1
|
Simmons DP, Wearsch PA, Canaday DH, Meyerson HJ, Liu YC, Wang Y, Boom WH, Harding CV. Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. THE JOURNAL OF IMMUNOLOGY 2012; 188:3116-26. [PMID: 22371391 DOI: 10.4049/jimmunol.1101313] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microbial molecules or cytokines can stimulate dendritic cell (DC) maturation, which involves DC migration to lymph nodes and enhanced presentation of Ag to launch T cell responses. Microbial TLR agonists are the most studied inducers of DC maturation, but type I IFN (IFN-I) also promotes DC maturation. In response to TLR stimulation, DC maturation involves a burst of Ag processing with enhanced expression of peptide-class II MHC complexes and costimulator molecules. Subsequently, class II MHC (MHC-II) synthesis and expression in intracellular vacuolar compartments is inhibited, decreasing Ag processing function. This limits presentation to a cohort of Ags kinetically associated with the maturation stimulus and excludes presentation of Ags subsequently experienced by the DC. In contrast, our studies show that IFN-I enhances DC expression of MHC-II and costimulatory molecules without a concomitant inhibition of subsequent MHC-II synthesis and Ag processing. Expression of mRNA for MHC-II and the transcription factor CIITA is inhibited in DCs treated with TLR agonists but maintained in cells treated with IFN-I. After stimulation with IFN-I, MHC-II expression is increased on the plasma membrane but is also maintained in intracellular vacuolar compartments, consistent with sustained Ag processing function. These findings suggest that IFN-I drives a distinctive DC maturation program that enhances Ag presentation to T cells without a shutdown of Ag processing, allowing continued sampling of Ags for presentation.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
122 |
2
|
Simmons DP, Canaday DH, Liu Y, Li Q, Huang A, Boom WH, Harding CV. Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9. THE JOURNAL OF IMMUNOLOGY 2010; 185:2405-15. [PMID: 20660347 DOI: 10.4049/jimmunol.0904005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) cross process exogenous Ags and present them by class I MHC (MHC-I) molecules to CD8(+) T cells specific for Ags from viruses and bacteria such as Mycobacterium tuberculosis. Unmethylated CpG DNA signals through TLR9 to induce type I IFN (IFN-alpha/beta), which enhances MHC-I Ag cross processing, but lipoproteins that signal through TLR2 do not induce IFN-alpha/beta. In these studies we observed that M. tuberculosis, which expresses agonists of both TLR9 and TLR2, did not induce production of IFN-alpha/beta or cross processing by murine DCs. Furthermore, M. tuberculosis and TLR2 agonists inhibited induction of IFN-alpha/beta and DC cross processing by CpG DNA. Exogenous IFN-alpha/beta effectively enhanced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA, bypassing the inhibition of induction of endogenous IFN-alpha/beta. In addition, inhibition of TLR9-induced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA could be circumvented by pretreating cells with CpG DNA to induce IFN-alpha/beta and MHC-I cross processing before inhibitory mycobacterial TLR2 agonists were present. Inhibition of the response to one TLR by another may affect the ultimate response to pathogens like M. tuberculosis that express agonists of multiple TLRs, including TLR2 and TLR9. This mechanism may contribute to immune evasion and explain why IFN-alpha/beta provides little contribution to host immunity to M. tuberculosis. However, downregulation of certain TLR responses may benefit the host by preventing detrimental excessive inflammation that may occur in the presence of persistent infection.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
55 |
3
|
