11beta induces peroxisome proliferation through a multistep process involving peroxisome elongation and segregation of PEX11beta from other peroxisomal membrane proteins, followed by peroxisome division. Overexpression of PEX11alpha also induced peroxisome proliferation but at a much lower frequency than PEX11beta in our experimental system. The patterns of PEX11alpha and PEX11beta expression were examined in the rat, the animal in which peroxisome proliferation has been examined most extensively. Levels of PEX11beta mRNA were similar in all tissues examined and were unaffected by peroxisome-proliferating agents. Conversely, PEX11alpha mRNA levels varied widely among different tissues, were highest in tissues that are sensitive to peroxisome-proliferating agents, and were induced more than 10-fold in response to the peroxisome proliferators clofibrate and di(2-ethylhexyl) phthalate. Taken together, these data implicate PEX11beta in the constitutive control of peroxisome abundance and suggest that PEX11alpha may regulate peroxisome abundance in response to extracellular stimuli.
Collapse
|
|
27 |
211 |
12
|
Gärtner J, Moser H, Valle D. Mutations in the 70K peroxisomal membrane protein gene in Zellweger syndrome. Nat Genet 1992; 1:16-23. [PMID: 1301993 DOI: 10.1038/ng0492-16] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The peroxisomal membrane protein, with a relative molecular mass of 70,000 (M(r) 70K) (PMP70), is an important component of peroxisomal membranes and an ATP-binding cassette protein. To investigate its possible involvement in Zellweger syndrome (ZS), an inborn error of peroxisome assembly, we cloned and sequenced cDNAs for human PMP70 and mapped the gene to chromosome 1. Amongst 32 probands with ZS or related disorders, we found two mutant PMP70 alleles in single ZS probands from the same complementation group. One allele has a donor splice site mutation and the second a missense mutation. Our results suggest that PMP70 plays an important role in peroxisome biogenesis and that mutations in PMP70 may be responsible for a subset of ZS patients.
Collapse
|
|
33 |
190 |
13
|
Waber LJ, Valle D, Neill C, DiMauro S, Shug A. Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr 1982; 101:700-5. [PMID: 7131143 DOI: 10.1016/s0022-3476(82)80294-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We studied a boy who presented at age 3 1/2 years with cardiomegaly, a distinctive electrocardiogram, and a history of a brother dying with cardiomyopathy. From age 3 1/2 to 5 years, cardiac disease progressed, resulting in intractable congestive heart failure. Skeletal muscle weakness developed and a muscle biopsy showed lipid myopathy. Muscle and plasma carnitine were reduced to 2 and 10% of the normal mean values, respectively. Therapy with L-carnitine (174 mg/kg/da) was begun at age 5 1/2 years and continued to the present (age 6 1/2 years). The cardiac disease has resolved and the muscle strength has returned to normal. Plasma carnitine concentrations have risen to the low-normal range, while urinary carnitine excretion has increased to values which are 30 times normal. The renal clearance of carnitine exceeds normal at all plasma concentrations and plasma carnitine values do not change acutely after an oral carnitine load. These results suggest that there is a distinct form of carnitine deficiency which presents as cardiomyopathy and may be successfully treated with L-carnitine. A defect in renal and possibly gastrointestinal transport of carnitine is a likely cause of this patient's disorder.
Collapse
|
Case Reports |
43 |
184 |
14
|
Reuber BE, Germain-Lee E, Collins CS, Morrell JC, Ameritunga R, Moser HW, Valle D, Gould SJ. Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat Genet 1997; 17:445-8. [PMID: 9398847 DOI: 10.1038/ng1297-445] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The peroxisome biogenesis disorders (PBDs) are a group of lethal autosomal-recessive diseases caused by defects in peroxisomal matrix protein import, with the concomitant loss of multiple peroxisomal enzyme activities. Ten complementation groups (CGs) have been identified for the PBDs, with CG1 accounting for 51% of all PBD patients. We identified the human orthologue of yeast PEX1, a gene required for peroxisomal matrix protein import. Expression of human PEX1 restored peroxisomal protein import in fibroblasts from 30 CG1 patients, and PEX1 mutations were detected in multiple CG1 probands. A common PEX1 allele, G843D, is present in approximately half of CG1 patients and has a deleterious effect on PEX1 activity. Phenotypic analysis of PEX1-deficient cells revealed severe defects in peroxisomal matrix protein import and destabilization of PEX5, the receptor for the type-1 peroxisomal targetting signal, even though peroxisomes were present in these cells and capable of importing peroxisomal membrane proteins. These data demonstrate an important role for PEX1 in peroxisome biogenesis and suggest that mutations in this gene are the most common cause of the PBDs.
