1
|
Abstract
Glucagon is a primary regulator of hepatic glucose production (HGP) in vivo during fasting, exercise and hypoglycaemia. Glucagon also plays a role in limiting hepatic glucose uptake and producing the hyperglycaemic phenotype associated with insulin deficiency and insulin resistance. In response to a physiological rise in glucagon, HGP is rapidly stimulated. This increase in HGP is entirely attributable to an enhancement of glycogenolysis, with little to no acute effect on gluconeogenesis. This dramatic rise in glycogenolysis in response to hyperglucagonemia wanes with time. A component of this waning effect is known to be independent of hyperglycemia, though the molecular basis for this tachyphylaxis is not fully understood. In the overnight fasted state, the presence of basal glucagon secretion is essential in countering the suppressive effects of basal insulin, resulting in the maintenance of appropriate levels of glycogenolysis, fasting HGP and blood glucose. The enhancement of glycogenolysis in response to elevated glucagon is critical in the life-preserving counterregulatory response to hypoglycaemia, as well as a key factor in providing adequate circulating glucose for working muscle during exercise. Finally, glucagon has a key role in promoting the catabolic consequences associated with states of deficient insulin action, which supports the therapeutic potential in developing glucagon receptor antagonists or inhibitors of glucagon secretion.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
197 |
2
|
Edgerton DS, Lautz M, Scott M, Everett CA, Stettler KM, Neal DW, Chu CA, Cherrington AD. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest 2006; 116:521-7. [PMID: 16453026 PMCID: PMC1359060 DOI: 10.1172/jci27073] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/15/2005] [Indexed: 12/18/2022] Open
Abstract
Insulin inhibits glucose production through both direct and indirect effects on the liver; however, considerable controversy exists regarding the relative importance of these effects. The first aim of this study was to determine which of these processes dominates the acute control of hepatic glucose production (HGP). Somatostatin and portal vein infusions of insulin and glucagon were used to clamp the pancreatic hormones at basal levels in the nondiabetic dog. After a basal sampling period, insulin infusion was switched from the portal vein to a peripheral vein. As a result, the arterial insulin level doubled and the hepatic sinusoidal insulin level was reduced by half. While the arterial plasma FFA level and net hepatic FFA uptake fell by 40-50%, net hepatic glucose output increased more than 2-fold and remained elevated compared with that in the control group. The second aim of this study was to determine the effect of a 4-fold rise in head insulin on HGP during peripheral hyperinsulinemia and hepatic insulin deficiency. Sensitivity of the liver was not enhanced by increased insulin delivery to the head. Thus, this study demonstrates that the direct effects of insulin dominate the acute regulation of HGP in the normal dog.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
132 |
3
|
Edgerton DS, Cardin S, Emshwiller M, Neal D, Chandramouli V, Schumann WC, Landau BR, Rossetti L, Cherrington AD. Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism. Diabetes 2001; 50:1872-82. [PMID: 11473051 DOI: 10.2337/diabetes.50.8.1872] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Based on our earlier work, a 2.5-fold increase in insulin secretion should completely inhibit hepatic glucose production through the hormone's direct effect on hepatic glycogen metabolism. The aim of the present study was to test the accuracy of this prediction and to confirm that gluconeogenic flux, as measured by three independent techniques, was unaffected by the increase in insulin. A 40-min basal period was followed by a 180-min experimental period in which an increase in insulin was induced, with euglycemia maintained by peripheral glucose infusion. Arterial and hepatic sinusoidal insulin levels increased from 10 +/- 2 to 19 +/- 3 and 20 +/- 4 to 45 +/- 5 microU/ml, respectively. Net hepatic glucose output decreased rapidly from 1.90 +/- 0.13 to 0.23 +/- 0.16 mg. kg(-1). min(-1). Three methods of measuring gluconeogenesis and glycogenolysis were used: 1) the hepatic arteriovenous difference technique (n = 8), 2) the [(14)C]phosphoenolpyruvate technique (n = 4), and 3) the (2)H(2)O technique (n = 4). The net hepatic glycogenolytic rate decreased from 1.72 +/- 0.20 to -0.28 +/- 0.15 mg. kg(-1). min(-1) (P < 0.05), whereas none of the above methods showed a significant change in hepatic gluconeogenic flux (rate of conversion of phosphoenolpyruvate to glucose-6-phosphate). These results indicate that liver glycogenolysis is acutely sensitive to small changes in plasma insulin, whereas gluconeogenic flux is not.
