Çolak B, Eken A, Kuşman A, Sayar Akaslan D, Kızılpınar SÇ, Çakmak IB, Bal NB, Münir K, Öner Ö, Baskak B. The relationship of cortical activity induced by pain stimulation with clinical and cognitive features of somatic symptom disorder: A controlled functional near infrared spectroscopy study.
J Psychosom Res 2021;
140:110300. [PMID:
33248397 DOI:
10.1016/j.jpsychores.2020.110300]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE
The neurobiological correlates of Somatic Symptom Disorder (SSD) introduced in the DSM-5 has been the focus of a limited investigation. We aimed to examine the cortical response to painful stimuli and its relationship to symptom severity as well as cognitive and psychological characteristics in proposed models of somatoform disorders.
METHODS
We measured hemodynamic responses by 52-channel functional near-infrared spectroscopy. We compared the cortical response to painful stimuli in index patients with SSD (N = 21) versus age, and gender matched healthy control subjects (N = 21). We used brush stimulation as the control condition. We analyzed the relationship of cortical activity with SSD symptom severity as well as somatosensory amplification (SSA), alexithymia, dysfunctional illness behaviour, worry, and neuroticism.
RESULTS
Patients with SSD had higher somatic symptom severity, SSA, alexithymia, neuroticism, illness-related worry, and behaviour. Somatic symptom severity was predicted by a model including SSA and subjective feeling of pain in the index patients. Activity in the left-angular and right-middle temporal gyri was higher in the SSD subjects than the controls during pain stimulation. Positive correlations were detected between mean pain threshold levels and left middle occipital gyrus activity, as well as between SSA-scores and right-angular gyrus activity during pain condition in the index patients with SSD.
CONCLUSION
We present the first evidence that representation of pain in terms of cortical activity is different in subjects with SSD than healthy controls. SSA has functional neuroanatomic correlates and predicts symptom severity in SSD and therefore is involved as a valid intermediate phenotype in SSD pathophysiology.
Collapse