Collapse
|
|
28 |
160 |
15
|
Vervoort M, Crozatier M, Valle D, Vincent A. The COE transcription factor Collier is a mediator of short-range Hedgehog-induced patterning of the Drosophila wing. Curr Biol 1999; 9:632-9. [PMID: 10375526 DOI: 10.1016/s0960-9822(99)80285-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The secreted Hedgehog (Hh) proteins have been implicated as mediators of positional information in vertebrates and invertebrates. A gradient of Hh activity contributes to antero-posterior (A/P) patterning of the fly wing. In addition to inducing localised expression of Decapentaplegic (Dpp), which in turn relays patterning cues at long range, Hh directly patterns the central region of the wing. RESULTS We show that short-range, dose-dependent Hh activity is mediated by activation of the transcription factor Collier (Col). In the absence of col activity, longitudinal veins 3 and 4 (L3 and L4) are apposed and the central intervein is missing. Hh expression induces col expression in a narrow stripe of cells along the A/P boundary through a dual-input mechanism: inhibition of proteolysis of Cubitus-interruptus (Ci) and activation of the Fused (Fu) kinase. Col, in cooperation with Ci, controls the formation of the central intervein by activating the expression of blistered (bs), which encodes the Drosophila serum response factor (D-SRF), the activity of which is required for the adoption and maintenance of the intervein cell fate. Furthermore, col is allelic to knot, a gene involved in the formation of the central part of the wing. This finding completes our understanding of the sectorial organisation of the Drosophila wing. CONCLUSIONS Col, the Drosophila member of the COE family (Col/Olf-1/EBF) of non-basic, helix-loop-helix (HLH)-containing transcription factors, is a mediator of the short-range organising activity of Hh in the Drosophila wing. Our results support the idea that Hh controls target gene expression in a concentration-dependent manner and highlight the importance of the Fu kinase in this differential regulation. The high degree of evolutionary conservation of the COE proteins and the diversity of developmental processes controlled by Hh signalling raises the possibility that the specific genetic interactions depicted here may also operate in vertebrates.
Collapse
|
|
26 |
149 |
16
|
Braverman N, Dodt G, Gould SJ, Valle D. An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum Mol Genet 1998; 7:1195-205. [PMID: 9668159 DOI: 10.1093/hmg/7.8.1195] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the peroxisome targeting signal (PTS) 1 receptor gene, PEX5 , are responsible for complementation group (CG) 2 of the peroxisome biogenesis disorders (PBD). Of the two reported patients in this CG, cells from PBD018 (homozygous for the missense mutation N489K) are defective in the import of PTS1 proteins into peroxisomes, as expected. However, cells from PBD005 (homozygous for the nonsense mutation R390ter) are defective in the import of both PTS1 and PTS2 proteins, suggesting that the PTS1 receptor also mediates PTS2-targeted protein import. To investigate this possibility, we characterized PEX5 expression and found that it undergoes alternative splicing, producing two transcripts, one containing (PEX5L) and one lacking (PEX5S) a 111 bp internal exon. Fibroblasts from PBD005 have greatly reduced levels of PEX5 transcript and protein as compared with PBD018. Transfection of PBD005 cells with PEX5S cDNA restores PTS1 but not PTS2 import; transfection with PXR5L cDNA restores both PTS1 and PTS2 protein import. Furthermore, transfection of PBD005 cells with PEX5L cDNAs containing the patient mutations (which are located downstream of the additional exon) restores PTS2 but not PTS1 import. Taken together, these data provide an explanation for the different protein import defects in CG2 patients and show that the long isoform of the Pex5 protein is required for peroxisomal import of PTS2 proteins.
Collapse
|
|
27 |
147 |
17
|
Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA, Valle D. Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 1999; 22:151-8. [PMID: 10369256 DOI: 10.1038/9658] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurospora crassa ARG13 and Saccharomyces cerevisiae ARG11 encode mitochondrial carrier family (MCF) proteins that transport ornithine across the mitochondrial inner membrane. We used their sequences to identify EST candidates that partially encode orthologous mammalian transporters. We thereby identified such a gene (ORNT1) that maps to 13q14 and whose expression, similar to that of other urea cycle (UC) components, was high in liver and varied with changes in dietary protein. ORNT1 expression restores ornithine metabolism in fibroblasts from patients with hyperammonaemia-hyperornithinaemia-homocitrullinuria (HHH) syndrome. In a survey of 11 HHH probands, we identified 3 ORNT1 mutant alleles that account for 21 of 22 possible mutant ORNT1 genes in our patients: F188delta, which is common in French-Canadian HHH patients and encodes an unstable protein; E180K, which encodes a stable, properly targeted protein that is inactive; and a 13q14 microdeletion. Our results show that ORNT1 encodes the mitochondrial ornithine transporter involved in UC function and is defective in HHH syndrome.
