1
|
Poorter H, B Hler J, van Dusschoten D, Climent J, Postma JA. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:839-850. [PMID: 32480834 DOI: 10.1071/fp12049] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/11/2012] [Indexed: 05/04/2023]
Abstract
The majority of experiments in plant biology use plants grown in some kind of container or pot. We conducted a meta-analysis on 65 studies that analysed the effect of pot size on growth and underlying variables. On average, a doubling of the pot size increased biomass production by 43%. Further analysis of pot size effects on the underlying components of growth suggests that reduced growth in smaller pots is caused mainly by a reduction in photosynthesis per unit leaf area, rather than by changes in leaf morphology or biomass allocation. The appropriate pot size will logically depend on the size of the plants growing in them. Based on various lines of evidence we suggest that an appropriate pot size is one in which the plant biomass does not exceed 1gL-1. In current research practice ~65% of the experiments exceed that threshold. We suggest that researchers need to carefully consider the pot size in their experiments, as small pots may change experimental results and defy the purpose of the experiment.
Collapse
|
|
13 |
265 |
2
|
Jahnke S, Menzel MI, van Dusschoten D, Roeb GW, Bühler J, Minwuyelet S, Blümler P, Temperton VM, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coenen HH, Schurr U. Combined MRI-PET dissects dynamic changes in plant structures and functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:634-44. [PMID: 19392708 DOI: 10.1111/j.1365-313x.2009.03888.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope (11)C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.
Collapse
|
|
16 |
162 |
3
|
Metzner R, Eggert A, van Dusschoten D, Pflugfelder D, Gerth S, Schurr U, Uhlmann N, Jahnke S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. PLANT METHODS 2015; 11:17. [PMID: 25774207 PMCID: PMC4359488 DOI: 10.1186/s13007-015-0060-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/23/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Roots are vital to plants for soil exploration and uptake of water and nutrients. Root performance is critical for growth and yield of plants, in particular when resources are limited. Since roots develop in strong interaction with the soil matrix, tools are required that can visualize and quantify root growth in opaque soil at best in 3D. Two modalities that are suited for such investigations are X-ray Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Due to the different physical principles they are based on, these modalities have their specific potentials and challenges for root phenotyping. We compared the two methods by imaging the same root systems grown in 3 different pot sizes with inner diameters of 34 mm, 56 mm or 81 mm. RESULTS Both methods successfully visualized roots of two weeks old bean plants in all three pot sizes. Similar root images and almost the same root length were obtained for roots grown in the small pot, while more root details showed up in the CT images compared to MRI. For the medium sized pot, MRI showed more roots and higher root lengths whereas at some spots thin roots were only found by CT and the high water content apparently affected CT more than MRI. For the large pot, MRI detected much more roots including some laterals than CT. CONCLUSIONS Both techniques performed equally well for pots with small diameters which are best suited to monitor root development of seedlings. To investigate specific root details or finely graduated root diameters of thin roots, CT was advantageous as it provided the higher spatial resolution. For larger pot diameters, MRI delivered higher fractions of the root systems than CT, most likely because of the strong root-to-soil contrast achievable by MRI. Since complementary information can be gathered with CT and MRI, a combination of the two modalities could open a whole range of additional possibilities like analysis of root system traits in different soil structures or under varying soil moisture.
Collapse
|
research-article |
10 |
129 |
4
|
van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Bühler J, Schurr U, Jahnke S. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging. PLANT PHYSIOLOGY 2016; 170:1176-88. [PMID: 26729797 PMCID: PMC4775118 DOI: 10.1104/pp.15.01388] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/02/2015] [Accepted: 12/29/2015] [Indexed: 05/17/2023]
Abstract
Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.
