1
|
Abstract
Due to its presumed role in regulating cellular cholesterol homeostasis, and in various pathophysiological conditions, acyl-coenzyme A:cholesterol acyltransferase (ACAT) has attracted much attention. Cloning the ACAT gene provides the necessary tool to advance molecular studies of this enzyme. The topics reviewed in this chapter include the pathophysiological roles of ACAT, the biochemistry and molecular biology of the ACAT protein and the ACAT gene, and the mode of regulation by sterol or nonsterol agents in mammalian cells. In addition, we present a working model linking the presumed allosteric property of ACAT with cholesterol trafficking into and out of the endoplasmic reticulum.
Collapse
|
Review |
28 |
390 |
2
|
Lu J, Yu X, Chen G, Cheng D. Characterizing the Synchronizability of Small-World Dynamical Networks. ACTA ACUST UNITED AC 2004. [DOI: 10.1109/tcsi.2004.823672] [Citation(s) in RCA: 378] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
21 |
378 |
3
|
Cheng D, Pan Y, Wang L, Zeng Z, Yuan L, Zhang X, Chang YT. Selective Visualization of the Endogenous Peroxynitrite in an Inflamed Mouse Model by a Mitochondria-Targetable Two-Photon Ratiometric Fluorescent Probe. J Am Chem Soc 2016; 139:285-292. [DOI: 10.1021/jacs.6b10508] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
|
9 |
328 |
4
|
Trapp BD, Nishiyama A, Cheng D, Macklin W. Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J Cell Biol 1997; 137:459-68. [PMID: 9128255 PMCID: PMC2139778 DOI: 10.1083/jcb.137.2.459] [Citation(s) in RCA: 315] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/1996] [Revised: 12/19/1996] [Indexed: 02/04/2023] Open
Abstract
Previous studies have indicated that newly formed oligodendrocytes are dynamic cells whose production, survival, and differentiation depend upon axonal influences. This study has characterized the appearance and fate of newly formed oligodendrocytes in developing rat brain. Oligodendrocytes appear in predictable locations and radially extend DM-20-positive processes that cover 80-microm domains in the cortex and 40-microm domains in the corpus callosum. These premyelinating oligodendrocytes have one of two fates: they myelinate axons or degenerate. Between 7 and 21 d after birth, approximately 20% of premyelinating oligodendrocytes identified in the cerebral cortex were degenerating. Oligodendrocytes that ensheathed axons expressed and selectively targeted proteolipid protein to compact myelin and did not degenerate. These observations support the hypothesis that axonal influences affect oligodendrocyte survival, differentiation, and expression of proteolipid protein gene products.
Collapse
|
research-article |
28 |
315 |
5
|
Krakow B, Hollifield M, Johnston L, Koss M, Schrader R, Warner TD, Tandberg D, Lauriello J, McBride L, Cutchen L, Cheng D, Emmons S, Germain A, Melendrez D, Sandoval D, Prince H. Imagery rehearsal therapy for chronic nightmares in sexual assault survivors with posttraumatic stress disorder: a randomized controlled trial. JAMA 2001; 286:537-45. [PMID: 11476655 DOI: 10.1001/jama.286.5.537] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Chronic nightmares occur frequently in patients with posttraumatic stress disorder (PTSD) but are not usually a primary target of treatment. OBJECTIVE To determine if treating chronic nightmares with imagery rehearsal therapy (IRT) reduces the frequency of disturbing dreams, improves sleep quality, and decreases PTSD symptom severity. DESIGN, SETTING, AND PARTICIPANTS Randomized controlled trial conducted from 1995 to 1999 among 168 women in New Mexico; 95% had moderate-to-severe PTSD, 97% had experienced rape or other sexual assault, 77% reported life-threatening sexual assault, and 58% reported repeated exposure to sexual abuse in childhood or adolescence. INTERVENTION Participants were randomized to receive treatment (n = 88) or to the wait-list control group (n = 80). The treatment group received IRT in 3 sessions; controls received no additional intervention, but continued any ongoing treatment. MAIN OUTCOME MEASURES Scores on the Nightmare Frequency Questionnaire (NFQ), Pittsburgh Sleep Quality Index (PSQI), PTSD Symptom Scale (PSS), and Clinician-Administered PTSD Scale (CAPS) at 3- and 6-month follow-up. RESULTS A total of 114 participants completed follow-up at 3 and/or 6 months. Comparing baseline to follow-up (n = 97-114), treatment significantly reduced nights per week with nightmares (Cohen d = 1.24; P<.001) and number of nightmares per week (Cohen d = 0.85; P<.001) on the NFQ and improved sleep (on the PSQI, Cohen d = 0.67; P<.001) and PTSD symptoms (on the PSS, Cohen d = 1.00; P<.001 and on the CAPS, Cohen d = 1.53; P<.001). Control participants showed small, nonsignificant improvements for the same measures (mean Cohen d = 0.21). In a 3-point analysis (n = 66-77), improvements occurred in the treatment group at 3-month follow-up (treatment vs control group, Cohen d = 1.15 vs 0.07 for nights per week with nightmares; 0.95 vs -0.06 for nightmares per week; 0.77 vs 0.31 on the PSQI, and 1.06 vs 0.31 on the PSS) and were sustained without further intervention or contact between 3 and 6 months. An intent-to-treat analysis (n = 168) confirmed significant differences between treatment and control groups for nightmares, sleep, and PTSD (all P<.02) with moderate effect sizes for treatment (mean Cohen d = 0.60) and small effect sizes for controls (mean Cohen d = 0.14). Posttraumatic stress symptoms decreased by at least 1 level of clinical severity in 65% of the treatment group compared with symptoms worsening or not changing in 69% of controls (chi(2)(1) = 12.80; P<.001). CONCLUSIONS Imagery rehearsal therapy is a brief, well-tolerated treatment that appears to decrease chronic nightmares, improve sleep quality, and decrease PTSD symptom severity.
