1
|
Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995; 121:1129-37. [PMID: 7743926 DOI: 10.1242/dev.121.4.1129] [Citation(s) in RCA: 686] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The molecular basis of mammalian sperm capacitation, defined functionally as those processes that confer on the sperm the acquisition of fertilization-competence either in vivo in the female reproductive tract or in vitro, is poorly understood. We demonstrate here that capacitation of caudal epididymal mouse sperm in vitro is accompanied by a time-dependent increase in the protein tyrosine phosphorylation of a subset of proteins of M(r) 40,000-120,000. Incubation of sperm in media devoid of bovine serum albumin, CaCl2 or NaHCO3, components which individually are required for capacitation, prevent the sperm from undergoing capacitation as assessed by the ability of the cells to acquire the pattern B chlortetracycline fluorescence, to undergo the zona pellucida-induced acrosome reaction and, in some cases, to fertilize metaphase II-arrested eggs in vitro. In each of these cases the protein tyrosine phosphorylation of the subset of capacitation-associated proteins does not occur. Protein tyrosine phosphorylation of these particular proteins, as well as sperm capacitation, can be recovered in media devoid of each of these three constituents (bovine serum albumin, CaCl2 or NaHCO3) by adding back the appropriate component in a concentration-dependent manner. The requirement of NaHCO3 for these phosphorylations is not due to an alkalinization of intracellular sperm pH or to an increase in media pH. Caput epididymal sperm, which lack the ability to undergo capacitation in vitro, do not display this capacitation-dependent subset of tyrosine phosphorylated proteins in complete media even after extended incubation periods, and do not fertilize metaphase II-arrested eggs in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
30 |
686 |
2
|
Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 1995; 121:1139-50. [PMID: 7538069 DOI: 10.1242/dev.121.4.1139] [Citation(s) in RCA: 539] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the accompanying report (Visconti, P.E., Bailey, J.L., Moore, G.D., Pan, D., Olds-Clarke, P. and Kopf, G.S. (1995) Development, 121, 1129–1137) we demonstrated that the tyrosine phosphorylation of a subset of mouse sperm proteins of M(r) 40,000-120,000 was correlated with the capacitation state of the sperm. The mechanism by which protein tyrosine phosphorylation is regulated in sperm during this process is the subject of this report. Cauda epididymal sperm, when incubated in media devoid of NaHCO3, CaCl2 or bovine serum albumin do not display the capacitation-associated increases in protein tyrosine phosphorylation of this subset of proteins. This NaHCO3, CaCl2 or bovine serum albumin requirement for protein tyrosine phosphorylation can be completely overcome by the addition of biologically active, but not inactive, cAMP analogues. Addition of the active cAMP analogues to sperm incubated in media devoid of NaHCO3, CaCl2 or bovine serum albumin overcomes the inability of these media to support capacitation, as assessed by the ability of the cells to acquire the pattern B chlortetracycline fluorescence, to undergo the zona pellucida-induced acrosome reaction and, in some cases, to fertilize metaphase II-arrested eggs in vitro. The effects of the cAMP analogues to enhance protein tyrosine phosphorylation and to promote capacitation appears to be at the level of the cAMP-dependent protein kinase (PKA), since two specific inhibitors of this enzyme (H-89 and Rp-cAMPS) block the capacitation-dependent increases in protein tyrosine phosphorylation in sperm incubated in media supporting capacitation. Capacitation, as assessed by the aforementioned endpoints, also appears to be inhibited by H-89 in a concentration-dependent manner. These results provide further evidence for the interrelationship between protein tyrosine phosphorylation and the appearance of the capacitated state in mouse sperm. They also demonstrate that both protein tyrosine phosphorylation and capacitation appear to be regulated by cAMP/PKA. Up-regulation of protein tyrosine phosphorylation by cAMP/PKA in sperm is, to our knowledge, the first demonstration of such an interrelationship between tyrosine kinase/phosphatase and PKA signaling pathways.