Collapse
|
|
24 |
95 |
4
|
Edgerton DS, Kraft G, Smith M, Farmer B, Williams PE, Coate KC, Printz RL, O'Brien RM, Cherrington AD. Insulin's direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight 2017; 2:e91863. [PMID: 28352665 DOI: 10.1172/jci.insight.91863] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin's indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulin's indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulin's direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulin's direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
79 |
5
|
Ramnanan CJ, Saraswathi V, Smith MS, Donahue EP, Farmer B, Farmer TD, Neal D, Williams PE, Lautz M, Mari A, Cherrington AD, Edgerton DS. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J Clin Invest 2011; 121:3713-23. [PMID: 21865644 DOI: 10.1172/jci45472] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 06/22/2011] [Indexed: 01/26/2023] Open
Abstract
In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
73 |
6
|
Ramnanan CJ, Edgerton DS, Rivera N, Irimia-Dominguez J, Farmer B, Neal DW, Lautz M, Donahue EP, Meyer CM, Roach PJ, Cherrington AD. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes 2010; 59:1302-11. [PMID: 20185816 PMCID: PMC2874690 DOI: 10.2337/db09-1625] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Insulin-mediated suppression of hepatic glucose production (HGP) is associated with sensitive intracellular signaling and molecular inhibition of gluconeogenic (GNG) enzyme mRNA expression. We determined, for the first time, the time course and relevance (to metabolic flux) of these molecular events during physiological hyperinsulinemia in vivo in a large animal model. RESEARCH DESIGN AND METHODS 24 h fasted dogs were infused with somatostatin, while insulin (basal or 8 x basal) and glucagon (basal) were replaced intraportally. Euglycemia was maintained and glucose metabolism was assessed using tracer, (2)H(2)O, and arterio-venous difference techniques. Studies were terminated at different time points to evaluate insulin signaling and enzyme regulation in the liver. RESULTS Hyperinsulinemia reduced HGP due to a rapid transition from net glycogen breakdown to synthesis, which was associated with an increase in glycogen synthase and a decrease in glycogen phosphorylase activity. Thirty minutes of hyperinsulinemia resulted in an increase in phospho-FOXO1, a decrease in GNG enzyme mRNA expression, an increase in F2,6P(2), a decrease in fat oxidation, and a transient decrease in net GNG flux. Net GNG flux was restored to basal by 4 h, despite a substantial reduction in PEPCK protein, as gluconeogenically-derived carbon was redirected from lactate efflux to glycogen deposition. CONCLUSIONS In response to acute physiologic hyperinsulinemia, 1) HGP is suppressed primarily through modulation of glycogen metabolism; 2) a transient reduction in net GNG flux occurs and is explained by increased glycolysis resulting from increased F2,6P(2) and decreased fat oxidation; and 3) net GNG flux is not ultimately inhibited by the rise in insulin, despite eventual reduction in PEPCK protein, supporting the concept that PEPCK has poor control strength over the gluconeogenic pathway in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
70 |
7
|
Edgerton DS, Ramnanan CJ, Grueter CA, Johnson KMS, Lautz M, Neal DW, Williams PE, Cherrington AD. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes 2009; 58:2766-75. [PMID: 19755527 PMCID: PMC2780867 DOI: 10.2337/db09-0328] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Insulin represses the expression of gluconeogenic genes at the mRNA level, but the hormone appears to have only weak inhibitory effects in vivo. The aims of this study were 1) to determine the maximal physiologic effect of insulin, 2) to determine the relative importance of its effects on gluconeogenic regulatory sites, and 3) to correlate those changes with alterations at the cellular level. RESEARCH DESIGN AND METHODS Conscious 60-h fasted canines were studied at three insulin levels (near basal, 4x, or 16x) during a 5-h euglycemic clamp. Pancreatic hormones were controlled using somatostatin with portal insulin and glucagon infusions. Glucose metabolism was assessed using the arteriovenous difference technique, and molecular signals were assessed. RESULTS Insulin reduced gluconeogenic flux to glucose-6-phosphate (G6P) but only at the near-maximal physiological level (16x basal). The effect was modest compared with its inhibitory effect on net hepatic glycogenolysis, occurred within 30 min, and was associated with a marked decrease in hepatic fat oxidation, increased liver fructose 2,6-bisphosphate level, and reductions in lactate, glycerol, and amino acid extraction. No further diminution in gluconeogenic flux to G6P occurred over the remaining 4.5 h of the study, despite a marked decrease in PEPCK content, suggesting poor control strength for this enzyme in gluconeogenic regulation in canines. CONCLUSIONS Gluconeogenic flux can be rapidly inhibited by high insulin levels in canines. Initially decreased hepatic lactate extraction is important, and later reduced gluconeogenic precursor availability plays a role. Changes in PEPCK appear to have little or no acute effect on gluconeogenic flux.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