Collapse
|
|
26 |
143 |
18
|
Bienvenu OJ, Wang Y, Shugart YY, Welch JM, Grados MA, Fyer AJ, Rauch SL, McCracken JT, Rasmussen SA, Murphy DL, Cullen B, Valle D, Hoehn-Saric R, Greenberg BD, Pinto A, Knowles JA, Piacentini J, Pauls DL, Liang KY, Willour VL, Riddle M, Samuels JF, Feng G, Nestadt G. Sapap3 and pathological grooming in humans: Results from the OCD collaborative genetics study. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:710-20. [PMID: 19051237 PMCID: PMC10885776 DOI: 10.1002/ajmg.b.30897] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
SAP90/PSD95-associated protein (SAPAP) family proteins are post-synaptic density (PSD) components that interact with other proteins to form a key scaffolding complex at excitatory (glutamatergic) synapses. A recent study found that mice with a deletion of the Sapap3 gene groomed themselves excessively, exhibited increased anxiety-like behaviors, and had cortico-striatal synaptic defects, all of which were preventable with lentiviral-mediated expression of Sapap3 in the striatum; the behavioral abnormalities were also reversible with fluoxetine. In the current study, we sought to determine whether variation within the human Sapap3 gene was associated with grooming disorders (GDs: pathologic nail biting, pathologic skin picking, and/or trichotillomania) and/or obsessive-compulsive disorder (OCD) in 383 families thoroughly phenotyped for OCD genetic studies. We conducted family-based association analyses using the FBAT and GenAssoc statistical packages. Thirty-two percent of the 1,618 participants met criteria for a GD, and 65% met criteria for OCD. Four of six SNPs were nominally associated (P < 0.05) with at least one GD (genotypic relative risks: 1.6-3.3), and all three haplotypes were nominally associated with at least one GD (permuted P < 0.05). None of the SNPs or haplotypes were significantly associated with OCD itself. We conclude that Sapap3 is a promising functional candidate gene for human GDs, though further work is necessary to confirm this preliminary evidence of association.
Collapse
|
Multicenter Study |
16 |
140 |
19
|
Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J 1996. [DOI: 10.1002/j.1460-2075.1996.tb00654.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
|
29 |
137 |
20
|
Shugart YY, Samuels J, Willour VL, Grados MA, Greenberg BD, Knowles JA, McCracken JT, Rauch SL, Murphy DL, Wang Y, Pinto A, Fyer AJ, Piacentini J, Pauls DL, Cullen B, Page J, Rasmussen SA, Bienvenu OJ, Hoehn-Saric R, Valle D, Liang KY, Riddle MA, Nestadt G. Genomewide linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol Psychiatry 2006; 11:763-70. [PMID: 16755275 DOI: 10.1038/sj.mp.4001847] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obsessive-compulsive disorder (OCD) is the tenth most disabling medical condition worldwide. Twin and family studies implicate a genetic etiology for this disorder, although specific genes have yet to be identified. Here, we present the first large-scale model-free linkage analysis of both extended and nuclear families using both 'broad' (definite and probable diagnoses) and 'narrow' (definite only) definitions of OCD. We conducted a genome-scan analysis of 219 families collected as part of the OCD Collaborative Genetics Study. Suggestive linkage signals were revealed by multipoint analysis on chromosomes 3q27-28 (P=0.0003), 6q (P=0.003), 7p (P=0.001), 1q (P=0.003), and 15q (P=0.006). Using the 'broad' OCD definition, we observed the strongest evidence for linkage on chromosome 3q27-28. The maximum overall Kong and Cox LODall score (2.67) occurred at D3S1262 and D3S2398, and simulation based P-values for these two signals were 0.0003 and 0.0004, respectively, although for both signals, the simulation-based genome-wide significance levels were 0.055. Covariate-linkage analyses implicated a possible role of gene(s) on chromosome 1 in increasing the risk for an earlier onset form of OCD. We are currently pursuing fine mapping in the five regions giving suggestive signals, with a particular focus on 3q27-28. Given probable etiologic heterogeneity in OCD, mapping gene(s) involved in the disorder may be enhanced by replication studies, large-scale family-based linkage studies, and the application of novel statistical methods.