Collapse
|
research-article |
9 |
118 |
5
|
Nagel KA, Kastenholz B, Jahnke S, van Dusschoten D, Aach T, Mühlich M, Truhn D, Scharr H, Terjung S, Walter A, Schurr U. Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:947-959. [PMID: 32688706 DOI: 10.1071/fp09184] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/11/2009] [Indexed: 05/02/2023]
Abstract
Root phenotyping is a challenging task, mainly because of the hidden nature of this organ. Only recently, imaging technologies have become available that allow us to elucidate the dynamic establishment of root structure and function in the soil. In root tips, optical analysis of the relative elemental growth rates in root expansion zones of hydroponically-grown plants revealed that it is the maximum intensity of cellular growth processes rather than the length of the root growth zone that control the acclimation to dynamic changes in temperature. Acclimation of entire root systems was studied at high throughput in agar-filled Petri dishes. In the present study, optical analysis of root system architecture showed that low temperature induced smaller branching angles between primary and lateral roots, which caused a reduction in the volume that roots access at lower temperature. Simulation of temperature gradients similar to natural soil conditions led to differential responses in basal and apical parts of the root system, and significantly affected the entire root system. These results were supported by first data on the response of root structure and carbon transport to different root zone temperatures. These data were acquired by combined magnetic resonance imaging (MRI) and positron emission tomography (PET). They indicate acclimation of root structure and geometry to temperature and preferential accumulation of carbon near the root tip at low root zone temperatures. Overall, this study demonstrated the value of combining different phenotyping technologies that analyse processes at different spatial and temporal scales. Only such an integrated approach allows us to connect differences between genotypes obtained in artificial high throughput conditions with specific characteristics relevant for field performance. Thus, novel routes may be opened up for improved plant breeding as well as for mechanistic understanding of root structure and function.
Collapse
|
|
16 |
109 |
6
|
Windt CW, Soltner H, van Dusschoten D, Blümler P. A portable Halbach magnet that can be opened and closed without force: the NMR-CUFF. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:27-33. [PMID: 21036637 DOI: 10.1016/j.jmr.2010.09.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/23/2010] [Accepted: 09/29/2010] [Indexed: 05/08/2023]
Abstract
Portable equipment for nuclear magnetic resonance (NMR) is becoming increasingly attractive for use in a variety of applications. One of the main scientific challenges in making NMR portable is the design of light-weight magnets that possess a strong and homogeneous field. Existing NMR magnets can provide such magnetic fields, but only for small samples or in small regions, or are rather heavy. Here we show a simple yet elegant concept for a Halbach-type permanent magnet ring, which can be opened and closed with minimal mechanical force. An analytical solution for an ideal Halbach magnet shows that the magnetic forces cancel if the structure is opened at an angle of 35.3° relative to its poles. A first prototype weighed only 3.1 kg, and provided a flux density of 0.57 T with a homogeneity better than 200 ppm over a spherical volume of 5mm in diameter without shimming. The force needed to close it was found to be about 20 N. As a demonstration, intact plants were imaged and water (xylem) flow measured. Magnets of this type (NMR-CUFF = Cut-open, Uniform, Force Free) are ideal for portable use and are eminently suited to investigate small or slender objects that are part of a larger or immobile whole, such as branches on a tree, growing fruit on a plant, or non-metallic tubing in industrial installations. This new concept in permanent-magnet design enables the construction of openable, yet strong and homogeneous magnets, which aside from use in NMR or MRI could also be of interest for applications in accelerators, motors, or magnetic bearings.