Pecora ND, Fulton SA, Reba SM, Drage MG, Simmons DP, Urankar-Nagy NJ, Boom WH, Harding CV. Mycobacterium bovis BCG decreases MHC-II expression in vivo on murine lung macrophages and dendritic cells during aerosol infection. Cell Immunol 2008; 254:94-104. [PMID: 18762288 DOI: 10.1016/j.cellimm.2008.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/11/2008] [Accepted: 07/15/2008] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis and M. bovis BCG infect APCs. In vitro, mycobacteria inhibit IFN-gamma-induced MHC-II expression by macrophages, but the effects of mycobacteria on lung APCs in vivo remain unclear. To assess MHC-II expression on APCs infected in vivo, mice were aerosol-infected with GFP-expressing BCG. At 28 d, approximately 1% of lung APCs were GFP+ by flow cytometry and CFU data. Most GFP+ cells were CD11b(high)/CD11c(neg-mid) lung macrophages (58-68%) or CD11b(high)/CD11c(high) DCs (28-31%). Lung APC MHC-II expression was higher in infected mice than naïve mice. Within infected lungs, however, MHC-II expression was lower in GFP+ cells than GFP- cells for both macrophages and DCs. MHC-II expression was also inhibited on purified lung macrophages and DCs that were infected with BCG in vitro. Thus, lung APCs that harbor mycobacteria in vivo have decreased MHC-II expression relative to uninfected APCs from the same lung, possibly contributing to evasion of T cell responses.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
47 |
4
|
Simmons DP, Chrisman OD. Salicylate inhibition of cartilage degeneration. ARTHRITIS AND RHEUMATISM 1965; 8:960-9. [PMID: 5863110 DOI: 10.1002/art.1780080506] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
|
60 |
40 |
5
|
Liu YC, Simmons DP, Li X, Abbott DW, Boom WH, Harding CV. TLR2 signaling depletes IRAK1 and inhibits induction of type I IFN by TLR7/9. THE JOURNAL OF IMMUNOLOGY 2012; 188:1019-26. [PMID: 22227568 DOI: 10.4049/jimmunol.1102181] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pathogens may signal through multiple TLRs with synergistic or antagonistic effects on the induction of cytokines, including type I IFN (IFN-I). IFN-I is typically induced by TLR9, but not TLR2. Moreover, we previously reported that TLR2 signaling by Mycobacterium tuberculosis or other TLR2 agonists inhibited TLR9 induction of IFN-I and IFN-I-dependent MHC-I Ag cross processing. The current studies revealed that lipopeptide-induced TLR2 signaling inhibited induction of first-wave IFN-α and IFN-β mRNA by TLR9, whereas induction of second-wave IFN-I mRNA was not inhibited. TLR2 also inhibited induction of IFN-I by TLR7, another MyD88-dependent IFN-I-inducing receptor, but did not inhibit IFN-I induction by TLR3 or TLR4 (both Toll/IL-1R domain-containing adapter-inducing IFN-β dependent, MyD88 independent). The inhibitory effect of TLR2 was not dependent on new protein synthesis or intercellular signaling. IL-1R-associated kinase 1 (IRAK1) was depleted rapidly (within 10 min) by TLR2 agonist, but not until later (e.g., 2 h) by TLR9 agonist. Because IRAK1 is required for TLR7/9-induced IFN-I production, we propose that TLR2 signaling induces rapid depletion of IRAK1, which impairs IFN-I induction by TLR7/9. This novel mechanism, whereby TLR2 inhibits IFN-I induction by TLR7/9, may shape immune responses to microbes that express ligands for both TLR2 and TLR7/TLR9, or responses to bacteria/virus coinfection.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
36 |
6
|
Simmons DP, Nguyen HN, Gomez-Rivas E, Jeong Y, Jonsson AH, Chen AF, Lange JK, Dyer GS, Blazar P, Earp BE, Coblyn JS, Massarotti EM, Sparks JA, Todd DJ, Rao DA, Kim EY, Brenner MB. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci Immunol 2022; 7:eabf2846. [PMID: 35148199 PMCID: PMC8991457 DOI: 10.1126/sciimmunol.abf2846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a superactivated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression and engaging SLAMF7 drove a strong wave of inflammatory cytokine expression. Induction of TNF-α after SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients but also in gut macrophages from patients with active Crohn's disease and in lung macrophages from patients with severe COVID-19. This suggests a central role for SLAMF7 in macrophage superactivation with broad implications in human disease pathology.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