Collapse
|
|
30 |
539 |
3
|
Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90:271-80. [PMID: 9244301 DOI: 10.1016/s0092-8674(00)80335-9] [Citation(s) in RCA: 414] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Notch and the disintegrin metalloprotease encoded by the kuzbanian (kuz) gene are both required for a lateral inhibition process during Drosophila neurogenesis. We show that a mutant KUZ protein lacking protease activity acts as a dominant-negative form in Drosophila. Expression of such a dominant-negative KUZ protein can perturb lateral inhibition in Xenopus, leading to the overproduction of primary neurons. This suggests an evolutionarily conserved role for KUZ. The Notch family of receptors are known to be processed into smaller forms under normal physiological conditions. We provide genetic and biochemical evidence that Notch is an in vivo substrate for the KUZ protease, and that this cleavage may be part of the normal biosynthesis of functional Notch proteins.
Collapse
|
|
28 |
414 |
4
|
Yang F, He J, Lin X, Li Q, Pan D, Zhang X, Xu X. Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 2001; 75:11811-20. [PMID: 11689662 PMCID: PMC114767 DOI: 10.1128/jvi.75.23.11811-11820.2001] [Citation(s) in RCA: 356] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first complete genome sequence of a marine invertebrate virus. White spot bacilliform virus (WSBV; or white spot syndrome virus) is a major shrimp pathogen with a high mortality rate and a wide host range. Its double-stranded circular DNA genome of 305,107 bp contains 181 open reading frames (ORFs). Nine homologous regions containing 47 repeated minifragments that include direct repeats, atypical inverted repeat sequences, and imperfect palindromes were identified. This is the largest animal virus that has been completely sequenced. Although WSBV is morphologically similar to insect baculovirus, the two viruses are not detectably related at the amino acid level. Rather, some WSBV genes are more homologous to eukaryotic genes than viral genes. In fact, sequence analysis indicates that WSBV differs from all known viruses, although a few genes display a weak homology to herpesvirus genes. Most of the ORFs encode proteins that bear no homology to any known proteins, either suggesting that WSBV represents a novel class of viruses or perhaps implying a significant evolutionary distance between marine and terrestrial viruses. The most unique feature of WSBV is the presence of an intact collagen gene, a gene encoding an extracellular matrix protein of animal cells that has never been found in any viruses. Determination of the genome of WSBV will facilitate a better understanding of the molecular mechanism underlying the pathogenesis of the WSBV virus and will also provide useful information concerning the evolution and divergence of marine and terrestrial animal viruses at the molecular level.
Collapse
|
research-article |
24 |
356 |
5
|
Abstract
Tuberous sclerosis is a human disease caused by mutations in the TSC1 or the TSC2 tumor suppressor gene. Previous studies of a Drosophila TSC2 homolog suggested a role for the TSC genes in maintaining DNA content, with loss of TSC2 leading to polyploidy and increased cell size. We have isolated mutations in the Drosophila homolog of the TSC1 gene. We show that TSC1 and TSC2 form a complex and function in a common pathway to control cellular growth. Unlike previous studies, our work shows that TSC1(-) or TSC2(-) cells are diploid. We find that, strikingly, the heterozygosity of TSC1 or TSC2 is sufficient to rescue the lethality of loss-of-function insulin receptor mutants. Further genetic analyses suggest that the TSC genes act in a parallel pathway that converges on the insulin pathway downstream from Akt. Taken together, our studies identified the TSC tumor suppressors as novel negative regulators of insulin signaling.