Collapse
|
|
14 |
75 |
7
|
van den Dries IJ, van Dusschoten D, Hemminga MA. Mobility in Maltose−Water Glasses Studied with 1H NMR. J Phys Chem B 1998. [DOI: 10.1021/jp982718v] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
27 |
72 |
8
|
Tallarek U, van Dusschoten D, Van As H, Bayer E, Guiochon G. Study of Transport Phenomena in Chromatographic Columns by Pulsed Field Gradient NMR. J Phys Chem B 1998. [DOI: 10.1021/jp980250q] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
27 |
67 |
9
|
Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ, Matsubara S, M Rtin LLA, Merchant A, Metzner R, M Ller-Linow M, Nagel KA, Pieruschka R, Pinto F, Schreiber CM, Temperton VM, Thorpe MR, Dusschoten DV, Van Volkenburgh E, Windt CW, Schurr U. Non-invasive approaches for phenotyping of enhanced performance traits in bean. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:968-983. [PMID: 32480955 DOI: 10.1071/fp11164] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/15/2011] [Indexed: 05/26/2023]
Abstract
Plant phenotyping is an emerging discipline in plant biology. Quantitative measurements of functional and structural traits help to better understand gene-environment interactions and support breeding for improved resource use efficiency of important crops such as bean (Phaseolus vulgaris L.). Here we provide an overview of state-of-the-art phenotyping approaches addressing three aspects of resource use efficiency in plants: belowground roots, aboveground shoots and transport/allocation processes. We demonstrate the capacity of high-precision methods to measure plant function or structural traits non-invasively, stating examples wherever possible. Ideally, high-precision methods are complemented by fast and high-throughput technologies. High-throughput phenotyping can be applied in the laboratory using automated data acquisition, as well as in the field, where imaging spectroscopy opens a new path to understand plant function non-invasively. For example, we demonstrate how magnetic resonance imaging (MRI) can resolve root structure and separate root systems under resource competition, how automated fluorescence imaging (PAM fluorometry) in combination with automated shape detection allows for high-throughput screening of photosynthetic traits and how imaging spectrometers can be used to quantify pigment concentration, sun-induced fluorescence and potentially photosynthetic quantum yield. We propose that these phenotyping techniques, combined with mechanistic knowledge on plant structure-function relationships, will open new research directions in whole-plant ecophysiology and may assist breeding for varieties with enhanced resource use efficiency varieties.
Collapse
|
|
14 |
65 |
10
|
Pflugfelder D, Metzner R, van Dusschoten D, Reichel R, Jahnke S, Koller R. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). PLANT METHODS 2017; 13:102. [PMID: 29177002 PMCID: PMC5693507 DOI: 10.1186/s13007-017-0252-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/08/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Root systems are highly plastic and adapt according to their soil environment. Studying the particular influence of soils on root development necessitates the adaptation and evaluation of imaging methods for multiple substrates. Non-invasive 3D root images in soil can be obtained using magnetic resonance imaging (MRI). Not all substrates, however, are suitable for MRI. Using barley as a model plant we investigated the achievable image quality and the suitability for root phenotyping of six commercially available natural soil substrates of commonly occurring soil textures. The results are compared with two artificially composed substrates previously documented for MRI root imaging. RESULTS In five out of the eight tested substrates, barley lateral roots with diameters below 300 µm could still be resolved. In two other soils, only the thicker barley seminal roots were detectable. For these two substrates the minimal detectable root diameter was between 400 and 500 µm. Only one soil did not allow imaging of the roots with MRI. In the artificially composed substrates, soil moisture above 70% of the maximal water holding capacity (WHCmax) impeded root imaging. For the natural soil substrates, soil moisture had no effect on MRI root image quality in the investigated range of 50-80% WHCmax. CONCLUSIONS Almost all tested natural soil substrates allowed for root imaging using MRI. Half of these substrates resulted in root images comparable to our current lab standard substrate, allowing root detection down to a diameter of 300 µm. These soils were used as supplied by the vendor and, in particular, removal of ferromagnetic particles was not necessary. With the characterization of different soils, investigations such as trait stability across substrates are now possible using noninvasive MRI.