33 |
7
|
|
|
10 |
32 |
8
|
Donado CA, Cao AB, Simmons DP, Croker BA, Brennan PJ, Brenner MB. A Two-Cell Model for IL-1β Release Mediated by Death-Receptor Signaling. Cell Rep 2020; 31:107466. [PMID: 32268091 PMCID: PMC7192215 DOI: 10.1016/j.celrep.2020.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin-1β (IL-1β) is a key orchestrator of anti-microbial immunity whose secretion is typically dependent on activation of inflammasomes. However, many pathogens have evolved strategies to evade inflammasome activation. Here we describe an alternative, two-cell model for IL-1β release where invariant natural killer T (iNKT) cells use the death receptor pathway to instruct antigen-presenting cells to secrete IL-1β. Following cognate interactions with TLR-primed bone marrow-derived dendritic cells (BMDCs), iNKT cells rapidly translocate intracellular Fas ligand to the surface to engage Fas on BMDCs. Fas ligation activates a caspase-8-dependent signaling cascade in BMDCs that drives IL-1β release largely independent of inflammasomes. The apoptotic program initiated by Fas ligation rapidly transitions into a pyroptosis-like form of cell death mediated by gasdermin D. Together, our findings support a two-cell model for IL-1β secretion that may supersede inflammasome activation when cytosolic triggers fail.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
19 |
9
|
Trombetta BA, Kandigian SE, Kitchen RR, Grauwet K, Webb PK, Miller GA, Jennings CG, Jain S, Miller S, Kuo Y, Sweeney T, Gilboa T, Norman M, Simmons DP, Ramirez CE, Bedard M, Fink C, Ko J, De León Peralta EJ, Watts G, Gomez-Rivas E, Davis V, Barilla RM, Wang J, Cunin P, Bates S, Morrison-Smith C, Nicholson B, Wong E, El-Mufti L, Kann M, Bolling A, Fortin B, Ventresca H, Zhou W, Pardo S, Kwock M, Hazra A, Cheng L, Ahmad QR, Toombs JA, Larson R, Pleskow H, Luo NM, Samaha C, Pandya UM, De Silva P, Zhou S, Ganhadeiro Z, Yohannes S, Gay R, Slavik J, Mukerji SS, Jarolim P, Walt DR, Carlyle BC, Ritterhouse LL, Suliman S. Evaluation of serological lateral flow assays for severe acute respiratory syndrome coronavirus-2. BMC Infect Dis 2021; 21:580. [PMID: 34134647 PMCID: PMC8206878 DOI: 10.1186/s12879-021-06257-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND COVID-19 has resulted in significant morbidity and mortality worldwide. Lateral flow assays can detect anti-Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) antibodies to monitor transmission. However, standardized evaluation of their accuracy and tools to aid in interpreting results are needed. METHODS We evaluated 20 IgG and IgM assays selected from available tests in April 2020. We evaluated the assays' performance using 56 pre-pandemic negative and 56 SARS-CoV-2-positive plasma samples, collected 10-40 days after symptom onset, confirmed by a molecular test and analyzed by an ultra-sensitive immunoassay. Finally, we developed a user-friendly web app to extrapolate the positive predictive values based on their accuracy and local prevalence. RESULTS Combined IgG + IgM sensitivities ranged from 33.9 to 94.6%, while combined specificities ranged from 92.6 to 100%. The highest sensitivities were detected in Lumiquick for IgG (98.2%), BioHit for both IgM (96.4%), and combined IgG + IgM sensitivity (94.6%). Furthermore, 11 LFAs and 8 LFAs showed perfect specificity for IgG and IgM, respectively, with 15 LFAs showing perfect combined IgG + IgM specificity. Lumiquick had the lowest estimated limit-of-detection (LOD) (0.1 μg/mL), followed by a similar LOD of 1.5 μg/mL for CareHealth, Cellex, KHB, and Vivachek. CONCLUSION We provide a public resource of the accuracy of select lateral flow assays with potential for home testing. The cost-effectiveness, scalable manufacturing process, and suitability for self-testing makes LFAs an attractive option for monitoring disease prevalence and assessing vaccine responsiveness. Our web tool provides an easy-to-use interface to demonstrate the impact of prevalence and test accuracy on the positive predictive values.