65 |
8
|
Jacobson PB, von Geldern TW, Ohman L, Osterland M, Wang J, Zinker B, Wilcox D, Nguyen PT, Mika A, Fung S, Fey T, Goos-Nilsson A, Grynfarb M, Barkhem T, Marsh K, Beno DWA, Nga-Nguyen B, Kym PR, Link JT, Tu N, Edgerton DS, Cherrington A, Efendic S, Lane BC, Opgenorth TJ. Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes. J Pharmacol Exp Ther 2005; 314:191-200. [PMID: 15784656 DOI: 10.1124/jpet.104.081257] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucocorticoids amplify endogenous glucose production in type 2 diabetes by increasing hepatic glucose output. Systemic glucocorticoid blockade lowers glucose levels in type 2 diabetes, but with several adverse consequences. It has been proposed, but never demonstrated, that a liver-selective glucocorticoid receptor antagonist (LSGRA) would be sufficient to reduce hepatic glucose output (HGO) and restore glucose control to type 2 diabetic patients with minimal systemic side effects. A-348441 [(3b,5b,7a,12a)-7,12-dihydroxy-3-{2-[{4-[(11b,17b)-17-hydroxy-3-oxo-17-prop-1-ynylestra-4,9-dien-11-yl] phenyl}(methyl)amino]ethoxy}cholan-24-oic acid] represents the first LSGRA with significant antidiabetic activity. A-348441 antagonizes glucocorticoid-up-regulated hepatic genes, normalizes postprandial glucose in diabetic mice, and demonstrates synergistic effects on blood glucose in these animals when coadministered with an insulin sensitizer. In insulin-resistant Zucker fa/fa rats and fasted conscious normal dogs, A-348441 reduces HGO with no acute effect on peripheral glucose uptake. A-348441 has no effect on the hypothalamic pituitary adrenal axis or on other measured glucocorticoid-induced extrahepatic responses. Overall, A-348441 demonstrates that an LSGRA is sufficient to reduce elevated HGO and normalize blood glucose and may provide a new therapeutic approach for the treatment of type 2 diabetes.
Collapse
|
|
20 |
56 |
9
|
Ramnanan CJ, Edgerton DS, Cherrington AD. Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell Metab 2012; 15:656-64. [PMID: 22560218 PMCID: PMC3348512 DOI: 10.1016/j.cmet.2012.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This Perspective will discuss the physiologic relevance of data that suggest CNS insulin action is required for the rapid suppression of hepatic glucose production. It will also review data from experiments on the conscious dog, which show that although the canine brain can sense insulin and, thereby, regulate hepatic glucoregulatory enzyme expression, CNS insulin action is not essential for the rapid suppression of glucose production caused by the hormone. Insulin's direct hepatic effects are dominant, thus it appears that insulin's central effects are redundant in the acute regulation of hepatic glucose metabolism.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
44 |
10
|
Edgerton DS, Johnson KMS, Cherrington AD. Current strategies for the inhibition of hepatic glucose production in type 2 diabetes. Front Biosci (Landmark Ed) 2009; 14:1169-81. [PMID: 19273123 DOI: 10.2741/3301] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is a complex disease involving multiple organs with dysregulation in glucose and lipid metabolism. Hepatic insulin insensitivity can contribute to elevated fasting glucose levels and impaired glucose tolerance in individuals with diabetes. Several currently available therapeutics address defects at the liver. Metformin inhibits glucose production, potentially through effects on AMPK. Thiazolidinediones activate PPAR-gamma and improve hepatic insulin sensitivity, primarily through indirect effects on lipid metabolism. Insulin analogs and secretagogues suppress glucose production and increase liver glucose utilization by both direct and indirect hepatic actions. Incretins, incretin mimetics, and dipeptidyl peptidase-4 inhibitors reduce postprandial hepatic glucose production by increasing insulin secretion and limiting glucagon release, as well as through possible direct effects on the liver. Pramlintide reduces the increase in plasma glucagon that occurs following a meal in individuals with diabetes, and may thereby suppress inappropriate stimulation of liver glucose production. Many other hepatic targets are being considered which may lead to alternative strategies for the treatment of diabetes. This review focuses on currently available therapeutics which target insulin resistance in the liver.