Collapse
MESH Headings
- Chromosomes, Human
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 3
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 7
- Family Health
- Genetic Predisposition to Disease
- Genome, Human
- Genomics
- Humans
- Lod Score
- Obsessive-Compulsive Disorder/genetics
- Phenotype
Collapse
|
Research Support, N.I.H., Extramural |
19 |
123 |
21
|
Shani N, Valle D. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc Natl Acad Sci U S A 1996; 93:11901-6. [PMID: 8876235 PMCID: PMC38156 DOI: 10.1073/pnas.93.21.11901] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half ATP-binding cassette (ABC) transporters in the human peroxisome membrane. ALDP and PMP70 share sequence homology and both are implicated in genetic diseases. PXA1 and YKL741 are Saccharomyces cerevisiae genes that encode homologs of ALDP and PMP70. Pxa1p, a putative ortholog of ALDP, is involved in peroxisomal beta-oxidation of fatty acids while YKL741 is an open reading frame found by the yeast genome sequencing project. Here we designate YKL741 as PXA2 and show that its protein product, Pxa2p, like Pxa1p, is associated with peroxisomes but not required for their assembly. Yeast strains carrying gene disruption of PXA1, PXA2, or both have similar and, in the case of the latter, nonadditive phenotypes. We also find that the stability of Pxa1p, but not Pxa2p, is markedly reduced in the absence of the other. Finally, we find that Pxa1p and Pxa2p coimmuno-precipitate. These genetic and physical data suggest that Pxa1p and Pxa2p heterodimerize to form a complete peroxisomal ABC transporter involved in fatty acid beta-oxidation. This result predicts the presence of similar heterodimeric ABC transporters in the mammalian peroxisome membrane.
Collapse
|
research-article |
29 |
121 |
22
|
Chang CC, Lee WH, Moser H, Valle D, Gould SJ. Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat Genet 1997; 15:385-8. [PMID: 9090384 DOI: 10.1038/ng0497-385] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The peroxisome biogenesis disorders (PBDs) are a group of genetically heterogeneous diseases lethal in early infancy. Although the clinical features of PBD patients may vary, cells from all PBD patients exhibit a defect in the import of one or more classes of peroxisomal matrix proteins. This cellular phenotype is shared by yeast pex mutants, and human orthologues of yeast PEX genes have been shown to be defective in some groups of PBD patients. We identified a putative human orthologue of ScPEX12 by screening the database of expressed sequence tags for cDNAs capable of encoding a protein similar to yeast Pex12p. Although its sequence similarity to yeast Pex12 proteins was limited, PEX12 shared the same subcellular distribution as yeast Pex12p and localized to the peroxisome membrane. PEX12 expression restored peroxisomal protein import in fibroblasts from PBD patients of complement group 3 (CG3) and frameshift mutations in PEX12 were detected in two unrelated CG3 patients. These data demonstrate that mutations in PEX12 are responsible for CG3 of the PBD and that PEX12 plays an essential role in peroxisomal matrix protein import.
Collapse
|
|
28 |
118 |
23
|
Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A. Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 1996; 6:707-18. [PMID: 8793297 DOI: 10.1016/s0960-9822(09)00452-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Segmentation of the Drosophila embryo is based on a cascade of hierarchical gene interactions that is initiated by maternal morphogens; these interactions define spatially restricted domains of zygotic gene expression within the blastoderm. Although the hierarchy of the segmentation genes that subdivide the trunk is well established, the patterning of the head is less well understood. Seven head segments can be assigned on the basis of metameric patterns of segment-polarity gene expression and internal sensory organs. The domains of expression of head gap-like genes broadly overlap, with their posterior margins out of phase by one segment. Taken together with the lack of pair-rule gene expression in the head, these observations led to the suggestion that head gap genes act in a combinatorial manner, determining head segmental borders and segmental identity at the same time. RESULTS We have identified a new Drosophila gene, collier (col), whose expression at the blastoderm stage is restricted to a single stripe of cells corresponding to part of the intercalary and mandibular segment primordia, possibly parasegment O. Reduction of col activity in early gastrula embryos by antisense RNA expression results in a specific lack of head structures derived from these segments. The expression of col coincides with a mitotic domain, which supports the proposal that cells in this domain undergo a concerted mitotic and differentiation program that is orchestrated at the transcriptional level. Col is an ortholog of mammalian early B-cell factor/Olfactory-1. These proteins define a new family of transcription factors that contain a helix-loop-helix dimerization motif and a new type of DNA-binding domain that is highly conserved during evolution. CONCLUSIONS Here we describe Col, the first Drosophila member of a new family of transcription factors. Col may act as a "second-level regulator' of head patterning. The structural conservation of Col during evolution raises the questions of its conservation of function in head specification and its interactions with other factors conserved between insects and vertebrates.