Collapse
|
research-article |
4 |
17 |
10
|
Simmons DP, Kafetzi ML, Wood I, Macaskill PC, Milford EL, Guleria I. Antibodies against HLA-DP recognize broadly expressed epitopes. Hum Immunol 2016; 77:1128-1139. [PMID: 27664843 DOI: 10.1016/j.humimm.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/20/2016] [Accepted: 09/20/2016] [Indexed: 11/27/2022]
Abstract
HLA matching and avoidance of pre-transplant donor-specific antibodies are important in selection of donors for solid organ transplant. Solid phase testing with single antigen beads allows resolution of antibody reactivity to the level of the allele. Single antigen bead testing results at a large transplant center were reviewed to identify selective reactivity patterns of anti-HLA antibodies. Many HLA-DP antibodies were identified in the context of other HLA antibodies, but some sera had antibodies against only HLA-DP. B cell flow crossmatch testing was positive for 2 out of 9 sera with HLA-DP antibodies. Many patterns of reactivity corresponded to epitopes in hypervariable regions C and F of DPB1, but some matched epitopes in other regions or DPA1. Through analysis of single antigen bead testing from a large number of patients, we report that anti-HLA-DP antibodies predominantly recognize broadly cross-reactive epitopes. The United Network for Organ Sharing has mandated HLA-DP typing on all deceased kidney donors, and HLA-DP epitopes should be considered as the major antigens for avoidance of pre-transplant donor-specific antibodies.
Collapse
|
Journal Article |
9 |
9 |
11
|
Nilles EJ, Karlson EW, Norman M, Gilboa T, Fischinger S, Atyeo C, Zhou G, Bennett CL, Tolan NV, Oganezova K, Walt DR, Alter G, Simmons DP, Schur P, Jarolim P, Baden LR. Evaluation of two commercial and two non-commercial immunoassays for the detection of prior infection to SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.06.24.20139006. [PMID: 32607518 PMCID: PMC7325183 DOI: 10.1101/2020.06.24.20139006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Seroepidemiology is an important tool to characterize the epidemiology and immunobiology of SARS-CoV-2 but many immunoassays have not been externally validated raising questions about reliability of study findings. To ensure meaningful data, particularly in a low seroprevalence population, assays need to be rigorously characterized with high specificity. Methods We evaluated two commercial (Roche Diagnostics and Epitope Diagnostics IgM/IgG) and two non-commercial (Simoa and Ragon/MGH IgG) immunoassays against 68 confirmed positive and 232 pre-pandemic negative controls. Sensitivity was stratified by time from symptom onset. The Simoa multiplex assay applied three pre-defined algorithm models to determine sample result. Results The Roche and Ragon/MGH IgG assays each registered 1/232 false positive, the primary Simoa model registered 2/232 false positives, and the Epitope registered 2/230 and 3/230 false positives for the IgG and IgM assays respectively. Sensitivity >21 days post symptom-onset was 100% for all assays except Epitope IgM, but lower and/or with greater variability between assays for samples collected 9-14 days (67-100%) and 15-21 days (69-100%) post-symptom onset. The Simoa and Epitope IgG assays demonstrated excellent sensitivity earlier in the disease course. The Roche and Ragon/MGH IgG assays were less sensitive during early disease, particularly among immunosuppressed individuals. Conclusions The Epitope IgG demonstrated good sensitivity and specificity. The Roche and Ragon/MGH IgG assays registered rare false positives with lower early sensitivity. The Simoa assay primary model had excellent sensitivity and few false positives.
Collapse
|
Preprint |
5 |
8 |
12
|
Simmons DP, Herskovits AZ, Battinelli EM, Schur PH, Lemire SJ, Dorfman DM. Lupus anticoagulant testing using two parallel methods detects additional cases and predicts persistent positivity. ACTA ACUST UNITED AC 2018; 56:1289-1296. [DOI: 10.1515/cclm-2015-0790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023]
Abstract
AbstractBackground:Antiphospholipid antibody syndrome (APS) is characterized by laboratory evidence of antiphospholipid antibodies (aPL) [e.g. lupus anticoagulant (LA), anticardiolipin (ACL), and/or antiβ2-glycoprotein I (aB2GPI)] in a clinical setting of thrombosis or pregnancy morbidity. The International Society on Thrombosis and Haemostasis recommends two different testing modalities to detect LA. To evaluate these recommendations in a clinical setting, our hospital, a tertiary care center with a specialized coagulation laboratory, added the dilute Russell’s viper venom time to be performed in parallel with the PTT-lupus anticoagulant to detect LA.Methods:Results of aPL testing were collected on all patients who had LA testing for one year. Chart review was performed to correlate LA results with ACL, aB2GPI, and clinical history.Results:Patients who were initially LA positive by both PTT-lupus anticoagulant and dilute Russell’s viper venom time were more likely to be persistently positive. Patients who were positive for ACL and aB2GPI were likely to be positive by both LA methodologies. No single method was absolutely sensitive, as cases of APS were detected by PTTLA only, DRVVT only, and both methods.Conclusions:The addition of a second testing method for LA provides additional diagnostic information and may be helpful in stratifying risk of thrombosis.