Collapse
|
Review |
16 |
42 |
11
|
Johnson KMS, Edgerton DS, Rodewald T, Scott M, Farmer B, Neal D, Cherrington AD. Intraportal GLP-1 infusion increases nonhepatic glucose utilization without changing pancreatic hormone levels. Am J Physiol Endocrinol Metab 2007; 293:E1085-91. [PMID: 17684104 DOI: 10.1152/ajpendo.00275.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
After a meal, glucagon-like peptide-1 (GLP-1) levels in the hepatic portal vein are elevated and are twice those in peripheral blood. The aim of this study was to determine whether any of GLP-1's acute metabolic effects are initiated within the hepatic portal vein. Experiments consisted of a 40-min basal period, followed by a 240-min experimental period, during which conscious 42-h-fasted dogs received glucose intraportally (4 mgxkg(-1)xmin(-1)) and peripherally (as needed) to maintain arterial plasma glucose levels at approximately 160 mg/dl. In addition, saline was given intraportally (CON; n = 8) or GLP-1 (1 pmolxkg(-1)xmin(-1)) was given into the hepatic portal vein (POR; n = 11) or the hepatic artery (HAT; n = 8). Portal vein plasma GLP-1 levels were basal in CON, 20x basal in POR, and 10x basal in HAT, whereas levels in the periphery and liver were the same in HAT and CON. The glucose infusion rate required to maintain hyperglycemia was significantly greater in POR (8.5 +/- 0.7 mgxkg(-1)xmin(-1), final 2 h) than in either CON or HAT (6.0 +/- 0.5 or 6.7 +/- 1.0 mgxkg(-1)xmin(-1), respectively). There were no differences among groups in either arterial plasma insulin (24 +/- 2, 23 +/- 3, and 23 +/- 3 microU/ml for CON, POR, and HAT, respectively) or glucagon (23 +/- 2, 30 +/- 3, and 25 +/- 2 pg/ml) levels during the experimental period. The increased need for glucose infusion reflected greater nonhepatic as opposed to liver glucose uptake. GLP-1 infusion increased glucose disposal independently of changes in pancreatic hormone secretion but only when the peptide was delivered intraportally.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
40 |
12
|
Rivera N, Everett-Grueter CA, Edgerton DS, Rodewald T, Neal DW, Nishimura E, Larsen MO, Jacobsen LO, Kristensen K, Brand CL, Cherrington AD. A novel glucagon receptor antagonist, NNC 25-0926, blunts hepatic glucose production in the conscious dog. J Pharmacol Exp Ther 2007; 321:743-52. [PMID: 17308040 DOI: 10.1124/jpet.106.115717] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Elevated glucagon is associated with fasting hyperglycemia in type 2 diabetes. We assessed the effects of the glucagon receptor antagonist (2R)-N-[4-({4-(1-cyclohexen-1-yl)[(3,5-dichloroanilino)carbonyl]anilino}methyl)benzoyl]-2-hydroxy-b-alanine (NNC 25-0926) on hepatic glucose production (HPG) in vivo, using arteriovenous difference and tracer techniques in conscious dogs. The experiments consisted of equilibration (-140 to -40 min), control (40-0 min), and experimental [0-180 min, divided into P1 (0-60 min) and P2 (60-180 min)] periods. In P1, NNC 25-0926 was given intragastrically at 0 (veh), 10, 20, 40, or 100 mg/kg, and euglycemia was maintained. In P2, somatostatin, basal intraportal insulin, and 5-fold basal intraportal glucagon (2.5 ng/kg/min) were infused. Arterial plasma insulin levels remained basal throughout the study in all groups. Arterial plasma glucagon levels remained basal during the control period and P1 and then increased to approximately 70 pg/ml in P2 in all groups. Arterial plasma glucose levels were basal in the control period and P1 in all groups. In P2, the arterial glucose level increased to 245+/-22 and 172+/-15 mg/dl in the veh and 10 mg/kg groups, respectively, whereas in the 20, 40, and 100 mg/kg groups, there was no rise in glucose. Net hepatic glucose output was approximately 2 mg/kg/min in all groups during the control period. In P2, it increased by 9.4+/-2 mg/kg/min in the veh group. In the 10, 20, 40, and 100 mg/kg groups, the rise was only 4.1+/-0.9, 1.6+/-0.6, 2.4+/-0.7, and 1.5+/-0.3 mg/kg/min, respectively, due to inhibition of glycogenolysis. In conclusion, NNC 25-0926 effectively blocked the ability of glucagon to increase HGP in the dog.