Collapse
|
research-article |
24 |
341 |
6
|
Rooke J, Pan D, Xu T, Rubin GM. KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 1996; 273:1227-31. [PMID: 8703057 DOI: 10.1126/science.273.5279.1227] [Citation(s) in RCA: 292] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During neurogenesis in Drosophila both neurons and nonneuronal cells are produced from a population of initially equivalent cells. The kuzbanian (kuz) gene described here is essential for the partitioning of neural and nonneuronal cells during development of both the central and peripheral nervous systems in Drosophila. Mosaic analyses indicated that kuz is required for cells to receive signals inhibiting the neural fate. These analyses further revealed that the development of a neuron requires a kuz-mediated positive signal from neighboring cells. The kuz gene encodes a metalloprotease-disintegrin protein with a highly conserved bovine homolog, raising the possibility that kuz homologs may act in similar processes during mammalian neurogenesis.
Collapse
|
|
29 |
292 |
7
|
Pan D, Rubin GM. cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 1995; 80:543-52. [PMID: 7867062 DOI: 10.1016/0092-8674(95)90508-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Localized expression of decapentaplegic (dpp) is required for proper development of the Drosophila imaginal discs. Using genetic mosaics, we show that in the anterior compartment of appendage discs and anterior to the morphogenetic furrow in the eye disc, cells that lack cAMP-dependent protein kinase (PKA) activity ectopically express dpp. Pka- cells can influence the fate of neighboring cells to reorganize anterior patterns in appendages and trigger ectopic morphogenetic furrows in the developing retina. This organizing activity of Pka mutant cells depends on dpp activity. Our findings suggest that PKA is a component of a signaling pathway that represses dpp expression and that hh antagonizes this pathway to maintain dpp expression at the anterior-posterior compartment border and in the morphogenetic furrow.
Collapse
|
|
30 |
217 |
8
|
Gao X, Neufeld TP, Pan D. Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and -independent pathways. Dev Biol 2000; 221:404-18. [PMID: 10790335 DOI: 10.1006/dbio.2000.9680] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The control of cell and organ growth is fundamental to the development of multicellular organisms. Here, we show that dPTEN, a Drosophila homolog of the mammalian PTEN tumor suppressor gene, plays an essential role in the control of cell size, cell number, and organ size. In mosaic animals, dPTEN(-) cells proliferate faster than their heterozygous siblings, show an autonomous increase in cell size, and form organs of increased size, whereas overexpression of dPTEN results in opposite phenotypes. The loss-of-function phenotypes of dPTEN are suppressed by mutations in the PI3K target Dakt1 and the translational initiation factor eif4A, suggesting that dPTEN acts through the PI3K signaling pathway to regulate translation. Although activation of PI3K and Akt has been reported to increase rates of cellular growth but not proliferation, loss of dPTEN stimulates both of these processes, suggesting that PTEN regulates overall growth through PI3K/Akt-dependent and -independent pathways. Furthermore, we show that dPTEN does not play a major role in cell survival during Drosophila development. Our results provide a potential explanation for the high frequency of PTEN mutation in human cancer.
Collapse
|
|
25 |
208 |
9
|
Fambrough D, Pan D, Rubin GM, Goodman CS. The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc Natl Acad Sci U S A 1996; 93:13233-8. [PMID: 8917574 PMCID: PMC24076 DOI: 10.1073/pnas.93.23.13233] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It has long been suspected that proteolytic activity associated with advancing growth cones may be required for axon extension. We have isolated mutations in the kuzbanian (kuz) gene, which is expressed in the nervous system and encodes a putative zinc metalloprotease with a disintegrin domain. Drosophila embryos with loss-of-function mutations in kuz have dramatic defects in the development of central nervous system axon pathways, with many axons stalling and failing to extend through the nerve cord. This phenotype is rescued by panneural expression of kuz mRNA in the embryo. These results show that the Kuz metalloprotease is required for axon extension, suggesting a requirement for proteolytic activity at the growth cone surface.
Collapse
|
research-article |
29 |
144 |
10
|
Gatley SJ, Pan D, Chen R, Chaturvedi G, Ding YS. Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci 1996; 58:231-9. [PMID: 8786705 DOI: 10.1016/0024-3205(96)00052-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have synthesized several derivative of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET >> 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of o-bromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2=0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes.