Collapse
|
|
7 |
7 |
13
|
Nilles EJ, Karlson EW, Norman M, Gilboa T, Fischinger S, Atyeo C, Zhou G, Bennett CL, Tolan NV, Oganezova K, Walt DR, Alter G, Simmons DP, Schur P, Jarolim P, Woolley AE, Baden LR. Evaluation of Three Commercial and Two Non-Commercial Immunoassays for the Detection of Prior Infection to SARS-CoV-2. J Appl Lab Med 2021; 6:1561-1570. [PMID: 34196711 PMCID: PMC8420636 DOI: 10.1093/jalm/jfab072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Serological testing provides a record of prior infection with SARS-CoV-2, but assay performance requires independent assessment. METHODS We evaluated 3 commercial (Roche Diagnostics pan-IG, and Epitope Diagnostics IgM and IgG) and 2 non-commercial (Simoa and Ragon/MGH IgG) immunoassays against 1083 unique samples that included 251 PCR-positive and 832 prepandemic samples. RESULTS The Roche assay registered the highest specificity 99.6% (3/832 false positives), the Ragon/MGH assay 99.5% (4/832), the primary Simoa assay model 99.0% (8/832), and the Epitope IgG and IgM 99.0% (8/830) and 99.5% (4/830), respectively. Overall sensitivities for the Simoa, Roche pan-IG, Epitope IgG, Ragon/MGH IgG, and Epitope IgM were 92.0%, 82.9%, 82.5%, 64.5% and 47.0%, respectively. The Simoa immunoassay demonstrated the highest sensitivity among samples stratified by days postsymptom onset (PSO), <8 days PSO (57.69%) 8-14 days PSO (93.51%), 15-21 days PSO (100%), and > 21 days PSO (95.18%). CONCLUSIONS All assays demonstrated high to very high specificities while sensitivities were variable across assays.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
4 |
14
|
Halls JBL, Vege S, Simmons DP, Aeschlimann J, Bujiriri B, Mah HH, Lebo MS, Vijay Kumar PK, Westhoff CM, Lane WJ. Overcoming the challenges of interpreting complex and uncommon RH alleles from whole genomes. Vox Sang 2020; 115:790-801. [PMID: 32567058 DOI: 10.1111/vox.12963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Rh is one of the most diverse and complex blood group systems. Recently, next generation sequencing (NGS) has proven to be a viable option for RH genotyping. We have developed automated software (bloodTyper) for determining alleles encoding RBC antigens from NGS-based whole genome sequencing (WGS). The bloodTyper algorithm has not yet been optimized and evaluated for complex and uncommon RH alleles. MATERIALS AND METHODS Twenty-two samples with previous polymerase chain reaction (PCR) and Sanger sequencing-based RH genotyping underwent WGS. bloodTyper was used to detect RH alleles including those defined by structural variation (SV) using a combination of three independent strategies: sequence read depth of coverage, split reads and paired reads. RESULTS bloodTyper was programmed to identify D negative and positive phenotypes as well as the presence of alleles encoding weak D, partial D and variant RHCE. Sequence read depth of coverage calculation accurately determined RHD zygosity and detected the presence of RHD/RHCE hybrids. RHCE*C was determined by sequence read depth of coverage and by split read methods. RHD hybrid alleles and RHCE*C were confirmed by using a paired read approach. Small SVs present in RHCE*CeRN and RHCE*ceHAR were detected by a combined read depth of coverage and paired read approach. CONCLUSIONS The combination of several different interpretive approaches allowed for automated software based-RH genotyping of WGS data including RHD zygosity and complex compound RHD and RHCE heterozygotes. The scalable nature of this automated analysis will enable RH genotyping in large genomic sequencing projects.