Collapse
|
|
18 |
38 |
13
|
Edgerton DS, Moore MC, Winnick JJ, Scott M, Farmer B, Naver H, Jeppesen CB, Madsen P, Kjeldsen TB, Nishimura E, Brand CL, Cherrington AD. Changes in glucose and fat metabolism in response to the administration of a hepato-preferential insulin analog. Diabetes 2014; 63:3946-54. [PMID: 24947349 PMCID: PMC4392933 DOI: 10.2337/db14-0266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endogenous insulin secretion exposes the liver to three times higher insulin concentrations than the rest of the body. Because subcutaneous insulin delivery eliminates this gradient and is associated with metabolic abnormalities, functionally restoring the physiologic gradient may provide therapeutic benefits. The effects of recombinant human insulin (HI) delivered intraportally or peripherally were compared with an acylated insulin model compound (insulin-327) in dogs. During somatostatin and basal portal vein glucagon infusion, insulin was infused portally (PoHI; 1.8 pmol/kg/min; n = 7) or peripherally (PeHI; 1.8 pmol/kg/min; n = 8) and insulin-327 (Pe327; 7.2 pmol/kg/min; n = 5) was infused peripherally. Euglycemia was maintained by glucose infusion. While the effects on liver glucose metabolism were greatest in the PoHI and Pe327 groups, nonhepatic glucose uptake increased most in the PeHI group. Suppression of lipolysis was greater during PeHI than PoHI and was delayed in Pe327 infusion. Thus small increments in portal vein insulin have major consequences on the liver, with little effect on nonhepatic glucose metabolism, whereas insulin delivered peripherally cannot act on the liver without also affecting nonhepatic tissues. Pe327 functionally restored the physiologic portal-arterial gradient and thereby produced hepato-preferential effects.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
37 |
14
|
Ramnanan CJ, Kraft G, Smith MS, Farmer B, Neal D, Williams PE, Lautz M, Farmer T, Donahue EP, Cherrington AD, Edgerton DS. Interaction between the central and peripheral effects of insulin in controlling hepatic glucose metabolism in the conscious dog. Diabetes 2013; 62:74-84. [PMID: 23011594 PMCID: PMC3526039 DOI: 10.2337/db12-0148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
37 |
15
|
|
Comment |
14 |
36 |
16
|
Gustavson SM, Rajotte RV, Hunkeler D, Lakey JRT, Edgerton DS, Neal DW, Snead WL, Penaloza AR, Cherrington AD. Islet auto-transplantation into an omental or splenic site results in a normal beta cell but abnormal alpha cell response to mild non-insulin-induced hypoglycemia. Am J Transplant 2005; 5:2368-77. [PMID: 16162184 DOI: 10.1111/j.1600-6143.2005.01041.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present studies were designed to determine if totally pancreatectomized dogs that underwent islet auto-transplantation retained a functional pancreatic counterregulatory response to mild non-insulin-induced hypoglycemia. Six dogs underwent total pancreatectomy followed by islet auto-transplantation to spleen or omentum. The animals recovered and fasting plasma glucose and insulin levels were normal. Each study consisted of a 40-min control and 2-h test period. At the onset of the test period, a glycogen phosphorylase inhibitor was administered to create mild hypoglycemia. Plasma glucose in the transplanted dogs fell from 120 +/- 4 to 80 +/- 3 mg/dL, similar to the minimum in control dogs without islet auto-transplantation (108 +/- 2 to 84 +/- 5 mg/dL). The fall in plasma insulin was similar in both groups. Glucagon, however, rose in response to hypoglycemia in the control dogs (Delta24 +/- 7 pg/mL; p < 0.05), but failed to rise significantly in the transplanted dogs (Delta9 +/- 6 pg/mL). In fact, only 1 of 7 control dogs failed to increase plasma glucagon by at least 25%, whereas 4 of 6 transplanted dogs failed to do so. In conclusion, in conscious dogs with successfully auto-transplanted islets, the beta cell response to mild non-insulin-induced hypoglycemia was normal, whereas the alpha cell response was not.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
33 |
17
|
Gregory JM, Kraft G, Scott MF, Neal DW, Farmer B, Smith MS, Hastings JR, Allen EJ, Donahue EP, Rivera N, Winnick JJ, Edgerton DS, Nishimura E, Fledelius C, Brand CL, Cherrington AD. Insulin Delivery Into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 Diabetes. Diabetes 2015; 64:3439-51. [PMID: 26085570 PMCID: PMC4587648 DOI: 10.2337/db15-0071] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/10/2015] [Indexed: 12/25/2022]
Abstract