Collapse
|
Clinical Trial |
24 |
312 |
6
|
Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL, Brown MS. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 1998; 2:505-14. [PMID: 9809072 DOI: 10.1016/s1097-2765(00)80150-1] [Citation(s) in RCA: 311] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lipid composition of animal cells is controlled by SREBPs, transcription factors released from membranes by sterol-regulated proteolysis. Release is initiated by Site-1 protease (S1P), which cleaves SREBPs in the ER luminal loop between two membrane-spanning regions. To clone S1P, we prepared pCMV-PLAP-BP2, which encodes a fusion protein that contains placental alkaline phosphatase (PLAP) in the ER lumen flanked by cleavage sites for signal peptidase and S1P. In sterol-deprived cells, cleavage by both proteases leads to PLAP secretion. PLAP is not secreted by SRD-12B cells, cholesterol auxotrophs that lack S1P. We transfected SRD-12B cells with pCMV-PLAP-BP2 plus pools of CHO cDNAs and identified a cDNA that restores Site-1 cleavage and PLAP secretion. The cDNA encodes S1P, an intraluminal 1052-amino-acid membrane-bound subtilisin-like protease. We propose that S1P is the sterol-regulated protease that controls lipid metabolism in animal cells.
Collapse
|
|
27 |
311 |
7
|
Li T, Xie J, Shen C, Cheng D, Shi Y, Wu Z, Deng X, Chen H, Shen B, Peng C, Li H, Zhan Q, Zhu Z. Upregulation of long noncoding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma. Oncogene 2015; 35:1575-84. [PMID: 26073087 DOI: 10.1038/onc.2015.223] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor. Emerging studies showed that long noncoding RNAs (lncRNAs) have crucial regulatory roles in cancer biology. In the current study, differentially expressed lncRNAs between HCC and paired non-tumor tissues were identified using microarrays. The effects of a specific differentially expressed lncRNA (termed ZEB1-AS1) on tumor progression were investigated in vitro and in vivo. We found that ZEB1-AS1 is frequently upregulated in HCC samples, especially in metastatic tumor tissues. DNA methylation analysis shows a tumor-specific ZEB1-AS1 promoter hypomethylation. Aberrant methylation is tightly correlated with overexpression of ZEB1-AS1 in HCC. Patients with ZEB1-AS1 hypomethylation or with high ZEB1-AS1 expression have poor recurrence-free survival. Functionally, ZEB1-AS1 promotes tumor growth and metastasis, acts as an oncogene in HCC. The ZEB1-AS1 gene is located in physical contiguity with ZEB1 and positively regulates the ZEB1 expression. ZEB1 inhibition partially abrogates ZEB1-AS1-induced epithelial to mesenchymal transition (EMT) and cancer metastasis. Our results provide novel insights into the function of lncRNA-driven hepatocarcinogenesis, highlight the important role of ZEB1-AS1 and ZEB1 in HCC progression, and indicate that ZEB1-AS1 may be served as a valuable prognostic biomarker for HCC.