Collapse
|
Journal Article |
5 |
3 |
15
|
Faust HJ, Cheng TY, Korsunsky I, Watts GFM, Gal-Oz ST, Trim W, Kongthong K, Jonsson AH, Simmons DP, Zhang F, Padera R, Chubinskaya S, Wei K, Raychaudhuri S, Lynch L, Moody DB, Brenner MB. Adipocytes regulate fibroblast function, and their loss contributes to fibroblast dysfunction in inflammatory diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540975. [PMID: 37292637 PMCID: PMC10245775 DOI: 10.1101/2023.05.16.540975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fibroblasts play critical roles in tissue homeostasis, but in pathologic states can drive fibrosis, inflammation, and tissue destruction. In the joint synovium, fibroblasts provide homeostatic maintenance and lubrication. Little is known about what regulates the homeostatic functions of fibroblasts in healthy conditions. We performed RNA sequencing of healthy human synovial tissue and identified a fibroblast gene expression program characterized by enhanced fatty acid metabolism and lipid transport. We found that fat-conditioned media reproduces key aspects of the lipid-related gene signature in cultured fibroblasts. Fractionation and mass spectrometry identified cortisol in driving the healthy fibroblast phenotype, confirmed using glucocorticoid receptor gene ( NR3C1 ) deleted cells. Depletion of synovial adipocytes in mice resulted in loss of the healthy fibroblast phenotype and revealed adipocytes as a major contributor to active cortisol generation via Hsd11 β 1 expression. Cortisol signaling in fibroblasts mitigated matrix remodeling induced by TNFα- and TGFβ, while stimulation with these cytokines repressed cortisol signaling and adipogenesis. Together, these findings demonstrate the importance of adipocytes and cortisol signaling in driving the healthy synovial fibroblast state that is lost in disease.
Collapse
|
Preprint |
2 |
2 |
16
|
Simmons DP, Schur PH. Detection of SARS-CoV-2 Antibodies in Diagnosis and Treatment of COVID-19. Clin Lab Med 2022. [DOI: 10.1016/s0272-2712(22)00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
3 |
|
17
|
Uljon SN, Simmons DP, Rudolf JW, Baron JM, Dutta S, McEvoy DS, Murali M, Dighe AS. Validation and Implementation of an Ordering Alert to Improve the Efficiency of Monoclonal Gammopathy Evaluation. Am J Clin Pathol 2020; 153:396-406. [PMID: 31776551 DOI: 10.1093/ajcp/aqz180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES To evaluate the use of a provider ordering alert to improve laboratory efficiency and reduce costs. METHODS We conducted a retrospective study to assess the use of an institutional reflex panel for monoclonal gammopathy evaluation. We then created a clinical decision support (CDS) alert to educate and encourage providers to change their less-efficient orders to the reflex panel. RESULTS Our retrospective analysis demonstrated that an institutional reflex panel could be safely substituted for a less-efficient and higher-cost panel. The implemented CDS alert resulted in 79% of providers changing their high-cost order panel to an order panel based on the reflex algorithm. CONCLUSIONS The validated decision support alert demonstrated high levels of provider acceptance and directly led to operational and cost savings within the laboratory. Furthermore, these studies highlight the value of laboratory involvement with CDS efforts to provide agile and targeted provider ordering assistance.
Collapse
|
|
5 |
|
18
|
Law C, Wacleche VS, Cao Y, Pillai A, Sowerby J, Hancock B, Horisberger A, Bracero S, Skidanova V, Li Z, Adejoorin I, Dillon E, Benque IJ, Nunez DP, Simmons DP, Keegan J, Chen L, Baker T, Brohawn PZ, Al-Mossawi H, Hao LY, Jones B, Rao N, Qu Y, Alves SE, Jonsson AH, Shaw KS, Vleugels RA, Massarotti E, Costenbader KH, Brenner MB, Lederer JA, Hultquist JF, Choi J, Rao DA. Publisher Correction: Interferon subverts an AHR-JUN axis to promote CXCL13 + T cells in lupus. Nature 2024; 632:E6. [PMID: 39060417 DOI: 10.1038/s41586-024-07845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
Published Erratum |
1 |
|
19
|
Shrestha R, Atluri R, Simmons DP, Kim DS, Choi TY. A micro-pipette thermal sensing technique for measuring the thermal conductivity of non-volatile fluids. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:114902. [PMID: 30501312 DOI: 10.1063/1.5044214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
This research work demonstrates an innovative technique to measure the thermal conductivity of a small volume of non-volatile liquids. The method utilizes a micro-pipette thermal sensor (MPTS) (tip diameter < 2 μm) and is based on laser point heating thermometry and transient heat transfer. A laser beam is irradiated at the sensor tip immersed in a few microliters of the test fluid and the transient temperature change is recorded with the sensor. This temperature change is dependent on the surrounding fluid's thermal properties, such as thermal conductivity and diffusivity. The numerical solution for transient temperature profile for a point source is obtained using the finite element method in the COMSOL software. To determine the optimizing parameters such as thermal conductivity and power absorbed at the sensor tip, the multi-parameter fitting technique is used in MATLAB, which will fit the COMSOL simulation result with the experimental data. Three liquids with known thermal conductivity were tested to verify that the technique can be used to determine the thermal conductivity with high accuracy, and in addition, the thermal conductivity of growth media and serum used for culturing cancer cells is estimated. With the sensor size of 1-2 μm, we demonstrate the possibility of using this described method as the MPTS technique for measuring the thermal properties of microfluidic samples and biological fluids.