Collapse
|
|
29 |
119 |
11
|
Thompson SC, Thomas C, Rickabaugh CA, Tantamjarik P, Otsuki T, Pan D, Garcia BF, Sinar E. Primary and secondary control over age-related changes in physical appearance. J Pers 1998; 66:583-605. [PMID: 9728417 DOI: 10.1111/1467-6494.00025] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beliefs about appearance-related changes due to aging were used to test the effects of perceived control and secondary control (acceptance) in a sample of 412 young, early-middle-age, and late-middle-age college-educated adults. Mean difference in aging-related appearance control and hypotheses regarding the adaptiveness of primary and secondary control were examined. Primary control over aging-related appearance was lower in older adults and secondary control was higher. In addition, the results indicated support for the Primacy/Back-Up Model that primary perceived control is important at all levels of actual control. Those with stronger beliefs in their primary control were less distressed. Secondary control served a back-up function in that it was related to less distress only for those who had medium or lower beliefs in primary control. The implications of these findings, that primary control may be advantageous even in low-control circumstances, are discussed.
Collapse
|
Comparative Study |
27 |
102 |
12
|
Ruvolo M, Pan D, Zehr S, Goldberg T, Disotell TR, von Dornum M. Gene trees and hominoid phylogeny. Proc Natl Acad Sci U S A 1994; 91:8900-4. [PMID: 8090741 PMCID: PMC44714 DOI: 10.1073/pnas.91.19.8900] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here we present a DNA sequence study that incorporates intraspecific variation from all five genera of hominoids (apes and humans). Recently it has been claimed that using single individuals to analyze species' relationships might be misleading if within-species variation is great. Our results indicate that despite high intraspecific variation in mitochondrial cytochrome oxidase subunit II gene sequences of some hominoids, humans and chimpanzees are nonetheless significantly most closely related. We also report the observation that variation within the gorilla species exceeds that between common and pygmy chimpanzee species, a finding with implications for conservation. In contrast, humans are less mitochondrially diverse than lowland gorillas inhabiting western Africa.
Collapse
|
research-article |
31 |
95 |
13
|
Vance JE, Pan D, Campenot RB, Bussière M, Vance DE. Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem 1994; 62:329-37. [PMID: 8263532 DOI: 10.1046/j.1471-4159.1994.62010329.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Membrane lipids and proteins required for axonal growth and regeneration are generally believed to be synthesized in the cell bodies of neurons and transported into the axons. However, we have demonstrated recently that, in cultured rat sympathetic neurons, axons themselves have the capacity to synthesize phosphatidylcholine, sphingomyelin, and phosphatidylethanolamine. In these experiments, we employed a compartment model of neuron culture in which pure axons grow in a fluid environment separate from that containing the cell bodies. In the present study, we again used compartmented cultures to confirm and extend the previous results. We have shown that three enzymes of phosphatidylcholine biosynthesis via the CDP-choline pathway are present in axons. We have also shown that the rate-limiting step in the biosynthesis of phosphatidylcholine by this route in neurons, and locally in axons, is catalyzed by the enzyme CTP:phosphocholine cytidylytransferase. The biosynthesis of other membrane lipids, such as phosphatidylserine, phosphatidylethanolamine derived by decarboxylation of phosphatidylserine, phosphatidylinositol, and fatty acids, also occurs in axons. However, the methylation pathway for the conversion of phosphatidylethanolamine into phosphatidylcholine appears to be a quantitatively insignificant route for phosphatidylcholine synthesis in neurons. Moreover, our data provided no evidence for the biosynthesis of another important membrane lipid, cholesterol, in axons.