Collapse
|
Journal Article |
10 |
232 |
8
|
Schuler PJ, Saze Z, Hong CS, Muller L, Gillespie DG, Cheng D, Harasymczuk M, Mandapathil M, Lang S, Jackson EK, Whiteside TL. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol 2014; 177:531-43. [PMID: 24749746 DOI: 10.1111/cei.12354] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
While murine CD4(+) CD39(+) regulatory T cells (T(reg)) co-express CD73 and hydrolyze exogenous (e) adenosine triphosphate (ATP) to immunosuppressive adenosine (ADO), surface co-expression of CD73 on human circulating CD4(+) CD39(+) T(reg) is rare. Therefore, the ability of human T(reg) to produce and utilize ADO for suppression remains unclear. Using mass spectrometry, we measured nucleoside production by subsets of human CD4(+) CD39(+) and CD4(+) CD39(-)CD73(+) T cells or CD19(+) B cells isolated from blood of 30 volunteers and 14 cancer patients. CD39 and CD73 expression was evaluated by flow cytometry, Western blots, confocal microscopy or reverse transcription-polymerase chain reaction (RT-PCR). Circulating CD4(+) CD39(+) T(reg) which hydrolyzed eATP to 5'-AMP contained few intracytoplasmic granules and had low CD73 mRNA levels. Only ∼1% of these T(reg) were CD39(+) CD73(+) . In contrast, CD4(+) CD39(neg) CD73(+) T cells contained numerous CD73(+) granules in the cytoplasm and strongly expressed surface CD73. In vitro-generated T(reg) (Tr1) and most B cells were CD39(+) CD73(+) . All these CD73(+) T cell subsets and B cells hydrolyzed 5'-AMP to ADO. Exosomes isolated from plasma of normal control (NC) or cancer patients carried enzymatically active CD39 and CD73(+) and, when supplied with eATP, hydrolyzed it to ADO. Only CD4(+) CD39(+) T(reg) co-incubated with CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes produced ADO. Thus, contact with membrane-tethered CD73 was sufficient for ADO production by CD4(+) CD39(+) T(reg). In microenvironments containing CD4(+) CD73(+) T cells, B cells or CD39(+) CD73(+) exosomes, CD73 is readily available to CD4(+) CD39(+) CD73(neg) T(reg) for the production of immunosuppressive ADO.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
226 |
9
|
Cheng D, Peng J, Lv Y, Su D, Liu D, Chen M, Yuan L, Zhang X. De Novo Design of Chemical Stability Near-Infrared Molecular Probes for High-Fidelity Hepatotoxicity Evaluation In Vivo. J Am Chem Soc 2019; 141:6352-6361. [DOI: 10.1021/jacs.9b01374] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
6 |
209 |
10
|
Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 1997; 272:20213-21. [PMID: 9242699 DOI: 10.1074/jbc.272.32.20213] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SREBP cleavage-activating protein (SCAP) stimulates the proteolytic cleavage of membrane-bound SREBPs, thereby initiating the release of NH2-terminal fragments from cell membranes. The liberated fragments enter the nucleus and stimulate transcription of genes involved in synthesis and uptake of cholesterol and fatty acids. Sterols repress cleavage of SREBPs, apparently by interacting with the membrane attachment domain of SCAP. In the present studies we show that SCAP, like the SREBPs, is located in membranes of the endoplasmic reticulum and nuclear envelope. The COOH-terminal domain of SCAP, like that of the SREBPs, is located on the cytosolic face of the membranes. Co-immunoprecipitation experiments show that SCAP and SREBP-2 form a complex that can be precipitated with antibodies to either component. Complex formation occurs when cells express only the COOH-terminal domain of either SREBP-2 or SCAP, indicating that the complex forms between the two COOH-terminal domains. Truncation of SREBP-2 at its COOH terminus prevents the formation of complexes with SCAP and simultaneously reduces proteolytic cleavage. We conclude that proteolytic cleavage of SREBPs requires the formation of a complex with the COOH-terminal domain of SCAP and that SCAP is therefore a required element in the regulation of sterol and fatty acid metabolism in animal cells.
Collapse
|
|
28 |
186 |
11
|
Traynor AE, Schroeder J, Rosa RM, Cheng D, Stefka J, Mujais S, Baker S, Burt RK. Treatment of severe systemic lupus erythematosus with high-dose chemotherapy and haemopoietic stem-cell transplantation: a phase I study. Lancet 2000; 356:701-7. [PMID: 11085688 DOI: 10.1016/s0140-6736(00)02627-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) who experience persistent multiorgan dysfunction, despite standard doses of intravenous cyclophosphamide, represent a subset of patients at high risk of early death. We investigated the safety and efficacy of immune suppression and autologous haemopoietic stem-cell infusion to treat such patients. METHODS From 1996, we selected patients with persistent SLE despite use of cyclophosphamide. Patients underwent dose-intense immune suppression and autologous haemopoietic stem-cell (CD34) infusion. Peripheral blood lymphocytes were analysed by flow cytometry, ELISA, and T-cell-receptor spectratyping before and after transplantation. We mobilised autologous haemopoietic stem cells with 2.0 g/m2 cyclophosphamide and 10 microg/kg granulocyte colony stimulating factor daily, enriched with CD34-positive selection, and reinfused after immunosuppression with 200 mg/kg cyclophosphamide, 1 g methylprednisolone, and 90 mg/kg equine antithymocyte globulin. RESULTS Nine patients underwent stem-cell mobilisation but two were excluded before transplantation because of infection. The remaining seven received high-dose chemotherapy and stem-cell infusion. Median time to an absolute neutrophil count higher than 0.5x10(9)/L and nontransfused platelet count higher than 20x10(9)/L was 9 days (range 8-11) and 11 days (10-13), respectively. At a median follow-up of 25 months (12-40), all patients were free from signs of active lupus. Renal, cardiac, pulmonary, and serological markers, and T cell phenotype and repertoire had normalised. INTERPRETATION Patients remained free from active lupus and improved continuously after transplantation, with no immunosuppressive medication or small residual doses of prednisone. T-cell repertoire diversity and responsiveness was restored. Durability of remission remains to be established.