Collapse
|
|
7 |
|
20
|
Mueller AA, Sasaki T, Keegan JW, Nguyen JP, Griffith A, Horisberger AM, Licata T, Fieg E, Cao Y, Elahee M, Marks KE, Simmons DP, Briere LC, Cobban LA, Pallais JC, High FA, Walker MA, Linnoila JJ, Sparks JA, Holers VM, Costenbader KH, Sweetser DA, Krier JB, Loscalzo J, Lederer JA, Rao DA. High-dimensional immunophenotyping reveals immune cell aberrations in patients with undiagnosed inflammatory and autoimmune diseases. J Clin Invest 2023; 133:e169619. [PMID: 37874643 PMCID: PMC10721141 DOI: 10.1172/jci169619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
|
Research Support, N.I.H., Extramural |
2 |
|
21
|
Faust HJ, Cheng TY, Korsunsky I, Watts GFM, Gal-Oz ST, Trim WV, Kongthong S, Jonsson AH, Simmons DP, Zhang F, Padera R, Chubinskaya S, Wei K, Raychaudhuri S, Lynch L, Moody DB, Brenner MB. Adipocyte associated glucocorticoid signaling regulates normal fibroblast function which is lost in inflammatory arthritis. Nat Commun 2024; 15:9859. [PMID: 39543086 PMCID: PMC11564742 DOI: 10.1038/s41467-024-52586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024] Open
Abstract
Fibroblasts play critical roles in tissue homeostasis, but in pathologic states they can drive fibrosis, inflammation, and tissue destruction. Little is known about what regulates the homeostatic functions of fibroblasts. Here, we perform RNA sequencing and identify a gene expression program in healthy synovial fibroblasts characterized by enhanced fatty acid metabolism and lipid transport. We identify cortisol as the key driver of the healthy fibroblast phenotype and that depletion of adipocytes, which express high levels of Hsd11b1, results in loss of the healthy fibroblast phenotype in mouse synovium. Additionally, fibroblast-specific glucocorticoid receptor Nr3c1 deletion in vivo leads to worsened arthritis. Cortisol signaling in fibroblasts mitigates matrix remodeling induced by TNF and TGF-β1 in vitro, while stimulation with these cytokines represses cortisol signaling and adipogenesis. Together, these findings demonstrate the importance of adipocytes and cortisol signaling in driving the healthy synovial fibroblast state that is lost in disease.
Collapse
|
research-article |
1 |
|
22
|
Law C, Wacleche VS, Cao Y, Pillai A, Sowerby J, Hancock B, Horisberger A, Bracero S, Skidanova V, Li Z, Adejoorin I, Dillon E, Benque IJ, Nunez DP, Simmons DP, Keegan J, Chen L, Baker T, Brohawn PZ, Al-Mossawi H, Hao LY, Jones B, Rao N, Qu Y, Alves SE, Jonsson AH, Shaw KS, Vleugels RA, Massarotti E, Costenbader KH, Brenner MB, Lederer JA, Hultquist JF, Choi J, Rao DA. Interferon subverts an AHR-JUN axis to promote CXCL13 + T cells in lupus. Nature 2024; 631:857-866. [PMID: 38987586 PMCID: PMC11628166 DOI: 10.1038/s41586-024-07627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Systemic lupus erythematosus (SLE) is prototypical autoimmune disease driven by pathological T cell-B cell interactions1,2. Expansion of T follicular helper (TFH) and T peripheral helper (TPH) cells, two T cell populations that provide help to B cells, is a prominent feature of SLE3,4. Human TFH and TPH cells characteristically produce high levels of the B cell chemoattractant CXCL13 (refs. 5,6), yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4+ T cell phenotypes in patients with SLE, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4+ T cells. Transcriptomic, epigenetic and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ TPH/TFH cell differentiation and promote an IL-22+ phenotype. Type I interferon, a pathogenic driver of SLE7, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ TPH/TFH cells on a polarization axis opposite from T helper 22 (TH22) cells and reveal AHR, JUN and interferon as key regulators of these divergent T cell states.