Collapse
|
Comparative Study |
31 |
89 |
14
|
Graven KK, Yu Q, Pan D, Roncarati JS, Farber HW. Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:208-18. [PMID: 10542317 DOI: 10.1016/s0167-4781(99)00118-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is induced by hypoxia in endothelial cells (EC). Upregulation occurs primarily at the level of transcription and occurs to a much greater extent in EC than in other cell types. To characterize EC specific hypoxia response elements within the GAPDH gene, we performed transient transfection studies in EC, fibroblasts and smooth muscle cells using portions of the GAPDH promoter linked to a CAT reporter gene. These initial studies identified an EC specific hypoxia responsive region that was further characterized (using SV40-promoter-CAT reporter constructs) as a 19-nucleotide sequence (-130 to -112) containing both an hypoxia inducible factor-1 (HIF-1)-binding site and a novel flanking sequence. Electrophoretic mobility shift assays confirmed inducible EC protein binding to this fragment. Mutation of either the HIF-1-binding site or the flanking sequence resulted in complete loss of function and loss of inducible protein binding. Thus, a single HIF-1-binding site is necessary, but not sufficient, for hypoxic regulation of GAPDH in EC. Furthermore, the novel HIF-1 flanking sequence required for GAPDH upregulation and the protein(s) that bind to it may be EC specific.
Collapse
|
|
26 |
87 |
15
|
Pan D, Rubin GM. Targeted expression of teashirt induces ectopic eyes in Drosophila. Proc Natl Acad Sci U S A 1998; 95:15508-12. [PMID: 9860999 PMCID: PMC28073 DOI: 10.1073/pnas.95.26.15508] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/1998] [Indexed: 11/18/2022] Open
Abstract
teashirt was initially identified as a gene required for the specification of the trunk segments in Drosophila embryogenesis and encodes a transcription factor with zinc finger motifs. We report here that targeted expression of teashirt in imaginal discs is sufficient to induce ectopic eye formation in non-eye tissues, a phenotype similar to that produced from targeted expression of eyeless, dachshund, and eyes absent. Furthermore, teashirt and eyeless induce the expression of each other, suggesting that teashirt is part of the gene network that functions to specify eye identity.
Collapse
|
research-article |
27 |
79 |
16
|
Li S, Pan D, Wang G. Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes. ARCHIVES OF ENVIRONMENTAL HEALTH 1994; 49:119-22. [PMID: 8161241 DOI: 10.1080/00039896.1994.9937464] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Various samples of cooking oil fumes were analyzed to an effort to study the relationship between the high incidence of pulmonary adenocarcinoma in Chinese women and cooking oil fumes in the kitchen. Polycyclic aromatic hydrocarbons (PAHs) in samples of cooking oil fumes were extracted, chromatographed, and measured by fluorescence spectrophotometer. The samples included oil fumes from three commercial cooking oils and fumes from three catering shops. All samples contained benzo(a)pyrene (BaP) and dibenzo (a,h)anthracene (DBahA). In addition, the concentration of DBahA was 5.7 to 22.8 times higher than that of BaP in the fume samples. Concentrations of BaP and DBahA were, respectively, 0.463 and 5.736 micrograms/g in refined vegetable oil, 0.341 and 3.725 micrograms/g in soybean oil, and 0.305 and 4.565 micrograms/g in vegetable oil. Investigation of PAH concentrations at three catering shops showed that the level of BaP at a Youtiao (deep-fried twisted dough sticks) shop was 4.18 micrograms/100 m3, 2.28 micrograms/100 m3 at a Seqenma (candied fritters) workshop, and 0.49 micrograms/100 m3 at a kitchen of a restaurant; concentrations of DBahA were 33.80, 14.41, and 3.03 micrograms/100 m3, respectively. The high concentration of carcinogens, such as BaP and DBahA, in cooking oil fumes might help explain why Chinese women, who spend more time exposed to cooking oil fumes than men, have a high incidence of pulmonary adenocarcinoma.
Collapse
|
|
31 |
74 |
17
|
Khor KA, Gu YW, Pan D, Cheang P. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti–6Al–4V composite coatings. Biomaterials 2004; 25:4009-17. [PMID: 15046891 DOI: 10.1016/j.biomaterials.2003.10.089] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA, Ti alloy and YSZ components.