Collapse
|
Clinical Trial |
25 |
162 |
12
|
Song E, Han W, Li C, Cheng D, Li L, Liu L, Zhu G, Song Y, Tan W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11882-11890. [PMID: 25000539 DOI: 10.1021/am502423r] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel nanohybrid of hyaluronic acid (HA)-decorated graphene oxide (GO) was fabricated as a targeted and pH-responsive drug delivery system for controlling the release of anticancer drug doxorubicin (DOX) for tumor therapy. For the preparation, DOX was first loaded onto GO nanocarriers via π-π stacking and hydrogen-bonding interactions, and then it was decorated with HA to produce HA-GO-DOX nanohybrids via H-bonding interactions. In this strategy, HA served as both a targeting moiety and a hydrophilic group, making the as-prepared nanohybrids targeting, stable, and disperse. A high loading efficiency (42.9%) of DOX on the nanohybrids was also obtained. Cumulative DOX release from HA-GO-DOX was faster in pH 5.3 phosphate-buffered saline solution than that in pH 7.4, providing the basis for pH-response DOX release in the slightly acidic environment of tumor cells, while the much-slower DOX release from HA-GO-DOX than DOX showed the sustained drug-release capability of the nanohybrids. Fluorescent images of cellular uptake and cell viability analysis studies illustrated that these HA-GO-DOX nanohybrids significantly enhanced DOX accumulation in HA-targeted HepG2 cancer cells compared to HA-nontargeted RBMEC cells and subsequently induced selective cytotoxicity to HepG2 cells. In vivo antitumor efficiency of HA-GO-DOX nanohybrids showed obviously enhanced tumor inhibition rate for H22 hepatic cancer cell-bearing mice compared with free DOX and the GO-DOX formulation. These studies suggest that the HA-GO-DOX nanohybrids have potential clinical applications for anticancer drug delivery.
Collapse
|
|
11 |
144 |
13
|
Cheng D, Xue Z, Yi L, Shi H, Zhang K, Huo X, Bonser LR, Zhao J, Xu Y, Erle DJ, Zhen G. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care Med 2014; 190:639-48. [PMID: 25133876 DOI: 10.1164/rccm.201403-0505oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Activation of type 2 cytokine pathways plays a central role in a large subset of subjects with asthma. Th2-high and Th2-low asthma have distinct clinical, pathologic, and molecular phenotypes and respond differently to therapy. The factors that initiate type 2 responses in some subjects with asthma are unknown. OBJECTIVES To determine whether expression of epithelial cytokines IL-25, IL-33, and thymic stromal lymphopoietin are associated with type 2 responses and predict response to inhaled corticosteroid (ICS) in asthma. METHODS We analyzed pulmonary function tests, blood, and bronchoscopic biopsies from 21 healthy control subjects and 43 subjects with asthma. Subjects with asthma underwent an 8-week treatment with inhaled budesonide. MEASUREMENTS AND MAIN RESULTS Epithelial expression of IL-25, but not IL-33 or thymic stromal lymphopoietin, was increased in a subset of subjects with asthma. The IL-25-high subset had greater airway hyperresponsiveness, more airway and blood eosinophils, higher serum IgE, more subepithelial thickening, and higher expression of Th2 signature genes. ICS improved FEV1 and hyperresponsiveness in the IL-25-high but not the IL-25-low subset. Plasma IL-25 levels correlated with epithelial IL-25 expression, airway eosinophilia, and beneficial responses to ICS treatment. CONCLUSIONS IL-25 measurements identify two subsets of subjects with distinct asthma phenotypes and different responses to ICS. Because IL-25 has a major role in triggering type 2 responses, bronchial epithelial IL-25 expression is likely a key determinant of type 2 response activation in asthma. Plasma IL-25 level reflects airway IL-25/type 2 response activation and may be useful for predicting responses to asthma therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
141 |
14
|
Espenshade PJ, Cheng D, Goldstein JL, Brown MS. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 1999; 274:22795-804. [PMID: 10428864 DOI: 10.1074/jbc.274.32.22795] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Site-1 protease (S1P) is a subtilisin-related protease that cleaves sterol regulatory element-binding proteins (SREBPs) in the endoplasmic reticulum lumen, thereby initiating a process by which the transcriptionally active NH(2)-terminal fragments of SREBPs are released from membranes. In the current experiments, we transfected cDNAs encoding epitope-tagged hamster S1P into HEK-293 cells or mutant hamster cells that lack S1P. Protease protection assays showed that the bulk of S1P is in the endoplasmic reticulum lumen, anchored by a COOH-terminal membrane-spanning segment. Cleavage of the NH(2)-terminal signal sequence of S1P generates S1P-A (amino acids 23-1052), which is inactive. The protein is self-activated by an intramolecular cleavage at Site-B, generating S1P-B (amino acids 138-1052) and liberating a 115-amino acid propeptide that is secreted intact into the medium. The sequence at Site-B is RSLK, which differs from the RSVL sequence at the cleavage site in SREBP-2. S1P-B is further cleaved at an internal RRLL sequence to yield S1P-C (amino acids 187-1052). Mutational analysis suggests that S1P-B and S1P-C are both active in cleaving SREBP-2 in a fashion that requires SREBP cleavage-activating protein. The activity of S1P-C may be short-lived because it appears to be transported to the Golgi, a site at which SREBP-2 cleavage may not normally occur. These data provide the initial description of the processing of a subtilisin-related protease that controls the level of cholesterol in blood and cells. In an accompanying paper (Cheng, D., Espenshade, P. J., Slaughter, C. A., Jaen, J. C., Brown, M. S., and Goldstein, J. L. (1999), J. Biol. Chem., 274, 22805-22812), we develop an in vitro assay to characterize the activity of purified recombinant S1P.