Collapse
|
research-article |
1 |
|
23
|
Trombetta BA, Kandigian SE, Kitchen RR, Grauwet K, Webb PK, Miller GA, Jennings CG, Jain S, Miller S, Kuo Y, Sweeney T, Gilboa T, Norman M, Simmons DP, Ramirez CE, Bedard M, Fink C, Ko J, De León Peralta EJ, Watts G, Gomez-Rivas E, Davis V, Barilla RM, Wang J, Cunin P, Bates S, Morrison-Smith C, Nicholson B, Wong E, El-Mufti L, Kann M, Bolling A, Fortin B, Ventresca H, Zhou W, Pardo S, Kwock M, Hazra A, Cheng L, Ahmad QR, Toombs JA, Larson R, Pleskow H, Luo NM, Samaha C, Pandya UM, De Silva P, Zhou S, Ganhadeiro Z, Yohannes S, Gay R, Slavik J, Mukerji SS, Jarolim P, Walt DR, Carlyle BC, Ritterhouse LL, Suliman S. Correction to: Evaluation of serological lateral flow assays for severe acute respiratory syndrome coronavirus-2. BMC Infect Dis 2021; 21:628. [PMID: 34210278 PMCID: PMC8246132 DOI: 10.1186/s12879-021-06333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
Published Erratum |
4 |
|
24
|
Yeung MY, Murakami N, Kafetzi ML, Simmons DP, Wood I, Macaskill P, Towle M, DellaGatta J, Stevens J, Comeau E, Baronas J, Mohsin N, Chen M, Lee JH, Lane WJ, Milford EL, Guleria I. Impact of allele-specific anti-human leukocyte antigen class I antibodies on organ allocation. Am J Transplant 2023; 23:1388-1400. [PMID: 37257653 PMCID: PMC10756661 DOI: 10.1016/j.ajt.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Technological advances in the field of histocompatibility have allowed us to define anti-human leukocyte antigen (HLA) antibody specificity at the allelic level. However, how allele-specific antibodies affect organ allocation is poorly studied. We examined allelic specificities of class I HLA antibodies in 6726 consecutive serum samples from 2953 transplant candidates and evaluated their impact on the corresponding crossmatch and organ allocation. Out of 17 class I HLA antigens represented by >1 allele in the LABScreen single antigen bead assay, 12 had potential allele-specific reactivity. Taking advantage of our unbiased cohort of deceased donor-candidate testing (123,135 complement-dependent cytotoxicity crossmatches between 2014 and 2017), we estimated that the presence of allele-specific antibody detected using a single antigen bead assay (median fluorescence intensity, >3000) against only the rare allele was a poor predictor of a positive complement-dependent cytotoxicity crossmatch, with a positive predictive value of 0% to 7%, compared with 52.5% in allele-concordant class I HLA antibodies against A or B locus antigens. Further, we confirmed allele-specific reactivity using flow crossmatch in 3 scenarios: A11:01/A11:02, A68:01/A68:02, and B44:02/B44:03. Our results suggest that allele-specific antibodies may unnecessarily exclude transplant candidates (up to 10%) from organ offers by overcalling unacceptable antigens; incorporation of selective reactivity pattern in allocation may promote precision matching and more equitable allocation.
Collapse
|
research-article |
2 |
|
25
|
Simmons DP, Schur PH. Preface: Perspectives on Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 and Its Implications for Diagnostics, Biology, and Clinical Management. Clin Lab Med 2021; 42:xi-xiii. [PMID: 35153052 PMCID: PMC8687759 DOI: 10.1016/j.cll.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
4 |
|