Hypoglycemia limits optimal glycemic control in type 1 diabetes mellitus (T1DM), making novel strategies to mitigate it desirable. We hypothesized that portal (Po) vein insulin delivery would lessen hypoglycemia. In the conscious dog, insulin was infused into the hepatic Po vein or a peripheral (Pe) vein at a rate four times of basal. In protocol 1, a full counterregulatory response was allowed, whereas in protocol 2, glucagon was fixed at basal, mimicking the diminished α-cell response to hypoglycemia seen in T1DM. In protocol 1, glucose fell faster with Pe insulin than with Po insulin, reaching 56 ± 3 vs. 70 ± 6 mg/dL (P = 0.04) at 60 min. The change in area under the curve (ΔAUC) for glucagon was similar between Pe and Po, but the peak occurred earlier in Pe. The ΔAUC for epinephrine was greater with Pe than with Po (67 ± 17 vs. 36 ± 14 ng/mL/180 min). In protocol 2, glucose also fell more rapidly than in protocol 1 and fell faster in Pe than in Po, reaching 41 ± 3 vs. 67 ± 2 mg/dL (P < 0.01) by 60 min. Without a rise in glucagon, the epinephrine responses were much larger (ΔAUC of 204 ± 22 for Pe vs. 96 ± 29 ng/mL/180 min for Po). In summary, Pe insulin delivery exacerbates hypoglycemia, particularly in the presence of a diminished glucagon response. Po vein insulin delivery, or strategies that mimic it (i.e., liver-preferential insulin analogs), should therefore lessen hypoglycemia.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
32 |
18
|
Cardin S, Emshwiller M, Jackson PA, Snead WL, Hastings J, Edgerton DS, Cherrington AD. Portal glucose infusion increases hepatic glycogen deposition in conscious unrestrained rats. J Appl Physiol (1985) 1999; 87:1470-5. [PMID: 10517780 DOI: 10.1152/jappl.1999.87.4.1470] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated in the conscious dog that portal glucose infusion creates a signal that increases net hepatic glucose uptake and hepatic glycogen deposition. Experiments leading to an understanding of the mechanism by which this change occurs will be facilitated if this finding can be reproduced in the rat. Rats weighing 275-300 g were implanted with four indwelling catheters (one in the portal vein, one in the left carotid artery, and two in the right jugular vein) that were externalized between the scapulae. The rats were studied in a conscious, unrestrained condition 7 days after surgery, following a 24-h fast. Each experiment consisted of a 30- to 60-min equilibration, a 30-min baseline, and a 120-min test period. In the test period, a pancreatic clamp was performed by using somatostatin, insulin, and glucagon. Glucose was given simultaneously either through the jugular vein to clamp the arterial blood level at 220 mg/dl (Pe low group) or at 250 mg/dl (Pe high group), or via the hepatic portal vein (Po group; 6 mg. kg(-1). min(-1)) and the jugular vein to clamp the arterial blood glucose level to 220 mg/dl. In the test period, the arterial plasma glucagon and insulin levels were not significantly different in the three groups (36 +/- 2, 33 +/- 2, and 30 +/- 2 pg/ml and 1.34 +/- 0.08, 1. 37 +/- 0.18, and 1.66 +/- 0.11 ng/ml in Po, Pe low, and Pe high groups, respectively). The arterial blood glucose levels during the test period were 224 +/- 4 mg/dl for Po, 220 +/- 3 for Pe low, and 255 +/- 2 for Pe high group. The liver glycogen content (micromol glucose/g liver) in the two Pe groups was not statistically different (51 +/- 7 and 65 +/- 8, respectively), whereas the glycogen level in the Po group was significantly greater (93 +/- 9, P < 0.05). Because portal glucose delivery also augments hepatic glycogen deposition in the rat, as it does in the dogs, mechanistic studies relating to its function can now be undertaken in this species.
Collapse
|
|
26 |
31 |
19
|
Edgerton DS, Scott M, Farmer B, Williams PE, Madsen P, Kjeldsen T, Brand CL, Fledelius C, Nishimura E, Cherrington AD. Targeting insulin to the liver corrects defects in glucose metabolism caused by peripheral insulin delivery. JCI Insight 2019; 5:126974. [PMID: 30830873 DOI: 10.1172/jci.insight.126974] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peripheral hyperinsulinemia resulting from subcutaneous insulin injection is associated with metabolic defects which include abnormal glucose metabolism. The first aim of this study was to quantify the impairments in liver and muscle glucose metabolism that occur when insulin is delivered via a peripheral vein compared to when it is given through its endogenous secretory route (the hepatic portal vein) in overnight fasted conscious dogs. The second aim was to determine if peripheral delivery of a hepato-preferential insulin analog could restore the physiologic response to insulin that occurs under meal feeding conditions. This study is the first to show that hepatic glucose uptake correlates with insulin's direct effects on the liver under hyperinsulinemic-hyperglycemic conditions. In addition, glucose uptake was equally divided between the liver and muscle when insulin was infused into the portal vein, but when it was delivered into a peripheral vein the percentage of glucose taken up by muscle was 4-times greater than that going to the liver, with liver glucose uptake being less than half of normal. These defects could not be corrected by adjusting the dose of peripheral insulin. On the other hand, hepatic and non-hepatic glucose metabolism could be fully normalized by a hepato-preferential insulin analog.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