Collapse
|
Comparative Study |
26 |
138 |
15
|
Cheng D, Chang CC, Qu X, Chang TY. Activation of acyl-coenzyme A:cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem 1995; 270:685-95. [PMID: 7822296 DOI: 10.1074/jbc.270.2.685] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes the conjugation of long chain fatty acid and cholesterol to form cholesteryl esters. It is an integral membrane protein located in the endoplasmic reticulum. Experiments performed in intact mammalian cells have shown that the rate of cholesteryl ester synthesis in intact cells, as well as the ACAT activity from cell extracts, are greatly activated by the addition of low density lipoprotein (LDL) or oxygenated sterols such as 25-hydroxycholesterol to the growth medium. However, the molecular mechanism(s) by which sterol(s) stimulate the ACAT activity remains to be elucidated. Recently, our laboratory reported the expression cloning of human ACAT cDNA (Chang, C. C. Y., Huh, H. Y., Cadigan, K. M., and Chang, T. Y. 1993) J. Biol. Chem. 268, 20747-20755). In the current study, we report the expression of human ACAT cDNA in insect Sf9 cells. Uninfected Sf9 cells do not express detectable ACAT-like activity. Infecting these cells with recombinant virus containing ACAT cDNA caused these cells to express high levels of ACAT protein and high levels of ACAT activity when assayed in vitro. The catalytic properties of ACAT expressed in these cells were found to be similar to those found in human tissue culture cells. The combination of high level of ACAT protein expression and the low level of cellular cholesterol content in the infected cells have provided us a novel opportunity to establish a simple cell-free system, whereby stimulation of ACAT by sterols can be readily demonstrated. Using this system, we have shown that cholesterol itself can serve as an ACAT activator in vitro, in addition to its role as an ACAT substrate. The current work provides the experimental basis to hypothesize that, inside mammalian cells, cholesterol itself may serve as a physiological regulator of ACAT.
Collapse
|
|
30 |
138 |
16
|
Abstract
Serial section electron microscopy of hemolysing erythrocytes (fixed at 12 s after the onset of osmotic hemolysis) revealed long slits and holes in the membrane, extending to around 1 microm in length. Many but not all of the slits and holes (about 100-1000 A wide) were confluent with one another. Ferritin and colloidal gold (added after fixation) only permeated those cells containing membrane defects. No such large holes or slits were seen in saponin-treated erythrocytes, and the membrane was highly invaginated, giving the ghost a scalloped outline. Freeze-etch electron microscopy of saponin-treated membranes revealed 40-50 A-wide pits in the extracellular surface of the membrane. If these pits represent regions from which cholesterol was extracted, then cholesterol is uniformly distributed over the entire erythrocyte membrane.
Collapse
|
research-article |
52 |
131 |
17
|
Krakow B, Hollifield M, Schrader R, Koss M, Tandberg D, Lauriello J, McBride L, Warner TD, Cheng D, Edmond T, Kellner R. A controlled study of imagery rehearsal for chronic nightmares in sexual assault survivors with PTSD: a preliminary report. J Trauma Stress 2000; 13:589-609. [PMID: 11109233 DOI: 10.1023/a:1007854015481] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Imagery-rehearsal therapy for chronic nightmares was assessed in a randomized, controlled study of sexual assault survivors with posttraumatic stress disorder (PTSD). Nightmares, sleep quality, and PTSD were assessed at baseline for 169 women, who were randomized into two groups: treatment (n = 87) and wait-list control (n = 82). Treatment consisted of two 3-hr sessions and one 1-hr session conducted over 5 weeks. Of 169 participants, 91 women (Treatment, n = 43, Control, n = 48) completed a 3-month follow-up and 78 did not. At follow-up, nightmare frequency and PTSD severity decreased and sleep quality improved in the treatment group with small to minimal changes in the control group. Treatment effects were moderate to high (Cohen's d ranged from 0.57 to 1.26). Notwithstanding the large dropout rate, imagery-rehearsal therapy is an effective treatment for chronic nightmares in sexual assault survivors with PTSD and is associated with improvement in sleep quality and decreases in PTSD severity.