Collapse
|
research-article |
8 |
55 |
11
|
Tallarek U, Bayer E, Van Dusschoten D, Scheenen T, Van As H, Guiochon G, Neue UD. Dynamic NMR microscopy of chromatographic columns. AIChE J 2006. [DOI: 10.1002/aic.690440904] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
19 |
45 |
12
|
Roudaut G, Maglione M, van Dusschoten D, Le Meste M. Molecular Mobility in Glassy Bread: A Multispectroscopy Approach. Cereal Chem 1999. [DOI: 10.1094/cchem.1999.76.1.70] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
26 |
39 |
13
|
van Duynhoven JPM, Maillet B, Schell J, Tronquet M, Goudappel GJW, Trezza E, Bulbarello A, van Dusschoten D. A rapid benchtop NMR method for determination of droplet size distributions in food emulsions. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200700019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
18 |
38 |
14
|
van den Dries IJ, van Dusschoten D, Hemminga MA, van der Linden E. Effects of Water Content and Molecular Weight on Spin Probe and Water Mobility in Malto-oligomer Glasses. J Phys Chem B 2000. [DOI: 10.1021/jp0001541] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
25 |
38 |
15
|
Metzner R, van Dusschoten D, Bühler J, Schurr U, Jahnke S. Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy. FRONTIERS IN PLANT SCIENCE 2014; 5:469. [PMID: 25278947 PMCID: PMC4165221 DOI: 10.3389/fpls.2014.00469] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/27/2014] [Indexed: 05/20/2023]
Abstract
Both structural and functional properties of belowground plant organs are critical for the development and yield of plants but, compared to the shoot, much more difficult to observe due to soil opacity. Many processes concerning the belowground plant performance are not fully understood, in particular spatial and temporal dynamics and their interrelation with environmental factors. We used Magnetic Resonance Imaging (MRI) as a noninvasive method to evaluate which traits can be measured when a complex plant organ is monitored in-vivo while growing in the soil. We chose sugar beet (Beta vulgaris ssp. vulgaris) as a model system. The beet consists mainly of root tissues, is rather complex regarding tissue structure and responses to environmental factors, and thereby a good object to test the applicability of MRI for 3D phenotyping approaches. Over a time period of up to 3 months, traits such as beet morphology or anatomy were followed in the soil and the effect of differently sized pots on beet fresh weight calculated from MRI data was studied. There was a clear positive correlation between the pot size and the increase in fresh weight of a sugar beet over time. Since knowledge of the development of internal beet structures with several concentric cambia, vascular and parenchyma rings is still limited, we consecutively acquired 3D volumetric images on individual plants using the MRI contrast parameter T2 to map the development of rings at the tissue level. This demonstrates that MRI provides versatile protocols to non-invasively measure plant traits in the soil. It opens new avenues to investigate belowground plant performance under adverse environmental conditions such as drought, nutrient shortage, or soil compaction to seek for traits of belowground organs making plants more resilient to stress.
Collapse
|
research-article |
11 |
31 |
16
|
van Dusschoten D, Tracht U, Heuer A, Spiess HW. Site Specific Rotational Mobility of Anhydrous Glucose near the Glass Transition As Studied by 2D Echo Decay 13C NMR. J Phys Chem A 1999. [DOI: 10.1021/jp9917244] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
26 |
31 |
17
|
Popova L, van Dusschoten D, Nagel KA, Fiorani F, Mazzolai B. Plant root tortuosity: an indicator of root path formation in soil with different composition and density. ANNALS OF BOTANY 2016; 118:685-698. [PMID: 27192709 PMCID: PMC5055621 DOI: 10.1093/aob/mcw057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/07/2015] [Accepted: 02/21/2016] [Indexed: 05/03/2023]
Abstract
Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm-3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h-1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm-3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered-soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm-3, whereas the actual experimental density was 1·48±0·02 g cm-3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and active root growth in response to touch stimulation and mechanical impedance.
Collapse
|
research-article |
9 |
29 |
18
|
van den Dries IJ, Besseling NAM, van Dusschoten D, Hemminga MA, van der Linden E. Relation between a Transition in Molecular Mobility and Collapse Phenomena in Glucose−Water Systems. J Phys Chem B 2000. [DOI: 10.1021/jp000074x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
25 |
28 |
19
|
Tallarek U, van Dusschoten D, Van As H, Guiochon G, Bayer E. Direct Observation of Fluid Mass Transfer Resistance in Porous Media by NMR Spectroscopy. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3773(19980803)37:13/14<1882::aid-anie1882>3.0.co;2-u] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
27 |
24 |
20
|
De Schepper V, van Dusschoten D, Copini P, Jahnke S, Steppe K. MRI links stem water content to stem diameter variations in transpiring trees. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2645-53. [PMID: 22268159 DOI: 10.1093/jxb/err445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In trees, stem diameter variations are related to changes in stem water content, because internally stored water is depleted and replenished over a day. To confirm this relationship, non-invasive magnetic resonance imaging (MRI) was combined with point dendrometer measurements in three actively transpiring oak (Quercus robur L.) trees. Two of these oak trees were girdled to study the stem increment above the girdling zone. MRI images and micrographs of stem cross-sections revealed a close link between the water distribution and the anatomical features of the stem. Stem tissues with the highest amount of water were physiologically the most active ones, being the youngest differentiating xylem cells, the cambium and the youngest differentiating and conductive phloem cells. Daily changes in stem diameter corresponded well with the simultaneously MRI-measured amount of water, confirming their strong interdependence. MRI images also revealed that the amount of water in the elastic bark tissues, excluding cambium and the youngest phloem, contributed most to the daily stem diameter changes. After bark removal, an additional increase in stem diameter was measured above the girdle. This increase was attributed not only to the cambial production of new cells, but also to swelling of existing bark cells. In conclusion, the comparison of MRI and dendrometer measurements confirmed previous interpretations and applications of dendrometers and illustrates the additional and complementary information MRI can reveal regarding water relations in plants.