31 |
20
|
Edgerton DS, Johnson KMS, Neal DW, Scott M, Hobbs CH, Zhang X, Duttaroy A, Cherrington AD. Inhibition of dipeptidyl peptidase-4 by vildagliptin during glucagon-like Peptide 1 infusion increases liver glucose uptake in the conscious dog. Diabetes 2009; 58:243-9. [PMID: 18840785 PMCID: PMC2606880 DOI: 10.2337/db08-0515] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study investigated the acute effects of treatment with vildagliptin on dipeptidyl peptidase-4 (DPP-4) activity, glucagon-like peptide 1 (GLP-1) concentration, pancreatic hormone levels, and glucose metabolism. The primary aims were to determine the effects of DPP-4 inhibition on GLP-1 clearance and on hepatic glucose uptake. RESEARCH DESIGN AND METHODS Fasted conscious dogs were studied in the presence (n = 6) or absence (control, n = 6) of oral vildagliptin (1 mg/kg). In both groups, GLP-1 was infused into the portal vein (1 pmol . kg(-1) . min(-1)) for 240 min. During the same time, glucose was delivered into the portal vein at 4 mg . kg(-1) . min(-1) and into a peripheral vein at a variable rate to maintain the arterial plasma glucose level at 160 mg/dl. RESULTS Vildagliptin fully inhibited DPP-4 over the 4-h experimental period. GLP-1 concentrations were increased in the vildagliptin-treated group (50 +/- 3 vs. 85 +/- 7 pmol/l in the portal vein in control and vildagliptin-treated dogs, respectively; P < 0.05) as a result of a 40% decrease in GLP-1 clearance (38 +/- 5 and 22 +/- 2 ml . kg(-1) . min(-1), respectively; P < 0.05). Although hepatic insulin and glucagon levels were not significantly altered, there was a tendency for plasma insulin to be greater (hepatic levels were 73 +/- 10 vs. 88 +/- 15 microU/ml, respectively). During vildagliptin treatment, net hepatic glucose uptake was threefold greater than in the control group. This effect was greater than that predicted by the change in insulin. CONCLUSIONS Vildagliptin fully inhibited DPP-4 activity, reduced GLP-1 clearance by 40%, and increased hepatic glucose disposal by means beyond the effects of GLP-1 on insulin and glucagon secretion.
Collapse
|
research-article |
16 |
27 |
21
|
Winnick JJ, Kraft G, Gregory JM, Edgerton DS, Williams P, Hajizadeh IA, Kamal MZ, Smith M, Farmer B, Scott M, Neal D, Donahue EP, Allen E, Cherrington AD. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis. J Clin Invest 2016; 126:2236-48. [PMID: 27140398 DOI: 10.1172/jci79895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/10/2016] [Indexed: 11/17/2022] Open
Abstract
Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
25 |
22
|
Moore MC, Cardin S, Edgerton DS, Farmer B, Neal DW, Lautz M, Cherrington AD. Unlike mice, dogs exhibit effective glucoregulation during low-dose portal and peripheral glucose infusion. Am J Physiol Endocrinol Metab 2004; 286:E226-33. [PMID: 14519598 DOI: 10.1152/ajpendo.00343.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Portal infusion of glucose in the mouse at a rate equivalent to basal endogenous glucose production causes hypoglycemia, whereas peripheral infusion at the same rate causes significant hyperglycemia. We used tracer and arteriovenous difference techniques in conscious 42-h-fasted dogs to determine their response to the same treatments. The studies consisted of three periods: equilibration (100 min), basal (40 min), and experimental (180 min), during which glucose was infused at 13.7 micromol.kg(-1).min(-1) into a peripheral vein (p.e., n = 5) or the hepatic portal (p.o., n = 5) vein. Arterial blood glucose increased approximately 0.8 mmol/l in both groups. Arterial and hepatic sinusoidal insulin concentrations were not significantly different between groups. p.e. exhibited an increase in nonhepatic glucose uptake (non-HGU; Delta8.6 +/- 1.2 micromol.kg(-1).min(-1)) within 30 min, whereas p.o. showed a slight suppression (Delta-3.7 +/- 3.1 micromol.kg(-1).min(-1)). p.o. shifted from net hepatic glucose output (NHGO) to uptake (NHGU; 2.5 +/- 2.8 micromol.kg-1.min-1) within 30 min, but p.e. still exhibited NHGO (6.0 +/- 1.9 micromol.kg(-1).min(-1)) at that time and did not initiate NHGU until after 90 min. Glucose rates of appearance and disappearance did not differ between groups. The response to the two infusion routes was markedly different. Peripheral infusion caused a rapid enhancement of non-HGU, whereas portal delivery quickly activated NHGU. As a result, both groups maintained near-euglycemia. The dog glucoregulates more rigorously than the mouse in response to both portal and peripheral glucose delivery.