Collapse
|
Clinical Trial |
25 |
125 |
18
|
Cheng D, Xu W, Yuan L, Zhang X. Investigation of Drug-Induced Hepatotoxicity and Its Remediation Pathway with Reaction-Based Fluorescent Probes. Anal Chem 2017. [PMID: 28627888 DOI: 10.1021/acs.analchem.7b01671] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is considered a serious problem related to public health, due to its unpredictability and acute response. The level of peroxynitrite (ONOO-) generated in liver has long been regarded as a biomarker for the prediction and measurement of DILI. Herein we present two reaction-based fluorescent probes (Naph-ONOO- and Rhod-ONOO-) for ONOO- through a novel and universally applicable mechanism: ONOO--mediated deprotection of α-keto caged fluorophores. Among them, Rhod-ONOO- can selectively accumulate and react in mitochondria, one of the main sources of ONOO-, with a substantial lower nanomolar sensitivity of 43 nM. The superior selectivity and sensitivity of two probes enable real-time imaging of peroxynitrite generation in lipopolysaccharide-stimulated live cells, with a remarkable difference from cells doped with other interfering reactive oxygen species, in either one- or two-photon imaging modes. More importantly, we elucidated the drug-induced hepatotoxicity pathway with Rhod-ONOO- and revealed that CYP450/CYP2E1-mediated enzymatic metabolism of acetaminophen leads to ONOO- generation in liver cells. This is the first time to showcase the drug-induced hepatotoxicity pathways by use of a small-molecule fluorescent probe. We hence conclude that fluorescent probes can engender a deeper understanding of reactive species and their pathological revelations. The reaction-based fluorescent probes will be a potentially useful chemical tool to assay drug-induced hepatotoxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
123 |
19
|
Chang CC, Chen J, Thomas MA, Cheng D, Del Priore VA, Newton RS, Pape ME, Chang TY. Regulation and immunolocalization of acyl-coenzyme A: cholesterol acyltransferase in mammalian cells as studied with specific antibodies. J Biol Chem 1995; 270:29532-40. [PMID: 7493995 DOI: 10.1074/jbc.270.49.29532] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the formation of intracellular cholesterol esters in various tissues. We recently reported the cloning and expression of human macrophage ACAT cDNA. In the current study, we report the production of specific polyclonal antibodies against ACAT by immunizing rabbits with the recombinant fusion protein composed of glutathione S-transferase and the first 131 amino acids of ACAT protein. Immunoblot analysis showed that the antibodies cross-reacted with a 50-kDa protein band from a variety of human cell lines. These antibodies immunodepleted more than 90% of detergent-solubilized ACAT activities from six different human cell types, demonstrating that the 50-kDa protein is the major ACAT catalytic component in these cells. In multiple human tissues examined, the antibodies recognized protein bands with various molecular weights. These antibodies also cross-reacted with the ACAT protein in Chinese hamster ovary cells. Immunoblot analysis showed that the ACAT protein contents in human fibroblast cells, HepG2 cells, or Chinese hamster ovary cells were not affected by sterol in the medium, demonstrating that the main mechanism for sterol-dependent regulation of ACAT activity in these cells is not change in ACAT protein content. As revealed by indirect immunofluorescent microscopy, the ACAT protein in tissue culture cells was located in the endoplasmic reticulum. This finding, along with earlier studies, suggests that cholesterol concentration in the endoplasmic reticulum may be the major determinant for regulating ACAT activity in the intact cells.