Collapse
|
|
21 |
74 |
18
|
Abstract
Compartmented cultures of sympathetic neurons from newborn rats were employed to test the hypothesis that the lipids required for maintenance and growth of axonal membranes must be synthesized in the cell body and transported to the axons. In compartmented cultures the distal axons grow into a compartment separate from that containing the cell bodies and proximal axons, in an environment free from other contaminating cells such as glial cells and fibroblasts. There is virtually no bulk flow of culture medium or small molecules between the cell body and axonal compartments. When [methyl-3H]choline was added to the cell body-containing compartment the biosynthesis of [3H]-labeled phosphatidylcholine and sphingomyelin occurred in that compartment, with a gradual transfer of lipids (less than 5% after 16 h) into the axonal compartment. Surprisingly, addition of [methyl-3H]choline to the compartment containing only the distal axons resulted in the rapid incorporation of label into phosphatidylcholine and sphingomyelin in that compartment. Little retrograde transport of labeled phosphatidylcholine and sphingomyelin (less than 15%) into the cell body compartment occurred. Moreover, there was minimal transport of the aqueous precursors of these phospholipids (e.g., choline, phosphocholine and CDP-choline) between cell compartments. Similarly, when [3H]ethanolamine was used as a phospholipid precursor, the biosynthesis of phosphatidylethanolamine occurred in the pure axons, and approximately 10% of the phosphatidylethanolamine was converted into phosphatidylcholine. Experiments with [35S]methionine demonstrated that proteins were made in the cell bodies, but not in the axons. We conclude that axons of rat sympathetic neurons have the capacity to synthesize membrane phospholipids. Thus, a significant fraction of the phospholipids supplied to the membrane during axonal growth may be synthesized locally within the growing axon.
Collapse
|
|
34 |
63 |
19
|
Pan D, Courey AJ. The same dorsal binding site mediates both activation and repression in a context-dependent manner. EMBO J 1992; 11:1837-42. [PMID: 1582412 PMCID: PMC556641 DOI: 10.1002/j.1460-2075.1992.tb05235.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like many DNA binding transcription factors, the Drosophila morphogen encoded by dorsal can both stimulate and repress promoter activity. In particular, this factor activates twist and represses zerknüllt on the ventral side of the early embryo. We find that when multiple copies of a dorsal binding site from the zerknüllt ventral repressor element are fused to a heterologous basal promoter, the resulting construct is activated by dorsal to give a ventral specific expression pattern. Thus, the ability of a dorsal binding site to mediate repression rather than activation is not an intrinsic property of the site, but depends upon its context. We also show that a hybrid promoter containing both the zerknüllt ventral repressor element and the twist ventral activator region is not ventrally active in the early embryo, demonstrating that repression is dominant over activation. Thus, the default mode of action of the dorsal protein is transcriptional activation. Additional factors may modify dorsal activity to bring about repression.