Collapse
|
|
29 |
118 |
24
|
Warren DS, Morrell JC, Moser HW, Valle D, Gould SJ. Identification of PEX10, the gene defective in complementation group 7 of the peroxisome-biogenesis disorders. Am J Hum Genet 1998; 63:347-59. [PMID: 9683594 PMCID: PMC1377304 DOI: 10.1086/301963] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The peroxisome-biogenesis disorders (PBDs) are a group of genetically heterogeneous, lethal diseases that are characterized by neuronal, hepatic, and renal abnormalities; severe mental retardation; and, in their most severe form, death within the 1st year of life. Cells from all PBD patients exhibit decreased import of one or more classes of peroxisome matrix proteins, a phenotype shared by yeast pex mutants. We identified the human orthologue of yeast PEX10 and observed that its expression rescues peroxisomal matrix-protein import in PBD patients' fibroblasts from complementation group 7 (CG7). In addition, we detected mutations on both copies of PEX10 in two unrelated CG7 patients. A Zellweger syndrome patient, PBD100, was homozygous for a splice donor-site mutation that results in exon skipping and loss of 407 bp from the PEX10 open reading frame. A more mildly affected neonatal adrenoleukodystrophy patient was a compound heterozygote for a missense mutation in the PEX10 zinc-binding domain, H290Q, and for a nonsense mutation, R125ter. Although all three mutations attenuate PEX10 activity, the two alleles detected in the mildly affected patient, PBD052, encode partially functional PEX10 proteins. PEX10-deficient PBD100 cells contain many peroxisomes and import peroxisomal membrane proteins but do not import peroxisomal matrix proteins, indicating that loss of PEX10 has its most pronounced effect on peroxisomal matrix-protein import.
Collapse
|
research-article |
27 |
105 |
25
|
Hauser ER, Finkelstein JE, Valle D, Brusilow SW. Allopurinol-induced orotidinuria. A test for mutations at the ornithine carbamoyltransferase locus in women. N Engl J Med 1990; 322:1641-5. [PMID: 2342523 DOI: 10.1056/nejm199006073222305] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ornithine carbamoyltransferase is an X-linked mitochondrial enzyme expressed in hepatocytes and enterocytes. A deficiency of this enzyme results in central nervous system dysfunction, which may be fatal in newborn boys. Milder forms are seen in older boys and girls and in adults. Establishing the carrier status of women at risk for ornithine carbamoyltransferase deficiency is important for determining reproductive and medical risks for affected women. We report a test to establish the carrier status of women at risk for ornithine carbamoyltransferase deficiency. This test relies on the allopurinol-induced accumulation of orotidine, whose synthesis is stimulated by carbamoyl phosphate, a substrate that accumulates in ornithine carbamoyltransferase deficiency. We used anion-exchange, high-performance liquid chromatography to measure urinary orotidine and orotic acid excretion after the administration of a 300-mg oral dose of allopurinol in 25 [corrected] women who were obligate heterozygotes, 13 who were probable heterozygotes, 15 mothers of affected boys from monoplex families (families with only one affected member), 12 mothers of affected girls from monoplex families, and 21 [corrected] normal, unrelated women who were not carriers. Urinary orotidine excretion was increased 3 SD or more above the mean value for the normal women in 95.8 percent of the obligate heterozygotes, 84.6 percent of the probable heterozygotes, 73.3 percent of the mothers of affected boys in monoplex families, and 33.3 percent of the mothers of affected girls in monoplex families, thus establishing that these women were carriers of a mutant ornithine carbamoyltransferase allele. The presence of allopurinol-induced orotic aciduria was not as sensitive or specific an indicator of carrier status as the presence of orotidinuria. We conclude that measurement of urinary orotidine excretion after the administration of allopurinol is a simple and reliable test for the identification of women who are heterozygous for ornithine carbamoyltransferase deficiency.
Collapse
|
|
35 |
100 |