Collapse
|
|
30 |
122 |
20
|
Cheng D, Yu M, Fu F, Han W, Li G, Xie J, Song Y, Swihart MT, Song E. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. Anal Chem 2015; 88:820-5. [PMID: 26641108 DOI: 10.1021/acs.analchem.5b03320] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
122 |
21
|
Cheng D, Xu W, Gong X, Yuan L, Zhang XB. Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging. Acc Chem Res 2021; 54:403-415. [PMID: 33382249 DOI: 10.1021/acs.accounts.0c00646] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced acute liver injury (DIALI) is increasingly recognized as a significant cause of acute liver injury (ALI), which is characterized by a rapid loss of hepatocyte function in patients without pre-existing liver diseases. Evaluation of corresponding biomarkers, including alanine transaminase and aspartate amino transferase, is available as a diagnostic tool for hepatotoxicity. However, these blood tests have certain limitations: (1) they are generally not available for early estimation; (2) it is difficult to visualize and identify hepatotoxicity unambiguously in real-time; and (3) the biomarkers are not unique and are usually influenced by a variety of diseases, leading to potential false results. It is of grave importance and burgeoning demand to develop an early diagnostic approach for such diseases, but the ideal toolkit remains an unresolved challenge.As an alternative, molecular optical probes (fluorescence, chemiluminescence, bioluminescence, etc.) display a lot of advantages, such as high sensitivity, noninvasive fast analysis, and real-time in situ detection. They have emerged as potent and promising tools for the biomedical study of DIALI in living system. Until now, a number of optical probes for DIALI have been reported with some great potential for clinical trials. However, most of the probes still suffer from false signals because of the limitations in clinical application, including poor selectivity, low sensitivity, and biocompatibility. One key challenge that probes face in the ALI environment is the excessive exposure to reactive oxygen/nitrogen species and diffusivity, which may lead to false-positive or negative signals.Our group has employed multiple rational approaches to engineer high-performance optical probes for DIALI. With such development, we have successfully achieved the accurate detection of DIALI with minimal false signals both ex vivo and in vivo. While marching firmly toward understanding the biogenesis and progression of DIALI, we ultimately aim at the early stage clinical diagnosis of the disease, as well as mechanism understanding for clinical trials. In this Account, we summarize and present our three new approaches for the development of high-fidelity optical probes: (1) a combined screening and rational design strategy, (2) a double-locked probe design strategy, and (3) in situ imaging based on the release of a precipitating fluorochrome strategy. Using these strategies, we have formulated probes for a range of biological species that are biomarkers of DIALI, including reactive nitrogen species (ONOO-), reactive sulfur species (H2S and H2Sn), and enzymes (LAP, MAO, and ALP). We have highlighted the rationale for our design and screening strategy and methods to achieve high-fidelity optical probes. Some recent examples of optical probes developed by our laboratory and collaborations are mainly illustrated herein. We anticipate the strategies summarized here to inspire future molecular optical probe design, to contribute to studies of the detailed molecular mechanisms underlying liver diseases, and to improve the efficiency of the diagnosis and treatment of these diseases in clinical settings.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
118 |
22
|
Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W, Zhang C. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal Chim Acta 2015; 899:57-65. [DOI: 10.1016/j.aca.2015.09.054] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
|
10 |
112 |
23
|
Grigoriev VA, Cheng D, Hill CL, Weinstock IA. Role of alkali metal cation size in the energy and rate of electron transfer to solvent-separated 1:1 [(M+)(acceptor)] (M+ = Li+, Na+, K+) ion pairs. J Am Chem Soc 2001; 123:5292-307. [PMID: 11457392 DOI: 10.1021/ja010074q] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of cation size on the rate and energy of electron transfer to [(M(+))(acceptor)] ion pairs is addressed by assigning key physicochemical properties (reactivity, relative energy, structure, and size) to an isoelectronic series of well-defined M(+)-acceptor pairs, M(+) = Li(+), Na(+), K(+). A 1e(-) acceptor anion, alpha-SiV(V)W(11)O(40)(5-) (1, a polyoxometalate of the Keggin structural class), was used in the 2e(-) oxidation of an organic electron donor, 3,3',5,5'-tetra-tert-butylbiphenyl-4,4'-diol (BPH(2)), to 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) in acetate-buffered 2:3 (v/v) H(2)O/t-BuOH at 60 degrees C (2 equiv of 1 are reduced by 1e(-) each to 1(red), alpha-SiV(IV)W(11)O(40)(6-)). Before an attempt was made to address the role of cation size, the mechanism and conditions necessary for kinetically well behaved electron transfer from BPH(2) to 1 were rigorously established by using GC-MS, (1)H, (7)Li, and (51)V NMR, and UV-vis spectroscopy. At constant [Li(+)] and [H(+)], the reaction rate is first order in [BPH(2)] and in [1] and zeroth order in [1(red)] and in [acetate] (base) and is independent of ionic strength, mu. The dependence of the reaction rate on [H(+)] is a function of the constant, K(a)1, for acid dissociation of BPH(2) to BPH(-) and H(+). Temperature dependence data provided activation parameters of DeltaH = 8.5 +/- 1.4 kcal mol(-1) and DeltaS = -39 +/- 5 cal mol(-1) K(-1). No evidence of preassociation between BPH(2) and 1 was