Collapse
|
|
33 |
51 |
20
|
Senese CL, Duca J, Pan D, Hopfinger AJ, Tseng YJ. 4D-fingerprints, universal QSAR and QSPR descriptors. ACTA ACUST UNITED AC 2005; 44:1526-39. [PMID: 15446810 DOI: 10.1021/ci049898s] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An elusive goal in the field of chemoinformatics and molecular modeling has been the generation of a set of descriptors that, once calculated for a molecule, may be used in a wide variety of applications. Since such universal descriptors are generated free from external constraints, they are inherently independent of the data set in which they are employed. The realization of a set of universal descriptors would significantly streamline such chemoinformatics tasks as virtual high-throughout screening (VHTS) and toxicity profiling. The current study reports the derivation and validation of a potential set of universal descriptors, referred to as the 4D-fingerprints. The 4D-fingerprints are derived from the 4D-molecular similarity analysis. To evaluate the applicability of the 4D-fingerprints as universal descriptors, they are used to generate descriptive QSAR models for 5 independent training sets. Each of the training sets has been analyzed previously by several varying QSAR methods, and the results of the models generated using the 4D-fingerprints are compared to the results of the previous QSAR analyses. It was found that the models generated using the 4D-fingerprints are comparable in quality, based on statistical measures of fit and test set prediction, to the previously reported models for the other QSAR methods. This finding is particularly significant considering the 4D-fingerprints are generated independent of external constraints such as alignment, while the QSAR methods used for comparison all require an alignment analysis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
51 |
21
|
Shiota M, Postic C, Fujimoto Y, Jetton TL, Dixon K, Pan D, Grimsby J, Grippo JF, Magnuson MA, Cherrington AD. Glucokinase gene locus transgenic mice are resistant to the development of obesity-induced type 2 diabetes. Diabetes 2001; 50:622-9. [PMID: 11246883 DOI: 10.2337/diabetes.50.3.622] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transgenic mice that overexpress the entire glucokinase (GK) gene locus have been previously shown to be mildly hypoglycemic and to have improved tolerance to glucose. To determine whether increased GK might also prevent or diminish diabetes in diet-induced obese animals, we examined the effect of feeding these mice a high-fat high-simple carbohydrate low-fiber diet (HF diet) for 30 weeks. In response to this diet, both normal and transgenic mice became obese and had similar BMIs (5.3 +/- 0.1 and 5.0 +/- 0.1 kg/m2 in transgenic and non-transgenic mice, respectively). The blood glucose concentration of the control mice increased linearly with time and reached 17.0 +/- 1.3 mmol/l at the 30th week. In contrast, the blood glucose of GK transgenic mice rose to only 9.7 +/- 1.2 mmol/l at the 15th week, after which it returned to 7.6 +/- 1.0 mmol/l by the 30th week. The plasma insulin concentration was also lower in the GK transgenic animals (232 +/- 79 pmol/l) than in the controls (595 +/- 77 pmol/l), but there was no difference in plasma glucagon concentrations. Together, these data indicate that increased GK levels dramatically lessen the development of both hyperglycemia and hyperinsulinemia associated with the feeding of an HF diet.
Collapse
|
|
24 |
46 |
22
|
Pan D, Sansome D. An experimental study of the effect of roll-speed mismatch on the rolling load during the cold rolling of thin strip. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0378-3804(82)90034-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
43 |
44 |
23
|
Khan MS, Dighe K, Wang Z, Srivastava I, Daza E, Schwartz-Dual AS, Ghannam J, Misra SK, Pan D. Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes. Analyst 2019; 143:1094-1103. [PMID: 29387841 DOI: 10.1039/c7an01932g] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostate-specific antigen (PSA) is a commonly used biomarker for the detection of prostate cancer (PCa) and there are numerous data available for its invasive detection in the serum and whole blood. In this work, an electrochemical sensing method was devised to detect traces of PSA in human saliva using a hybrid nanocomposite of graphene nanoplatelets with diblock co-polymers and Au electrodes (GRP-PS67-b-PAA27-Au). The pure graphitic composition on filter paper provides significantly high electrical and thermal conductivity while PS67-b-PAA27 makes an amphiphilic bridge between GRP units. The sensor utilizes the binding of an anti-PSA antibody with an antigen-PSA to act as a resistor in a circuit providing an impedance change that in turn allows for the detection and quantification of PSA in saliva samples. A miniaturized electrical impedance analyzer was interfaced with a sensor chip and the data were recorded in real-time using a Bluetooth-enabled module. This fully integrated and optimized sensing device exhibited a wide PSA range of detection from 0.1 pg mL-1 to 100 ng mL-1 (R2 = 0.963) with a lower limit of detection of 40 fg mL-1. The performance of the biosensor chip was validated with an enzyme-linked immunosorbent assay technique with a regression coefficient as high as 0.940. The advantages of the newly developed saliva-PSA electrical biosensor over previously reported serum-PSA electrochemical biosensors include a faster response time (3-5 min) to achieve a stable electrical signal for PSA detection, high selectivity, improved sensitivity, no additional requirement of a redox electrolyte for electron exchange and excellent shelf life. The presented sensor is aimed for clinical commercialization to detect PSA in human saliva.