Collapse
|
|
13 |
23 |
21
|
Grimm E, Pflugfelder D, van Dusschoten D, Winkler A, Knoche M. Physical rupture of the xylem in developing sweet cherry fruit causes progressive decline in xylem sap inflow rate. PLANTA 2017. [PMID: 28623562 DOI: 10.1007/s00425-017-2719-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Xylem flow is progressively shut down during maturation beginning with minor veins at the stylar end and progressing to major veins and finally to bundles at the stem end. This study investigates the functionality of the xylem vascular system in developing sweet cherry fruit (Prunus avium L.). The tracers acid fuchsin and gadoteric acid were fed to the pedicel of detached fruit. The tracer distribution was studied using light microscopy and magnetic resonance imaging. The vasculature of the sweet cherry comprises five major bundles. Three of these supply the flesh; two enter the pit to supply the ovules. All vascular bundles branch into major and minor veins that interconnect via numerous anastomoses. The flow in the xylem as indexed by the tracer distribution decreases continuously during development. The decrease is first evident at the stylar (distal) end of the fruit during pit hardening and progresses basipetally towards the pedicel (proximal) end of the fruit at maturity. That growth strains are the cause of the decreased conductance is indicated by: elastic strain relaxation after tissue excision, the presence of ruptured vessels in vivo, the presence of intrafascicular cavities, and the absence of tyloses.
Collapse
|
|
8 |
14 |
22
|
De Schepper V, Bühler J, Thorpe M, Roeb G, Huber G, van Dusschoten D, Jahnke S, Steppe K. (11)C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. FRONTIERS IN PLANT SCIENCE 2013; 4:200. [PMID: 23785380 PMCID: PMC3684848 DOI: 10.3389/fpls.2013.00200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/29/2013] [Indexed: 05/02/2023]
Abstract
Carbon transport processes in plants can be followed non-invasively by repeated application of the short-lived positron-emitting radioisotope (11)C, a technique which has rarely been used with trees. Recently, positron emission tomography (PET) allowing 3D visualization has been adapted for use with plants. To investigate the effects of stem girdling on the flow of assimilates, leaves on first order branches of two-year-old oak (Quercus robur L.) trees were labeled with (11)C by supplying (11)CO2-gas to a leaf cuvette. Magnetic resonance imaging gave an indication of the plant structure, while PET registered the tracer flow in a stem region downstream from the labeled branches. After repeated pulse labeling, phloem translocation was shown to be sectorial in the stem: leaf orthostichy determined the position of the phloem sieve tubes containing labeled (11)C. The observed pathway remained unchanged for days. Tracer time-series derived from each pulse and analysed with a mechanistic model showed for two adjacent heights in the stem a similar velocity but different loss of recent assimilates. With either complete or partial girdling of bark within the monitored region, transport immediately stopped and then resumed in a new location in the stem cross-section, demonstrating the plasticity of sectoriality. One day after partial girdling, the loss of tracer along the interrupted transport pathway increased, while the velocity was enhanced in a non-girdled sector for several days. These findings suggest that lateral sugar transport was enhanced after wounding by a change in the lateral sugar transport path and the axial transport resumed with the development of new conductive tissue.