observed by combined (1)H and (51)V NMR studies, while pH (pD)-dependent deuterium kinetic isotope data indicated that the O-H bond in BPH(2) remains intact during rate-limiting electron transfer from BPH(2) and 1. The formation of 1:1 ion pairs [(M(+))(SiVW(11)O(40)(5-))](4-) (M(+)1, M(+) = Li(+), Na(+), K(+)) was demonstrated, and the thermodynamic constants, K(M)(1), and rate constants, k(M)(1), associated with the formation and reactivity of each M(+)1 ion pair with BPH(2) were calculated by simultaneous nonlinear fitting of kinetic data (obtained by using all three cations) to an equation describing the rectangular hyperbolic functional dependence of k(obs) values on [M(+)]. Constants, K(M)(1)red, associated with the formation of 1:1 ion pairs between M(+) and 1(red) were obtained by using K(M)(1) values (from k(obs) data) to simultaneously fit reduction potential (E(1/2)) values (from cyclic voltammetry) of solutions of 1 containing varying concentrations of all three cations to a Nernstian equation describing the dependence of E(1/2) values on the ratio of thermodynamic constants K(M)(1) and K(M)(1)red. Formation constants, K(M)(1), and K(M)(1)red, and rate constants, k(M)(1), all increase with the size of M(+) in the order K(Li)(1) = 21 < K(Na)(1) = 54 < K(K)(1) = 65 M(-1), K(Li)(1)red = 130 < K(Na)(1)red = 570 < K(K)(1)red = 2000 M(-1), and k(Li)(1) = 0.065 < k(Na)(1) = 0.137 < k(K)(1) = 0.225 M(-1) s(-1). Changes in the chemical shifts of (7)Li NMR signals as functions of [Li(5)1] and [Li(6)1(red)] were used to establish that the complexes M(+)1 and M(+)1(red) exist as solvent-separated ion pairs. Finally, correlation between cation size and the rate and energy of electron transfer was established by consideration of K(M)(1), k(M)(1), and K(M)(1)red values along with the relative sizes of the three M(+)1 pairs (effective hydrodynamic radii, r(eff), obtained by single-potential step chronoamperometry). As M(+) increases in size, association constants, K(M)(1), become larger as smaller, more intimate solvent-separated ion pairs, M(+)1, possessing larger electron affinities (q/r), and associated with larger k(M)(1)() values, are formed. Moreover, as M(+)1 pairs are reduced to M(+)1(red) during electron transfer in the activated complexes, [BPH(2), M(+)1], contributions of ion pairing energy (proportional to -RT ln(K(M)(1)red/K(M)(1)) to the standard free energy change associated with electron transfer, DeltaG degrees (et), increase with cation size: -RT ln(K(M)(1)red/K(M)(1)) (in kcal mol(-1)) = -1.2 for Li(+), -1.5 for Na(+), and -2.3 for K(+).
Collapse
|
|
24 |
110 |
24
|
Mirabella T, MacArthur J, Cheng D, Ozaki C, Woo Y, Yang M, Chen C. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 2017; 1:0083. [PMID: 29515935 PMCID: PMC5837070 DOI: 10.1038/s41551-017-0083] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Arterial bypass grafts remain the gold standard for the treatment of end-stage ischaemic disease. Yet patients unable to tolerate the cardiovascular stress of arterial surgery or those with unreconstructable disease would benefit from grafts that are able to induce therapeutic angiogenesis. Here, we introduce an approach whereby implantation of 3D-printed grafts containing endothelial-cell-lined lumens induces spontaneous, geometrically guided generation of collateral circulation in ischaemic settings. In rodent models of hind-limb ischaemia and myocardial infarction, we demonstrate that the vascular patches rescue perfusion of distal tissues, preventing capillary loss, muscle atrophy and loss of function. Inhibiting anastomoses between the construct and the host's local capillary beds, or implanting constructs with unpatterned endothelial cells, abrogates reperfusion. Our 3D-printed grafts constitute an efficient and scalable approach to engineer vascular patches able to guide rapid therapeutic angiogenesis and perfusion for the treatment of ischaemic diseases.
Collapse
|
research-article |
8 |
109 |
25
|
Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG. Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 2001; 170:129-39. [PMID: 11421590 DOI: 10.1006/exnr.2000.7614] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that overexpressing the 70-kDa inducible heat shock protein in primary astrocyte cultures and in a rodent stroke model using viral vectors resulted in protection from ischemia and ischemia-like injury. However, viral transfection could potentially provoke a stress response itself; therefore, we examined whether transgenic mice constitutively expressing human heat shock protein 70 were protected from ischemic insults. Astrocyte cultures from brains of heat shock protein 70 transgenic mice were resistant to hydrogen peroxide injury in a dose-dependent fashion, but were less resistant to hypoglycemia and oxygen-glucose deprivation. Because hydrogen peroxide exposure and glucose deprivation are partially dependent on glutathione levels, we determined whether heat shock protein 70 transgenic cultures had altered glutathione levels under normal growth conditions. However, there was no significant difference in glutathione levels between heat shock protein 70 transgenic and wildtype astrocytes. Hippocampal, but not cortical neuron cultures from these same transgenic mice were also protected against oxygen-glucose deprivation and glutamate toxicity. In an in vivo model of permanent focal cerebral ischemia, there was no significant difference in infarct size assessed 24 h postinsult. These results suggest that heat shock protein 70 protects against some but not all kinds of central nervous system injury. The protective effects may be related to the nature and severity of the insults, as well as subpopulations of brain cells and dose-dependent effects of HSP70 overexpression.
Collapse
|
|
24 |
104 |