Collapse
|
Journal Article |
6 |
43 |
24
|
Pan D, Mathies RA. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Biochemistry 2001; 40:7929-36. [PMID: 11425321 PMCID: PMC1404555 DOI: 10.1021/bi010670x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved resonance Raman microchip flow experiments have been performed on the lumirhodopsin (Lumi) and metarhodopsin I (Meta I) photointermediates of rhodopsin at room temperature to elucidate the structure of the chromophore in each species as well as changes in protein-chromophore interactions. Transient Raman spectra of Lumi and Meta I with delay times of 16 micros and 1 ms, respectively, are obtained by using a microprobe system to focus displaced pump and probe laser beams in a microfabricated flow channel and to detect the scattering. The fingerprint modes of both species are very similar and characteristic of an all-trans chromophore. Lumi exhibits a relatively normal hydrogen-out-of-plane (HOOP) doublet at 951/959 cm(-1), while Meta I has a single HOOP band at 957 cm(-1). These results suggest that the transitions from bathorhodopsin to Lumi and Meta I involve a relaxation of the chromophore to a more planar all-trans conformation and the elimination of the structural perturbation that uncouples the 11H and 12H wags in bathorhodopsin. Surprisingly, the protonated Schiff base C=N stretching mode in Lumi (1638 cm(-1)) is unusually low compared to those in rhodopsin and bathorhodopsin, and the C=ND stretching mode shifts down by only 7 cm(-1) in D2O buffer. This indicates that the Schiff base hydrogen bonding is dramatically weakened in the bathorhodopsin to Lumi transition. However, the C=N stretching mode in Meta I is found at 1654 cm(-1) and exhibits a normal deuteration-induced downshift of 24 cm(-1), identical to that of the all-trans protonated Schiff base. The structural relaxation of the chromophore-protein complex in the bathorhodopsin to Lumi transition thus appears to drive the Schiff base group out of its hydrogen-bonded environment near Glu113, and the hydrogen bonding recovers to a normal solvated PSB value but presumably a different hydrogen bond acceptor with the formation of Meta I.
Collapse
|
research-article |
24 |
41 |
25
|
Pan D, Gatley SJ, Dewey SL, Chen R, Alexoff DA, Ding YS, Fowler JS. Binding of bromine-substituted analogs of methylphenidate to monoamine transporters. Eur J Pharmacol 1994; 264:177-82. [PMID: 7851480 DOI: 10.1016/0014-2999(94)00460-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We synthesized the o-, m- and p-bromo derivatives of dl-threo-methylphenidate from the corresponding bromophenylacetonitriles by modification of the literature synthesis of methylphenidate (Panizzon, Helv. Chim. Acta 1944, 27, 1748). In in vitro binding assays all three dl-threo bromo compounds had higher affinities than methylphenidate for dopamine transporter sites labeled with [3H]2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane ([3H]WIN 35,428; IC50 = 13, 4, 20 and 82 nM for o-, m-, and p-bromo compounds, and unsubstituted methylphenidate, respectively). They also bound more strongly than methylphenidate to norepinephrine reuptake sites labeled with [3H]nisoxetine (IC50 = 32, 20, 31 and 440 nM, respectively), but were weak ligands (IC50 > or = 1 microM) at the serotonin transporter labeled with [3H]paroxetine. In addition, the bromine substituted derivatives demonstrated similar activity to methylphenidate in vivo in rodents in terms of inhibition of heart uptake of [3H](-)-norepinephrine, elevation of striatal extracellular dopamine, and stimulation of locomotor activity.
Collapse
|
|
31 |
40 |