Collapse
|
research-article |
12 |
14 |
23
|
Sprangers K, Thys S, van Dusschoten D, Beemster GTS. Gibberellin Enhances the Anisotropy of Cell Expansion in the Growth Zone of the Maize Leaf. FRONTIERS IN PLANT SCIENCE 2020; 11:1163. [PMID: 32849718 PMCID: PMC7417610 DOI: 10.3389/fpls.2020.01163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/16/2020] [Indexed: 05/20/2023]
Abstract
Although plant organ shapes are defined by spatio-temporal variations of directional tissue expansion, this is a little characterized aspect of organ growth regulation. Although it is well known that the plant hormone gibberellin increases the leaf length/with ratio, its effects on cell expansion in the growing leaf are largely unknown. To understand how variations in rate and anisotropy of growth establish the typical monocotelydonous leaf shape, we studied the leaf growth zone of maize (Zea mays) with a kinematic analysis of cell expansion in the three directions of growth: proximo-distal, medio-lateral, and dorso-ventral. To determine the effect of gibberellin, we compared a gibberellin-deficient dwarf3 mutant and the overproducing UBI::GA20OX-1 line with their wild types. We found that, as expected, longitudinal growth was dominant throughout the growth zone. The highest degree of anisotropy occurred in the division zone, where relative growth rates in width and thickness were almost zero. Growth anisotropy was smaller in the elongation zone, due to higher lateral and dorso-ventral growth rates. Growth in all directions stopped at the same position. Gibberellin increased the size of the growth zone and the degree of growth anisotropy by stimulating longitudinal growth rates. Inversely, the duration of expansion was negatively affected, so that mature cell length was unaffected, while width and height of cells were reduced. Our study provides a detailed insight in the dynamics of growth anisotropy in the maize leaf and demonstrates that gibberellin specifically stimulates longitudinal growth rates throughout the growth zone.
Collapse
|
research-article |
5 |
14 |
24
|
Hans Tromp R, van Dusschoten D, Parker R, Ring SG. Carbon-13 nuclear magnetic relaxation in supercooled liquid and glassy maltose. Phys Chem Chem Phys 1999. [DOI: 10.1039/a808667b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
26 |
13 |
25
|
Müllers Y, Postma JA, Poorter H, van Dusschoten D. Stomatal conductance tracks soil-to-leaf hydraulic conductance in faba bean and maize during soil drying. PLANT PHYSIOLOGY 2022; 190:2279-2294. [PMID: 36099023 PMCID: PMC9706430 DOI: 10.1093/plphys/kiac422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/24/2022] [Indexed: 06/08/2023]
Abstract
Although regulation of stomatal conductance is widely assumed to be the most important plant response to soil drying, the picture is incomplete when hydraulic conductance from soil to the leaf, upstream of the stomata, is not considered. Here, we investigated to what extent soil drying reduces the conductance between soil and leaf, whether this reduction differs between species, how it affects stomatal regulation, and where in the hydraulic pathway it occurs. To this end, we noninvasively and continuously measured the total root water uptake rate, soil water potential, leaf water potential, and stomatal conductance of 4-week-old, pot-grown maize (Zea mays) and faba bean (Vicia faba) plants during 4 days of water restriction. In both species, the soil-plant conductance, excluding stomatal conductance, declined exponentially with soil drying and was reduced to 50% above a soil water potential of -0.1 MPa, which is far from the permanent wilting point. This loss of conductance has immediate consequences for leaf water potential and the associated stomatal regulation. Both stomatal conductance and soil-plant conductance declined at a higher rate in faba bean than in maize. Estimations of the water potential at the root surface and an incomplete recovery 22 h after rewatering indicate that the loss of conductance, at least partly, occurred inside the plants, for example, through root suberization or altered aquaporin gene expression. Our findings suggest that differences in the stomatal sensitivity among plant species are partly explained by the sensitivity of root hydraulic conductance to soil drying.
Collapse
|
research-article |
3 |
10 |