Collapse
|
|
21 |
24 |
23
|
Edgerton DS, Neal DW, Scott M, Bowen L, Wilson W, Hobbs CH, Leach C, Sivakumaran S, Strack TR, Cherrington AD. Inhalation of insulin (Exubera) is associated with augmented disposal of portally infused glucose in dogs. Diabetes 2005; 54:1164-70. [PMID: 15793257 DOI: 10.2337/diabetes.54.4.1164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The results of the present study, using the conscious beagle dog, demonstrate that inhaled insulin (INH; Exubera) provides better glycemic control during an intraportal glucose load than identical insulin levels induced by insulin (Humulin) infusion into the inferior vena cava (IVC). In the INH group (n = 13), portal glucose infusion caused arterial plasma glucose to rise transiently (152 +/- 9 mg/dl), before it returned to baseline (65 min) for the next 2 h. Net hepatic glucose uptake was minimal, whereas nonhepatic uptake rose to 12.5 +/- 0.5 mg x kg(-1) x min(-1) (65 min). In the IVC group (n = 9), arterial glucose rose rapidly (172 +/- 6 mg/dl) and transiently fell to 135 +/- 13 mg/dl (65 min) before returning to 165 +/- 15 mg/dl (125 min). Plasma glucose excursions and hepatic glucose uptake were much greater in the IVC group, whereas nonhepatic uptake was markedly less (8.6 +/- 0.9 mg x kg(-1) x min(-1); 65 min). Insulin kinetics and areas under the curve were identical in both groups. These data suggest that inhalation of Exubera results in a unique action on nonhepatic glucose clearance.
Collapse
|
Comparative Study |
20 |
23 |
24
|
Edgerton DS, Basu R, Ramnanan CJ, Farmer TD, Neal D, Scott M, Jacobson P, Rizza RA, Cherrington AD. Effect of 11 beta-hydroxysteroid dehydrogenase-1 inhibition on hepatic glucose metabolism in the conscious dog. Am J Physiol Endocrinol Metab 2010; 298:E1019-26. [PMID: 20159854 PMCID: PMC2867371 DOI: 10.1152/ajpendo.00740.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inactive cortisone is converted to active cortisol within the liver by 11 beta-hydroxysteroid dehydrogenase-1 (11 beta-HSD1), and impaired regulation of this process may be related to increased hepatic glucose production (HGP) in individuals with type 2 diabetes. The primary aim of this study was to investigate the effect of acute 11 beta-HSD1 inhibition on HGP and fat metabolism during insulin deficiency. Sixteen conscious, 42-h-fasted, lean, healthy dogs were studied. Somatostatin was infused to create insulin deficiency, and the animals were treated with a specific 11 beta-HSD1 inhibitor (compound 531) or placebo for 5 h. 11 beta-HSD1 inhibition completely suppressed hepatic cortisol production, and this attenuated the increase in HGP that occurred during insulin deficiency. PEPCK and glucose-6-phosphatase expression were decreased when 11 beta-HSD1 was inhibited, but gluconeogenic flux was unchanged, implying an effect on glycogenolysis. Since inhibition of hepatic cortisol production reduces HGP during insulin deficiency, 11 beta-HSD1 is a potential therapeutic target for the treatment of excess glucose production that occurs in diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
22 |
25
|
Edgerton DS, Cardin S, Pan C, Neal D, Farmer B, Converse M, Cherrington AD. Effects of insulin deficiency or excess on hepatic gluconeogenic flux during glycogenolytic inhibition in the conscious dog. Diabetes 2002; 51:3151-62. [PMID: 12401705 DOI: 10.2337/diabetes.51.11.3151] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The direct acute effects of insulin on the regulation of hepatic gluconeogenic flux to glucose-6-phosphate (G6P) in vivo may be masked by the hormone's effects on net hepatic glycogenolytic flux and the resulting changes in glycolysis. To investigate this possibility, we used a glycogen phosphorylase inhibitor (BAY R3401) to inhibit glycogen breakdown in the overnight-fasted dog, and the effects of complete insulin deficiency or a fourfold rise in the plasma insulin level were assessed during a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion. After the control period, plasma insulin infusion 1) was discontinued, creating insulin deficiency; 2) increased fourfold; or 3) was continued at the basal rate. During insulin deficiency, glucose production and the plasma level and net hepatic uptake of nonesterified free fatty acids increased, whereas during hyperinsulinemia they decreased. Net hepatic lactate uptake increased sixfold during insulin deficiency and 2.5-fold during hyperinsulinemia. Net hepatic gluconeogenic flux increased more than fourfold during insulin deficiency but was not reduced by hyperinsulinemia. We conclude that in the absence of appreciable glycogen breakdown, an acute gluconeogenic effect of hypoinsulinemia becomes manifest, whereas inhibition of the process by a physiologic rise in insulin was not evident.
Collapse
|
|
23 |
20 |